aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--Eigen/LU1
-rw-r--r--Eigen/src/Core/MatrixBase.h1
-rw-r--r--Eigen/src/Core/util/ForwardDeclarations.h1
-rw-r--r--Eigen/src/LU/Determinant.h2
-rw-r--r--Eigen/src/LU/Inverse.h3
-rw-r--r--Eigen/src/LU/PartialLU.h262
6 files changed, 267 insertions, 3 deletions
diff --git a/Eigen/LU b/Eigen/LU
index 0ce694565..c63463359 100644
--- a/Eigen/LU
+++ b/Eigen/LU
@@ -19,6 +19,7 @@ namespace Eigen {
*/
#include "src/LU/LU.h"
+#include "src/LU/PartialLU.h"
#include "src/LU/Determinant.h"
#include "src/LU/Inverse.h"
diff --git a/Eigen/src/Core/MatrixBase.h b/Eigen/src/Core/MatrixBase.h
index 13b66af73..7df9f307b 100644
--- a/Eigen/src/Core/MatrixBase.h
+++ b/Eigen/src/Core/MatrixBase.h
@@ -623,6 +623,7 @@ template<typename Derived> class MatrixBase
/////////// LU module ///////////
const LU<PlainMatrixType> lu() const;
+ const PartialLU<PlainMatrixType> partialLu() const;
const PlainMatrixType inverse() const;
void computeInverse(PlainMatrixType *result) const;
Scalar determinant() const;
diff --git a/Eigen/src/Core/util/ForwardDeclarations.h b/Eigen/src/Core/util/ForwardDeclarations.h
index 11fed05ec..9ef708194 100644
--- a/Eigen/src/Core/util/ForwardDeclarations.h
+++ b/Eigen/src/Core/util/ForwardDeclarations.h
@@ -109,6 +109,7 @@ template<typename MatrixType,int RowFactor,int ColFactor> class Replicate;
template<typename MatrixType, int Direction = BothDirections> class Reverse;
template<typename MatrixType> class LU;
+template<typename MatrixType> class PartialLU;
template<typename MatrixType> class QR;
template<typename MatrixType> class SVD;
template<typename MatrixType> class LLT;
diff --git a/Eigen/src/LU/Determinant.h b/Eigen/src/LU/Determinant.h
index 4f435054a..fc3454435 100644
--- a/Eigen/src/LU/Determinant.h
+++ b/Eigen/src/LU/Determinant.h
@@ -51,7 +51,7 @@ template<typename Derived,
{
static inline typename ei_traits<Derived>::Scalar run(const Derived& m)
{
- return m.lu().determinant();
+ return m.partialLu().determinant();
}
};
diff --git a/Eigen/src/LU/Inverse.h b/Eigen/src/LU/Inverse.h
index 3d4d63489..722de82a3 100644
--- a/Eigen/src/LU/Inverse.h
+++ b/Eigen/src/LU/Inverse.h
@@ -170,8 +170,7 @@ struct ei_compute_inverse
{
static inline void run(const MatrixType& matrix, MatrixType* result)
{
- LU<MatrixType> lu(matrix);
- lu.computeInverse(result);
+ matrix.partialLu().computeInverse(result);
}
};
diff --git a/Eigen/src/LU/PartialLU.h b/Eigen/src/LU/PartialLU.h
new file mode 100644
index 000000000..7fdbeac38
--- /dev/null
+++ b/Eigen/src/LU/PartialLU.h
@@ -0,0 +1,262 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_PARTIALLU_H
+#define EIGEN_PARTIALLU_H
+
+/** \ingroup LU_Module
+ *
+ * \class PartialLU
+ *
+ * \brief LU decomposition of a matrix with partial pivoting, and related features
+ *
+ * \param MatrixType the type of the matrix of which we are computing the LU decomposition
+ *
+ * This class represents a LU decomposition of a \b square \b invertible matrix, with partial pivoting: the matrix A
+ * is decomposed as A = PLU where L is unit-lower-triangular, U is upper-triangular, and P
+ * is a permutation matrix.
+ *
+ * Typically, partial pivoting LU decomposition is only considered numerically stable for square invertible matrices.
+ * So in this class, we plainly require that and take advantage of that to do some simplifications and optimizations.
+ * This class will assert that the matrix is square, but it won't (actually it can't) check that the matrix is invertible:
+ * it is your task to check that you only use this decomposition on invertible matrices.
+ *
+ * The guaranteed safe alternative, working for all matrices, is the full pivoting LU decomposition, provided by class LU.
+ *
+ * This is \b not a rank-revealing LU decomposition. Many features are intentionally absent from this class,
+ * such as rank computation. If you need these features, use class LU.
+ *
+ * This LU decomposition is suitable to invert invertible matrices. It is what MatrixBase::inverse() uses. On the other hand,
+ * it is \b not suitable to determine whether a given matrix is invertible.
+ *
+ * The data of the LU decomposition can be directly accessed through the methods matrixLU(), permutationP().
+ *
+ * \sa MatrixBase::partialLu(), MatrixBase::determinant(), MatrixBase::inverse(), MatrixBase::computeInverse(), class LU
+ */
+template<typename MatrixType> class PartialLU
+{
+ public:
+
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
+ typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
+ typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType;
+ typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType;
+
+ enum { MaxSmallDimAtCompileTime = EIGEN_ENUM_MIN(
+ MatrixType::MaxColsAtCompileTime,
+ MatrixType::MaxRowsAtCompileTime)
+ };
+
+ /** Constructor.
+ *
+ * \param matrix the matrix of which to compute the LU decomposition.
+ *
+ * \warning The matrix should have full rank (e.g. if it's square, it should be invertible).
+ * If you need to deal with non-full rank, use class LU instead.
+ */
+ PartialLU(const MatrixType& matrix);
+
+ /** \returns the LU decomposition matrix: the upper-triangular part is U, the
+ * unit-lower-triangular part is L (at least for square matrices; in the non-square
+ * case, special care is needed, see the documentation of class LU).
+ *
+ * \sa matrixL(), matrixU()
+ */
+ inline const MatrixType& matrixLU() const
+ {
+ return m_lu;
+ }
+
+ /** \returns a vector of integers, whose size is the number of rows of the matrix being decomposed,
+ * representing the P permutation i.e. the permutation of the rows. For its precise meaning,
+ * see the examples given in the documentation of class LU.
+ */
+ inline const IntColVectorType& permutationP() const
+ {
+ return m_p;
+ }
+
+ /** This method finds the solution x to the equation Ax=b, where A is the matrix of which
+ * *this is the LU decomposition. Since if this partial pivoting decomposition the matrix is assumed
+ * to have full rank, such a solution is assumed to exist and to be unique.
+ *
+ * \warning Again, if your matrix may not have full rank, use class LU instead. See LU::solve().
+ *
+ * \param b the right-hand-side of the equation to solve. Can be a vector or a matrix,
+ * the only requirement in order for the equation to make sense is that
+ * b.rows()==A.rows(), where A is the matrix of which *this is the LU decomposition.
+ * \param result a pointer to the vector or matrix in which to store the solution, if any exists.
+ * Resized if necessary, so that result->rows()==A.cols() and result->cols()==b.cols().
+ * If no solution exists, *result is left with undefined coefficients.
+ *
+ * Example: \include PartialLU_solve.cpp
+ * Output: \verbinclude PartialLU_solve.out
+ *
+ * \sa MatrixBase::solveTriangular(), inverse(), computeInverse()
+ */
+ template<typename OtherDerived, typename ResultType>
+ void solve(const MatrixBase<OtherDerived>& b, ResultType *result) const;
+
+ /** \returns the determinant of the matrix of which
+ * *this is the LU decomposition. It has only linear complexity
+ * (that is, O(n) where n is the dimension of the square matrix)
+ * as the LU decomposition has already been computed.
+ *
+ * \note For fixed-size matrices of size up to 4, MatrixBase::determinant() offers
+ * optimized paths.
+ *
+ * \warning a determinant can be very big or small, so for matrices
+ * of large enough dimension, there is a risk of overflow/underflow.
+ *
+ * \sa MatrixBase::determinant()
+ */
+ typename ei_traits<MatrixType>::Scalar determinant() const;
+
+ /** Computes the inverse of the matrix of which *this is the LU decomposition.
+ *
+ * \param result a pointer to the matrix into which to store the inverse. Resized if needed.
+ *
+ * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
+ * invertibility, use class LU instead.
+ *
+ * \sa MatrixBase::computeInverse(), inverse()
+ */
+ inline void computeInverse(MatrixType *result) const
+ {
+ solve(MatrixType::Identity(m_lu.rows(), m_lu.cols()), result);
+ }
+
+ /** \returns the inverse of the matrix of which *this is the LU decomposition.
+ *
+ * \warning The matrix being decomposed here is assumed to be invertible. If you need to check for
+ * invertibility, use class LU instead.
+ *
+ * \sa computeInverse(), MatrixBase::inverse()
+ */
+ inline MatrixType inverse() const
+ {
+ MatrixType result;
+ computeInverse(&result);
+ return result;
+ }
+
+ protected:
+ const MatrixType& m_originalMatrix;
+ MatrixType m_lu;
+ IntColVectorType m_p;
+ int m_det_p;
+};
+
+template<typename MatrixType>
+PartialLU<MatrixType>::PartialLU(const MatrixType& matrix)
+ : m_originalMatrix(matrix),
+ m_lu(matrix),
+ m_p(matrix.rows())
+{
+ ei_assert(matrix.rows() == matrix.cols() && "PartialLU is only for square (and moreover invertible) matrices");
+ const int size = matrix.rows();
+
+ IntColVectorType rows_transpositions(size);
+ int number_of_transpositions = 0;
+
+ for(int k = 0; k < size; ++k)
+ {
+ int row_of_biggest_in_col;
+ m_lu.block(k,k,size-k,1).cwise().abs().maxCoeff(&row_of_biggest_in_col);
+ row_of_biggest_in_col += k;
+
+ rows_transpositions.coeffRef(k) = row_of_biggest_in_col;
+
+ if(k != row_of_biggest_in_col) {
+ m_lu.row(k).swap(m_lu.row(row_of_biggest_in_col));
+ ++number_of_transpositions;
+ }
+
+ if(k<size-1) {
+ m_lu.col(k).end(size-k-1) /= m_lu.coeff(k,k);
+ for(int col = k + 1; col < size; ++col)
+ m_lu.col(col).end(size-k-1) -= m_lu.col(k).end(size-k-1) * m_lu.coeff(k,col);
+ }
+ }
+
+ for(int k = 0; k < size; ++k) m_p.coeffRef(k) = k;
+ for(int k = size-1; k >= 0; --k)
+ std::swap(m_p.coeffRef(k), m_p.coeffRef(rows_transpositions.coeff(k)));
+
+ m_det_p = (number_of_transpositions%2) ? -1 : 1;
+}
+
+template<typename MatrixType>
+typename ei_traits<MatrixType>::Scalar PartialLU<MatrixType>::determinant() const
+{
+ return Scalar(m_det_p) * m_lu.diagonal().prod();
+}
+
+template<typename MatrixType>
+template<typename OtherDerived, typename ResultType>
+void PartialLU<MatrixType>::solve(
+ const MatrixBase<OtherDerived>& b,
+ ResultType *result
+) const
+{
+ /* The decomposition PA = LU can be rewritten as A = P^{-1} L U.
+ * So we proceed as follows:
+ * Step 1: compute c = Pb.
+ * Step 2: replace c by the solution x to Lx = c. Exists because L is invertible.
+ * Step 3: replace c by the solution x to Ux = c. Check if a solution really exists.
+ */
+
+ const int size = m_lu.rows();
+ ei_assert(b.rows() == size);
+
+ result->resize(size, b.cols());
+
+ // Step 1
+ for(int i = 0; i < size; ++i) result->row(m_p.coeff(i)) = b.row(i);
+
+ // Step 2
+ m_lu.template marked<UnitLowerTriangular>()
+ .solveTriangularInPlace(*result);
+
+ // Step 3
+ m_lu.template marked<UpperTriangular>()
+ .solveTriangularInPlace(*result);
+}
+
+/** \lu_module
+ *
+ * \return the LU decomposition of \c *this.
+ *
+ * \sa class LU
+ */
+template<typename Derived>
+inline const PartialLU<typename MatrixBase<Derived>::PlainMatrixType>
+MatrixBase<Derived>::partialLu() const
+{
+ return PartialLU<PlainMatrixType>(eval());
+}
+
+#endif // EIGEN_PARTIALLU_H