aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--Eigen/src/Core/ProductEvaluators.h63
-rwxr-xr-xEigen/src/Core/util/BlasUtil.h14
-rw-r--r--test/product_notemporary.cpp38
3 files changed, 92 insertions, 23 deletions
diff --git a/Eigen/src/Core/ProductEvaluators.h b/Eigen/src/Core/ProductEvaluators.h
index 27796315d..60b79b855 100644
--- a/Eigen/src/Core/ProductEvaluators.h
+++ b/Eigen/src/Core/ProductEvaluators.h
@@ -411,35 +411,56 @@ struct generic_product_impl<Lhs,Rhs,DenseShape,DenseShape,CoeffBasedProductMode>
call_assignment_no_alias(dst, lhs.lazyProduct(rhs), internal::sub_assign_op<typename Dst::Scalar,Scalar>());
}
- // Catch "dst {,+,-}= (s*A)*B" and evaluate it lazily by moving out the scalar factor:
- // dst {,+,-}= s * (A.lazyProduct(B))
- // This is a huge benefit for heap-allocated matrix types as it save one costly allocation.
- // For them, this strategy is also faster than simply by-passing the heap allocation through
- // stack allocation.
- // For fixed sizes matrices, this is less obvious, it is sometimes x2 faster, but sometimes x3 slower,
- // and the behavior depends also a lot on the compiler... so let's be conservative and enable them for dynamic-size only,
- // that is when coming from generic_product_impl<...,GemmProduct> in file GeneralMatrixMatrix.h
- template<typename Dst, typename Scalar1, typename Scalar2, typename Plain1, typename Xpr2, typename Func>
+ // This is a special evaluation path called from generic_product_impl<...,GemmProduct> in file GeneralMatrixMatrix.h
+ // This variant tries to extract scalar multiples from both the LHS and RHS and factor them out. For instance:
+ // dst {,+,-}= (s1*A)*(B*s2)
+ // will be rewritten as:
+ // dst {,+,-}= (s1*s2) * (A.lazyProduct(B))
+ // There are at least four benefits of doing so:
+ // 1 - huge performance gain for heap-allocated matrix types as it save costly allocations.
+ // 2 - it is faster than simply by-passing the heap allocation through stack allocation.
+ // 3 - it makes this fallback consistent with the heavy GEMM routine.
+ // 4 - it fully by-passes huge stack allocation attempts when multiplying huge fixed-size matrices.
+ // (see https://stackoverflow.com/questions/54738495)
+ // For small fixed sizes matrices, howver, the gains are less obvious, it is sometimes x2 faster, but sometimes x3 slower,
+ // and the behavior depends also a lot on the compiler... This is why this re-writting strategy is currently
+ // enabled only when falling back from the main GEMM.
+ template<typename Dst, typename Func>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- void eval_dynamic(Dst& dst, const CwiseBinaryOp<internal::scalar_product_op<Scalar1,Scalar2>,
- const CwiseNullaryOp<internal::scalar_constant_op<Scalar1>, Plain1>, Xpr2>& lhs, const Rhs& rhs, const Func &func)
+ void eval_dynamic(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Func &func)
{
- call_restricted_packet_assignment_no_alias(dst, lhs.lhs().functor().m_other * lhs.rhs().lazyProduct(rhs), func);
+ enum {
+ HasScalarFactor = blas_traits<Lhs>::HasScalarFactor || blas_traits<Rhs>::HasScalarFactor
+ };
+ // FIXME: in c++11 this should be auto, and extractScalarFactor should also return auto
+ // this is important for real*complex_mat
+ Scalar actualAlpha = blas_traits<Lhs>::extractScalarFactor(lhs)
+ * blas_traits<Rhs>::extractScalarFactor(rhs);
+ eval_dynamic_impl(dst,
+ blas_traits<Lhs>::extract(lhs),
+ blas_traits<Rhs>::extract(rhs),
+ func,
+ actualAlpha,
+ typename conditional<HasScalarFactor,true_type,false_type>::type());
+
+
}
- // Here, we we always have LhsT==Lhs, but we need to make it a template type to make the above
- // overload more specialized.
- template<typename Dst, typename LhsT, typename Func>
+protected:
+
+ template<typename Dst, typename LhsT, typename RhsT, typename Func, typename Scalar>
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
- void eval_dynamic(Dst& dst, const LhsT& lhs, const Rhs& rhs, const Func &func)
+ void eval_dynamic_impl(Dst& dst, const LhsT& lhs, const RhsT& rhs, const Func &func, const Scalar& /* s == 1 */, false_type)
{
call_restricted_packet_assignment_no_alias(dst, lhs.lazyProduct(rhs), func);
}
-
-
-// template<typename Dst>
-// static inline void scaleAndAddTo(Dst& dst, const Lhs& lhs, const Rhs& rhs, const Scalar& alpha)
-// { dst.noalias() += alpha * lhs.lazyProduct(rhs); }
+
+ template<typename Dst, typename LhsT, typename RhsT, typename Func, typename Scalar>
+ static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void eval_dynamic_impl(Dst& dst, const LhsT& lhs, const RhsT& rhs, const Func &func, const Scalar& s, true_type)
+ {
+ call_restricted_packet_assignment_no_alias(dst, s * lhs.lazyProduct(rhs), func);
+ }
};
// This specialization enforces the use of a coefficient-based evaluation strategy
diff --git a/Eigen/src/Core/util/BlasUtil.h b/Eigen/src/Core/util/BlasUtil.h
index a32630ed7..bc0a01540 100755
--- a/Eigen/src/Core/util/BlasUtil.h
+++ b/Eigen/src/Core/util/BlasUtil.h
@@ -274,7 +274,8 @@ template<typename XprType> struct blas_traits
HasUsableDirectAccess = ( (int(XprType::Flags)&DirectAccessBit)
&& ( bool(XprType::IsVectorAtCompileTime)
|| int(inner_stride_at_compile_time<XprType>::ret) == 1)
- ) ? 1 : 0
+ ) ? 1 : 0,
+ HasScalarFactor = false
};
typedef typename conditional<bool(HasUsableDirectAccess),
ExtractType,
@@ -306,6 +307,9 @@ template<typename Scalar, typename NestedXpr, typename Plain>
struct blas_traits<CwiseBinaryOp<scalar_product_op<Scalar>, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain>, NestedXpr> >
: blas_traits<NestedXpr>
{
+ enum {
+ HasScalarFactor = true
+ };
typedef blas_traits<NestedXpr> Base;
typedef CwiseBinaryOp<scalar_product_op<Scalar>, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain>, NestedXpr> XprType;
typedef typename Base::ExtractType ExtractType;
@@ -317,6 +321,9 @@ template<typename Scalar, typename NestedXpr, typename Plain>
struct blas_traits<CwiseBinaryOp<scalar_product_op<Scalar>, NestedXpr, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain> > >
: blas_traits<NestedXpr>
{
+ enum {
+ HasScalarFactor = true
+ };
typedef blas_traits<NestedXpr> Base;
typedef CwiseBinaryOp<scalar_product_op<Scalar>, NestedXpr, const CwiseNullaryOp<scalar_constant_op<Scalar>,Plain> > XprType;
typedef typename Base::ExtractType ExtractType;
@@ -335,6 +342,9 @@ template<typename Scalar, typename NestedXpr>
struct blas_traits<CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> >
: blas_traits<NestedXpr>
{
+ enum {
+ HasScalarFactor = true
+ };
typedef blas_traits<NestedXpr> Base;
typedef CwiseUnaryOp<scalar_opposite_op<Scalar>, NestedXpr> XprType;
typedef typename Base::ExtractType ExtractType;
@@ -358,7 +368,7 @@ struct blas_traits<Transpose<NestedXpr> >
typename ExtractType::PlainObject
>::type DirectLinearAccessType;
enum {
- IsTransposed = Base::IsTransposed ? 0 : 1
+ IsTransposed = Base::IsTransposed ? 0 : 1,
};
static inline ExtractType extract(const XprType& x) { return ExtractType(Base::extract(x.nestedExpression())); }
static inline Scalar extractScalarFactor(const XprType& x) { return Base::extractScalarFactor(x.nestedExpression()); }
diff --git a/test/product_notemporary.cpp b/test/product_notemporary.cpp
index dffb07608..7f169e6ae 100644
--- a/test/product_notemporary.cpp
+++ b/test/product_notemporary.cpp
@@ -11,6 +11,35 @@
#include "main.h"
+template<typename Dst, typename Lhs, typename Rhs>
+void check_scalar_multiple3(Dst &dst, const Lhs& A, const Rhs& B)
+{
+ VERIFY_EVALUATION_COUNT( (dst.noalias() = A * B), 0);
+ VERIFY_IS_APPROX( dst, (A.eval() * B.eval()).eval() );
+ VERIFY_EVALUATION_COUNT( (dst.noalias() += A * B), 0);
+ VERIFY_IS_APPROX( dst, 2*(A.eval() * B.eval()).eval() );
+ VERIFY_EVALUATION_COUNT( (dst.noalias() -= A * B), 0);
+ VERIFY_IS_APPROX( dst, (A.eval() * B.eval()).eval() );
+}
+
+template<typename Dst, typename Lhs, typename Rhs, typename S2>
+void check_scalar_multiple2(Dst &dst, const Lhs& A, const Rhs& B, S2 s2)
+{
+ CALL_SUBTEST( check_scalar_multiple3(dst, A, B) );
+ CALL_SUBTEST( check_scalar_multiple3(dst, A, -B) );
+ CALL_SUBTEST( check_scalar_multiple3(dst, A, s2*B) );
+ CALL_SUBTEST( check_scalar_multiple3(dst, A, B*s2) );
+}
+
+template<typename Dst, typename Lhs, typename Rhs, typename S1, typename S2>
+void check_scalar_multiple1(Dst &dst, const Lhs& A, const Rhs& B, S1 s1, S2 s2)
+{
+ CALL_SUBTEST( check_scalar_multiple2(dst, A, B, s2) );
+ CALL_SUBTEST( check_scalar_multiple2(dst, -A, B, s2) );
+ CALL_SUBTEST( check_scalar_multiple2(dst, s1*A, B, s2) );
+ CALL_SUBTEST( check_scalar_multiple2(dst, A*s1, B, s2) );
+}
+
template<typename MatrixType> void product_notemporary(const MatrixType& m)
{
/* This test checks the number of temporaries created
@@ -148,6 +177,15 @@ template<typename MatrixType> void product_notemporary(const MatrixType& m)
// Check nested products
VERIFY_EVALUATION_COUNT( cvres.noalias() = m1.adjoint() * m1 * cv1, 1 );
VERIFY_EVALUATION_COUNT( rvres.noalias() = rv1 * (m1 * m2.adjoint()), 1 );
+
+ // exhaustively check all scalar multiple combinations:
+ {
+ // Generic path:
+ check_scalar_multiple1(m3, m1, m2, s1, s2);
+ // Force fall back to coeff-based:
+ typename ColMajorMatrixType::BlockXpr m3_blck = m3.block(r0,r0,1,1);
+ check_scalar_multiple1(m3_blck, m1.block(r0,c0,1,1), m2.block(c0,r0,1,1), s1, s2);
+ }
}
EIGEN_DECLARE_TEST(product_notemporary)