aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h364
-rw-r--r--unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h2
2 files changed, 204 insertions, 162 deletions
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h b/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
index c5acdc2c0..43539f549 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixFunction.h
@@ -116,8 +116,7 @@ class MatrixFunction
/** \ingroup MatrixFunctions_Module
- * \brief Partial specialization of MatrixFunction for real matrices.
- * \internal
+ * \brief Partial specialization of MatrixFunction for real matrices \internal
*/
template <typename MatrixType>
class MatrixFunction<MatrixType, 0>
@@ -159,8 +158,7 @@ class MatrixFunction<MatrixType, 0>
/** \ingroup MatrixFunctions_Module
- * \brief Partial specialization of MatrixFunction for complex matrices
- * \internal
+ * \brief Partial specialization of MatrixFunction for complex matrices \internal
*/
template <typename MatrixType>
class MatrixFunction<MatrixType, 1>
@@ -176,8 +174,8 @@ class MatrixFunction<MatrixType, 1>
typedef typename ei_stem_function<Scalar>::type StemFunction;
typedef Matrix<Scalar, Traits::RowsAtCompileTime, 1> VectorType;
typedef Matrix<int, Traits::RowsAtCompileTime, 1> IntVectorType;
- typedef std::list<Scalar> listOfScalars;
- typedef std::list<listOfScalars> listOfLists;
+ typedef std::list<Scalar> Cluster;
+ typedef std::list<Cluster> ListOfClusters;
typedef Matrix<Scalar, Dynamic, Dynamic, Options, RowsAtCompileTime, ColsAtCompileTime> DynMatrixType;
public:
@@ -192,59 +190,173 @@ class MatrixFunction<MatrixType, 1>
private:
- // Prevent copying
- MatrixFunction(const MatrixFunction&);
- MatrixFunction& operator=(const MatrixFunction&);
-
- void separateBlocksInSchur(MatrixType& T, MatrixType& U, VectorXi& blockSize);
- void permuteSchur(const IntVectorType& permutation, MatrixType& T, MatrixType& U);
- void swapEntriesInSchur(int index, MatrixType& T, MatrixType& U);
- void computeTriangular(const MatrixType& T, MatrixType& result, const VectorXi& blockSize);
- void computeBlockAtomic(const MatrixType& T, MatrixType& result, const VectorXi& blockSize);
+ void computeSchurDecomposition(const MatrixType& A);
+ void partitionEigenvalues();
+ typename ListOfClusters::iterator findCluster(Scalar key);
+ void computeClusterSize();
+ void computeBlockStart();
+ void constructPermutation();
+ void permuteSchur();
+ void swapEntriesInSchur(int index);
+ void computeBlockAtomic();
+ Block<MatrixType> block(const MatrixType& A, int i, int j);
+ void computeOffDiagonal();
DynMatrixType solveTriangularSylvester(const DynMatrixType& A, const DynMatrixType& B, const DynMatrixType& C);
- void divideInBlocks(const VectorType& v, listOfLists* result);
- void constructPermutation(const VectorType& diag, const listOfLists& blocks,
- VectorXi& blockSize, IntVectorType& permutation);
+ StemFunction *m_f; /**< \brief Stem function for matrix function under consideration */
+ MatrixType m_T; /**< \brief Triangular part of Schur decomposition */
+ MatrixType m_U; /**< \brief Unitary part of Schur decomposition */
+ MatrixType m_fT; /**< \brief %Matrix function applied to #m_T */
+ ListOfClusters m_clusters; /**< \brief Partition of eigenvalues into clusters of ei'vals "close" to each other */
+ VectorXi m_eivalToCluster; /**< \brief m_eivalToCluster[i] = j means i-th ei'val is in j-th cluster */
+ VectorXi m_clusterSize; /**< \brief Number of eigenvalues in each clusters */
+ VectorXi m_blockStart; /**< \brief Row index at which block corresponding to i-th cluster starts */
+ IntVectorType m_permutation; /**< \brief Permutation which groups ei'vals in the same cluster together */
+
+ /** \brief Maximum distance allowed between eigenvalues to be considered "close".
+ *
+ * This is morally a \c static \c const \c Scalar, but only
+ * integers can be static constant class members in C++. The
+ * separation constant is set to 0.01, a value taken from the
+ * paper by Davies and Higham. */
static const RealScalar separation() { return static_cast<RealScalar>(0.01); }
- StemFunction *m_f;
};
template <typename MatrixType>
MatrixFunction<MatrixType,1>::MatrixFunction(const MatrixType& A, StemFunction f, MatrixType* result) :
m_f(f)
{
- if (A.rows() == 1) {
- result->resize(1,1);
- (*result)(0,0) = f(A(0,0), 0);
- } else {
- const ComplexSchur<MatrixType> schurOfA(A);
- MatrixType T = schurOfA.matrixT();
- MatrixType U = schurOfA.matrixU();
- VectorXi blockSize;
- separateBlocksInSchur(T, U, blockSize);
- MatrixType fT;
- computeTriangular(T, fT, blockSize);
- *result = U * fT * U.adjoint();
+ computeSchurDecomposition(A);
+ partitionEigenvalues();
+ computeClusterSize();
+ computeBlockStart();
+ constructPermutation();
+ permuteSchur();
+ computeBlockAtomic();
+ computeOffDiagonal();
+ *result = m_U * m_fT * m_U.adjoint();
+}
+
+/** \brief Store the Schur decomposition of \p A in #m_T and #m_U */
+template <typename MatrixType>
+void MatrixFunction<MatrixType,1>::computeSchurDecomposition(const MatrixType& A)
+{
+ const ComplexSchur<MatrixType> schurOfA(A);
+ m_T = schurOfA.matrixT();
+ m_U = schurOfA.matrixU();
+}
+
+/** \brief Partition eigenvalues in clusters of ei'vals close to each other
+ *
+ * This function computes #m_clusters. This is a partition of the
+ * eigenvalues of #m_T in clusters, such that
+ * # Any eigenvalue in a certain cluster is at most separation() away
+ * from another eigenvalue in the same cluster.
+ * # The distance between two eigenvalues in different clusters is
+ * more than separation().
+ * The implementation follows Algorithm 4.1 in the paper of Davies
+ * and Higham.
+ */
+template <typename MatrixType>
+void MatrixFunction<MatrixType,1>::partitionEigenvalues()
+{
+ const int rows = m_T.rows();
+ VectorType diag = m_T.diagonal(); // contains eigenvalues of A
+
+ for (int i=0; i<rows; ++i) {
+ // Find set containing diag(i), adding a new set if necessary
+ typename ListOfClusters::iterator qi = findCluster(diag(i));
+ if (qi == m_clusters.end()) {
+ Cluster l;
+ l.push_back(diag(i));
+ m_clusters.push_back(l);
+ qi = m_clusters.end();
+ --qi;
+ }
+
+ // Look for other element to add to the set
+ for (int j=i+1; j<rows; ++j) {
+ if (ei_abs(diag(j) - diag(i)) <= separation() && std::find(qi->begin(), qi->end(), diag(j)) == qi->end()) {
+ typename ListOfClusters::iterator qj = findCluster(diag(j));
+ if (qj == m_clusters.end()) {
+ qi->push_back(diag(j));
+ } else {
+ qi->insert(qi->end(), qj->begin(), qj->end());
+ m_clusters.erase(qj);
+ }
+ }
+ }
+ }
+}
+
+/** \brief Find cluster in #m_clusters containing some value
+ * \param[in] key Value to find
+ * \returns Iterator to cluster containing \c key, or
+ * \c m_clusters.end() if no cluster in m_clusters contains \c key.
+ */
+template <typename MatrixType>
+typename MatrixFunction<MatrixType,1>::ListOfClusters::iterator MatrixFunction<MatrixType,1>::findCluster(Scalar key)
+{
+ typename Cluster::iterator j;
+ for (typename ListOfClusters::iterator i = m_clusters.begin(); i != m_clusters.end(); ++i) {
+ j = std::find(i->begin(), i->end(), key);
+ if (j != i->end())
+ return i;
}
+ return m_clusters.end();
}
+/** \brief Compute #m_clusterSize and #m_eivalToCluster using #m_clusters */
template <typename MatrixType>
-void MatrixFunction<MatrixType,1>::separateBlocksInSchur(MatrixType& T, MatrixType& U, VectorXi& blockSize)
+void MatrixFunction<MatrixType,1>::computeClusterSize()
{
- const VectorType d = T.diagonal();
- listOfLists blocks;
- divideInBlocks(d, &blocks);
+ const int rows = m_T.rows();
+ VectorType diag = m_T.diagonal();
+ const int numClusters = m_clusters.size();
+
+ m_clusterSize.setZero(numClusters);
+ m_eivalToCluster.resize(rows);
+ int clusterIndex = 0;
+ for (typename ListOfClusters::const_iterator cluster = m_clusters.begin(); cluster != m_clusters.end(); ++cluster) {
+ for (int i = 0; i < diag.rows(); ++i) {
+ if (std::find(cluster->begin(), cluster->end(), diag(i)) != cluster->end()) {
+ ++m_clusterSize[clusterIndex];
+ m_eivalToCluster[i] = clusterIndex;
+ }
+ }
+ ++clusterIndex;
+ }
+}
- IntVectorType permutation;
- constructPermutation(d, blocks, blockSize, permutation);
- permuteSchur(permutation, T, U);
+/** \brief Compute #m_blockStart using #m_clusterSize */
+template <typename MatrixType>
+void MatrixFunction<MatrixType,1>::computeBlockStart()
+{
+ m_blockStart.resize(m_clusterSize.rows());
+ m_blockStart(0) = 0;
+ for (int i = 1; i < m_clusterSize.rows(); i++) {
+ m_blockStart(i) = m_blockStart(i-1) + m_clusterSize(i-1);
+ }
}
+/** \brief Compute #m_permutation using #m_eivalToCluster and #m_blockStart */
+template <typename MatrixType>
+void MatrixFunction<MatrixType,1>::constructPermutation()
+{
+ VectorXi indexNextEntry = m_blockStart;
+ m_permutation.resize(m_T.rows());
+ for (int i = 0; i < m_T.rows(); i++) {
+ int cluster = m_eivalToCluster[i];
+ m_permutation[i] = indexNextEntry[cluster];
+ ++indexNextEntry[cluster];
+ }
+}
+
+/** \brief Permute Schur decomposition in #m_U and #m_T according to #m_permutation */
template <typename MatrixType>
-void MatrixFunction<MatrixType,1>::permuteSchur(const IntVectorType& permutation, MatrixType& T, MatrixType& U)
+void MatrixFunction<MatrixType,1>::permuteSchur()
{
- IntVectorType p = permutation;
+ IntVectorType p = m_permutation;
for (int i = 0; i < p.rows() - 1; i++) {
int j;
for (j = i; j < p.rows(); j++) {
@@ -252,46 +364,70 @@ void MatrixFunction<MatrixType,1>::permuteSchur(const IntVectorType& permutation
}
ei_assert(p(j) == i);
for (int k = j-1; k >= i; k--) {
- swapEntriesInSchur(k, T, U);
+ swapEntriesInSchur(k);
std::swap(p.coeffRef(k), p.coeffRef(k+1));
}
}
}
-// swap T(index, index) and T(index+1, index+1)
+/** \brief Swap rows \a index and \a index+1 in Schur decomposition in #m_U and #m_T */
template <typename MatrixType>
-void MatrixFunction<MatrixType,1>::swapEntriesInSchur(int index, MatrixType& T, MatrixType& U)
+void MatrixFunction<MatrixType,1>::swapEntriesInSchur(int index)
{
PlanarRotation<Scalar> rotation;
- rotation.makeGivens(T(index, index+1), T(index+1, index+1) - T(index, index));
- T.applyOnTheLeft(index, index+1, rotation.adjoint());
- T.applyOnTheRight(index, index+1, rotation);
- U.applyOnTheRight(index, index+1, rotation);
+ rotation.makeGivens(m_T(index, index+1), m_T(index+1, index+1) - m_T(index, index));
+ m_T.applyOnTheLeft(index, index+1, rotation.adjoint());
+ m_T.applyOnTheRight(index, index+1, rotation);
+ m_U.applyOnTheRight(index, index+1, rotation);
}
+/** \brief Compute block diagonal part of #m_fT.
+ *
+ * This routine computes the matrix function #m_f applied to the block
+ * diagonal part of #m_T, with the blocking given by #m_blockStart. The
+ * result is stored in #m_fT. The off-diagonal parts of #m_fT are set
+ * to zero.
+ */
template <typename MatrixType>
-void MatrixFunction<MatrixType,1>::computeTriangular(const MatrixType& T, MatrixType& result, const VectorXi& blockSize)
+void MatrixFunction<MatrixType,1>::computeBlockAtomic()
{
- MatrixType expT;
- ei_matrix_exponential(T, &expT);
- computeBlockAtomic(T, result, blockSize);
- VectorXi blockStart(blockSize.rows());
- blockStart(0) = 0;
- for (int i = 1; i < blockSize.rows(); i++) {
- blockStart(i) = blockStart(i-1) + blockSize(i-1);
+ m_fT.resize(m_T.rows(), m_T.cols());
+ m_fT.setZero();
+ MatrixFunctionAtomic<DynMatrixType> mfa(m_f);
+ for (int i = 0; i < m_clusterSize.rows(); ++i) {
+ block(m_fT, i, i) = mfa.compute(block(m_T, i, i));
}
- for (int diagIndex = 1; diagIndex < blockSize.rows(); diagIndex++) {
- for (int blockIndex = 0; blockIndex < blockSize.rows() - diagIndex; blockIndex++) {
+}
+
+/** \brief Return block of matrix according to blocking given by #m_blockStart */
+template <typename MatrixType>
+Block<MatrixType> MatrixFunction<MatrixType,1>::block(const MatrixType& A, int i, int j)
+{
+ return A.block(m_blockStart(i), m_blockStart(j), m_clusterSize(i), m_clusterSize(j));
+}
+
+/** \brief Compute part of #m_fT above block diagonal.
+ *
+ * This routine assumes that the block diagonal part of #m_fT (which
+ * equals #m_f applied to #m_T) has already been computed and computes
+ * the part above the block diagonal. The part below the diagonal is
+ * zero, because #m_T is upper triangular.
+ */
+template <typename MatrixType>
+void MatrixFunction<MatrixType,1>::computeOffDiagonal()
+{
+ for (int diagIndex = 1; diagIndex < m_clusterSize.rows(); diagIndex++) {
+ for (int blockIndex = 0; blockIndex < m_clusterSize.rows() - diagIndex; blockIndex++) {
// compute (blockIndex, blockIndex+diagIndex) block
- DynMatrixType A = T.block(blockStart(blockIndex), blockStart(blockIndex), blockSize(blockIndex), blockSize(blockIndex));
- DynMatrixType B = -T.block(blockStart(blockIndex+diagIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex+diagIndex), blockSize(blockIndex+diagIndex));
- DynMatrixType C = result.block(blockStart(blockIndex), blockStart(blockIndex), blockSize(blockIndex), blockSize(blockIndex)) * T.block(blockStart(blockIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex), blockSize(blockIndex+diagIndex));
- C -= T.block(blockStart(blockIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex), blockSize(blockIndex+diagIndex)) * result.block(blockStart(blockIndex+diagIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex+diagIndex), blockSize(blockIndex+diagIndex));
+ DynMatrixType A = block(m_T, blockIndex, blockIndex);
+ DynMatrixType B = -block(m_T, blockIndex+diagIndex, blockIndex+diagIndex);
+ DynMatrixType C = block(m_fT, blockIndex, blockIndex) * block(m_T, blockIndex, blockIndex+diagIndex);
+ C -= block(m_T, blockIndex, blockIndex+diagIndex) * block(m_fT, blockIndex+diagIndex, blockIndex+diagIndex);
for (int k = blockIndex + 1; k < blockIndex + diagIndex; k++) {
- C += result.block(blockStart(blockIndex), blockStart(k), blockSize(blockIndex), blockSize(k)) * T.block(blockStart(k), blockStart(blockIndex+diagIndex), blockSize(k), blockSize(blockIndex+diagIndex));
- C -= T.block(blockStart(blockIndex), blockStart(k), blockSize(blockIndex), blockSize(k)) * result.block(blockStart(k), blockStart(blockIndex+diagIndex), blockSize(k), blockSize(blockIndex+diagIndex));
+ C += block(m_fT, blockIndex, k) * block(m_T, k, blockIndex+diagIndex);
+ C -= block(m_T, blockIndex, k) * block(m_fT, k, blockIndex+diagIndex);
}
- result.block(blockStart(blockIndex), blockStart(blockIndex+diagIndex), blockSize(blockIndex), blockSize(blockIndex+diagIndex)) = solveTriangularSylvester(A, B, C);
+ block(m_fT, blockIndex, blockIndex+diagIndex) = solveTriangularSylvester(A, B, C);
}
}
}
@@ -364,110 +500,14 @@ typename MatrixFunction<MatrixType,1>::DynMatrixType MatrixFunction<MatrixType,1
}
-// does not touch irrelevant parts of T
-template <typename MatrixType>
-void MatrixFunction<MatrixType,1>::computeBlockAtomic(const MatrixType& T, MatrixType& result, const VectorXi& blockSize)
-{
- int blockStart = 0;
- result.resize(T.rows(), T.cols());
- result.setZero();
- MatrixFunctionAtomic<DynMatrixType> mfa(m_f);
- for (int i = 0; i < blockSize.rows(); i++) {
- result.block(blockStart, blockStart, blockSize(i), blockSize(i))
- = mfa.compute(T.block(blockStart, blockStart, blockSize(i), blockSize(i)));
- blockStart += blockSize(i);
- }
-}
-
-template <typename Scalar>
-typename std::list<std::list<Scalar> >::iterator ei_find_in_list_of_lists(typename std::list<std::list<Scalar> >& ll, Scalar x)
-{
- typename std::list<Scalar>::iterator j;
- for (typename std::list<std::list<Scalar> >::iterator i = ll.begin(); i != ll.end(); i++) {
- j = std::find(i->begin(), i->end(), x);
- if (j != i->end())
- return i;
- }
- return ll.end();
-}
-
-// Alg 4.1
-template <typename MatrixType>
-void MatrixFunction<MatrixType,1>::divideInBlocks(const VectorType& v, listOfLists* result)
-{
- const int n = v.rows();
- for (int i=0; i<n; i++) {
- // Find set containing v(i), adding a new set if necessary
- typename listOfLists::iterator qi = ei_find_in_list_of_lists(*result, v(i));
- if (qi == result->end()) {
- listOfScalars l;
- l.push_back(v(i));
- result->push_back(l);
- qi = result->end();
- qi--;
- }
- // Look for other element to add to the set
- for (int j=i+1; j<n; j++) {
- if (ei_abs(v(j) - v(i)) <= separation() && std::find(qi->begin(), qi->end(), v(j)) == qi->end()) {
- typename listOfLists::iterator qj = ei_find_in_list_of_lists(*result, v(j));
- if (qj == result->end()) {
- qi->push_back(v(j));
- } else {
- qi->insert(qi->end(), qj->begin(), qj->end());
- result->erase(qj);
- }
- }
- }
- }
-}
-
-// Construct permutation P, such that P(D) has eigenvalues clustered together
-template <typename MatrixType>
-void MatrixFunction<MatrixType,1>::constructPermutation(const VectorType& diag, const listOfLists& blocks,
- VectorXi& blockSize, IntVectorType& permutation)
-{
- const int n = diag.rows();
- const int numBlocks = blocks.size();
-
- // For every block in blocks, mark and count the entries in diag that
- // appear in that block
- blockSize.setZero(numBlocks);
- IntVectorType entryToBlock(n);
- int blockIndex = 0;
- for (typename listOfLists::const_iterator block = blocks.begin(); block != blocks.end(); block++) {
- for (int i = 0; i < diag.rows(); i++) {
- if (std::find(block->begin(), block->end(), diag(i)) != block->end()) {
- blockSize[blockIndex]++;
- entryToBlock[i] = blockIndex;
- }
- }
- blockIndex++;
- }
-
- // Compute index of first entry in every block as the sum of sizes
- // of all the preceding blocks
- VectorXi indexNextEntry(numBlocks);
- indexNextEntry[0] = 0;
- for (blockIndex = 1; blockIndex < numBlocks; blockIndex++) {
- indexNextEntry[blockIndex] = indexNextEntry[blockIndex-1] + blockSize[blockIndex-1];
- }
-
- // Construct permutation
- permutation.resize(n);
- for (int i = 0; i < n; i++) {
- int block = entryToBlock[i];
- permutation[i] = indexNextEntry[block];
- indexNextEntry[block]++;
- }
-}
-
template <typename Derived>
EIGEN_STRONG_INLINE void ei_matrix_function(const MatrixBase<Derived>& M,
typename ei_stem_function<typename ei_traits<Derived>::Scalar>::type f,
typename MatrixBase<Derived>::PlainMatrixType* result)
{
ei_assert(M.rows() == M.cols());
- MatrixFunction<typename MatrixBase<Derived>::PlainMatrixType>(M, f, result);
+ typedef typename MatrixBase<Derived>::PlainMatrixType PlainMatrixType;
+ MatrixFunction<PlainMatrixType>(M, f, result);
}
#endif // EIGEN_MATRIX_FUNCTION
diff --git a/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h b/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
index dfc2672f3..5ab440863 100644
--- a/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
+++ b/unsupported/Eigen/src/NonLinearOptimization/LevenbergMarquardt.h
@@ -129,6 +129,8 @@ public:
int njev;
int iter;
Scalar fnorm, gnorm;
+
+ Scalar lm_param(void) { return par; }
private:
FunctorType &functor;
int n;