diff options
-rw-r--r-- | Eigen/src/Core/products/GeneralMatrixMatrix.h | 20 | ||||
-rw-r--r-- | Eigen/src/Core/products/TriangularSolverMatrix.h | 203 |
2 files changed, 214 insertions, 9 deletions
diff --git a/Eigen/src/Core/products/GeneralMatrixMatrix.h b/Eigen/src/Core/products/GeneralMatrixMatrix.h index 776b7c5d6..a1be8ea50 100644 --- a/Eigen/src/Core/products/GeneralMatrixMatrix.h +++ b/Eigen/src/Core/products/GeneralMatrixMatrix.h @@ -110,10 +110,12 @@ static void run(int rows, int cols, int depth, template<typename Scalar, int mr, int nr, typename Conj> struct ei_gebp_kernel { - void operator()(Scalar* res, int resStride, const Scalar* blockA, const Scalar* blockB, int rows, int depth, int cols) + void operator()(Scalar* res, int resStride, const Scalar* blockA, const Scalar* blockB, int rows, int depth, int cols, int strideA=-1, int strideB=-1, int offsetA=0, int offsetB=0) { typedef typename ei_packet_traits<Scalar>::type PacketType; enum { PacketSize = ei_packet_traits<Scalar>::size }; + if(strideA==-1) strideA = depth; + if(strideB==-1) strideB = depth; Conj cj; int packet_cols = (cols/nr) * nr; const int peeled_mc = (rows/mr)*mr; @@ -123,7 +125,7 @@ struct ei_gebp_kernel // loops on each register blocking of lhs/res for(int i=0; i<peeled_mc; i+=mr) { - const Scalar* blA = &blockA[i*depth]; + const Scalar* blA = &blockA[i*strideA]; #ifdef EIGEN_VECTORIZE_SSE _mm_prefetch((const char*)(&blA[0]), _MM_HINT_T0); #endif @@ -144,7 +146,7 @@ struct ei_gebp_kernel // performs "inner" product // TODO let's check wether the flowing peeled loop could not be // optimized via optimal prefetching from one loop to the other - const Scalar* blB = &blockB[j2*depth*PacketSize]; + const Scalar* blB = &blockB[j2*strideB*PacketSize+offsetB*nr]; const int peeled_kc = (depth/4)*4; for(int k=0; k<peeled_kc; k+=4) { @@ -246,14 +248,14 @@ struct ei_gebp_kernel } for(int i=peeled_mc; i<rows; i++) { - const Scalar* blA = &blockA[i*depth]; + const Scalar* blA = &blockA[i*strideA]; #ifdef EIGEN_VECTORIZE_SSE _mm_prefetch((const char*)(&blA[0]), _MM_HINT_T0); #endif // gets a 1 x nr res block as registers Scalar C0(0), C1(0), C2(0), C3(0); - const Scalar* blB = &blockB[j2*depth*PacketSize]; + const Scalar* blB = &blockB[j2*strideB*PacketSize+offsetB*nr]; for(int k=0; k<depth; k++) { Scalar B0, B1, B2, B3, A0; @@ -283,7 +285,7 @@ struct ei_gebp_kernel { for(int i=0; i<peeled_mc; i+=mr) { - const Scalar* blA = &blockA[i*depth]; + const Scalar* blA = &blockA[i*strideA]; #ifdef EIGEN_VECTORIZE_SSE _mm_prefetch((const char*)(&blA[0]), _MM_HINT_T0); #endif @@ -295,7 +297,7 @@ struct ei_gebp_kernel C0 = ei_ploadu(&res[(j2+0)*resStride + i]); C4 = ei_ploadu(&res[(j2+0)*resStride + i + PacketSize]); - const Scalar* blB = &blockB[j2*depth*PacketSize]; + const Scalar* blB = &blockB[j2*strideB*PacketSize+offsetB]; for(int k=0; k<depth; k++) { PacketType B0, A0, A1; @@ -315,14 +317,14 @@ struct ei_gebp_kernel } for(int i=peeled_mc; i<rows; i++) { - const Scalar* blA = &blockA[i*depth]; + const Scalar* blA = &blockA[i*strideA]; #ifdef EIGEN_VECTORIZE_SSE _mm_prefetch((const char*)(&blA[0]), _MM_HINT_T0); #endif // gets a 1 x 1 res block as registers Scalar C0(0); - const Scalar* blB = &blockB[j2*depth*PacketSize]; + const Scalar* blB = &blockB[j2*strideB*PacketSize+offsetB]; for(int k=0; k<depth; k++) C0 = cj.pmadd(blA[k], blB[k*PacketSize], C0); res[(j2+0)*resStride + i] += C0; diff --git a/Eigen/src/Core/products/TriangularSolverMatrix.h b/Eigen/src/Core/products/TriangularSolverMatrix.h new file mode 100644 index 000000000..0a5b4749f --- /dev/null +++ b/Eigen/src/Core/products/TriangularSolverMatrix.h @@ -0,0 +1,203 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr> +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see <http://www.gnu.org/licenses/>. + +#ifndef EIGEN_TRIANGULAR_SOLVER_MATRIX_H +#define EIGEN_TRIANGULAR_SOLVER_MATRIX_H + +/* Optimized triangular solver with multiple right hand side (_TRSM) + */ +template <typename Scalar, + int LhsStorageOrder, + int RhsStorageOrder, + int Mode> +struct ei_triangular_solve_matrix//<Scalar,LhsStorageOrder,RhsStorageOrder> +{ + + static EIGEN_DONT_INLINE void run( + int size, int cols, + const Scalar* _lhs, int lhsStride, + Scalar* _rhs, int rhsStride) + { + Map<Matrix<Scalar,Dynamic,Dynamic,LhsStorageOrder> > lhs(_lhs, size, size); + Map<Matrix<Scalar,Dynamic,Dynamic,RhsStorageOrder> > rhs(_rhs, size, cols); + //ei_const_blas_data_mapper<Scalar, LhsStorageOrder> lhs(_lhs,lhsStride); + //ei_const_blas_data_mapper<Scalar, RhsStorageOrder> rhs(_rhs,rhsStride); + + typedef ei_product_blocking_traits<Scalar> Blocking; + enum { + SmallPanelWidth = EIGEN_ENUM_MAX(Blocking::mr,Blocking::nr), + IsLowerTriangular = (Mode&LowerTriangular) == LowerTriangular + }; + + int kc = 8;//std::min<int>(Blocking::Max_kc,size); // cache block size along the K direction + int mc = 8;//std::min<int>(Blocking::Max_mc,size); // cache block size along the M direction + + Scalar* blockA = ei_aligned_stack_new(Scalar, kc*mc); + Scalar* blockB = ei_aligned_stack_new(Scalar, kc*cols*Blocking::PacketSize); + + ei_gebp_kernel<Scalar, Blocking::mr, Blocking::nr, ei_conj_helper<false,false> > gebp_kernel; + + for(int k2=0; k2<size; k2+=kc) + { + const int actual_kc = std::min(k2+kc,size)-k2; + + // We have selected and packed a big horizontal panel R1 of rhs. Let B be the packed copy of this panel, + // and R2 the remaining part of rhs. The corresponding vertical panel of lhs is split into + // A11 (the triangular part) and A21 the remaining rectangular part. + // Then the high level algorithm is: + // - B = R1 => general block copy + // - R1 = L1^-1 B => tricky part + // - update B from the new R1 => actually this has to performed continuously during the above step + // - R2 = L2 * B => GEPP + + // B = R1 + ei_gemm_pack_rhs<Scalar,Blocking::nr,RhsStorageOrder>() + (blockB, &rhs(k2,0), rhsStride, -1, actual_kc, cols); + + Map<MatrixXf>(blockB,Blocking::PacketSize*Blocking::nr*actual_kc, cols/Blocking::nr+(cols%Blocking::nr)).setZero(); + + // The tricky part: R1 = L1^-1 B while updating B from R1 + // The idea is to split L1 into multiple small vertical panels. + // Each panel can be split into a small triangular part A1 which is processed without optimization, + // and the remaining small part A2 which is processed using gebp with appropriate block strides + { + // pack L1 +// ei_gemm_pack_lhs<Scalar,Blocking::mr,LhsStorageOrder>() +// (blockA, &lhs(k2, k2), lhsStride, actual_kc, actual_kc); + + // for each small vertical panels of lhs + for (int k1=0; k1<actual_kc; k1+=SmallPanelWidth) + { + int actualPanelWidth = std::min<int>(SmallPanelWidth,actual_kc-k1); + // tr solve + for (int k=0; k<actualPanelWidth; ++k) + { + int i = k2+k1+k; + if(!(Mode & UnitDiagBit)) + rhs.row(i) /= lhs(i,i); + + int rs = actualPanelWidth - k - 1; // remaining size + //std::cerr << i << " ; " << k << " " << rs << "\n"; + if (rs>0) + { + rhs.block(i+1,0,rs,cols) -= + lhs.col(i).segment(IsLowerTriangular ? i+1 : i-rs, rs) * rhs.row(i); + } + } + // update the respective row of B from rhs + { + const Scalar* lr = _rhs+k2+k1; + int packet_cols = (cols/Blocking::nr) * Blocking::nr; + int count = 0; + for(int j2=0; j2<packet_cols; j2+=Blocking::nr) + { + // skip what we have before + count += Blocking::PacketSize * Blocking::nr * (k1-k2); + const Scalar* b0 = &lr[(j2+0)*rhsStride]; + const Scalar* b1 = &lr[(j2+1)*rhsStride]; + const Scalar* b2 = &lr[(j2+2)*rhsStride]; + const Scalar* b3 = &lr[(j2+3)*rhsStride]; + for(int k=0; k<actualPanelWidth; k++) + { + ei_pstore(&blockB[count+0*Blocking::PacketSize], ei_pset1(-b0[k])); + ei_pstore(&blockB[count+1*Blocking::PacketSize], ei_pset1(-b1[k])); + if (Blocking::nr==4) + { + ei_pstore(&blockB[count+2*Blocking::PacketSize], ei_pset1(-b2[k])); + ei_pstore(&blockB[count+3*Blocking::PacketSize], ei_pset1(-b3[k])); + } + count += Blocking::nr*Blocking::PacketSize; + } + // skip what we have after + count += Blocking::PacketSize * Blocking::nr * (actual_kc-k1-actualPanelWidth); + } + // copy the remaining columns one at a time (nr==1) + for(int j2=packet_cols; j2<cols; ++j2) + { + count += Blocking::PacketSize * (k1-k2); + const Scalar* b0 = &lr[(j2+0)*rhsStride]; + for(int k=0; k<actualPanelWidth; k++) + { + ei_pstore(&blockB[count], ei_pset1(-b0[k])); + count += Blocking::PacketSize; + } + count += Blocking::PacketSize * (actual_kc-k1-actualPanelWidth); + } + } + +// std::cerr << Map<MatrixXf>(blockB,Blocking::PacketSize*Blocking::nr*actual_kc, cols/Blocking::nr+(cols%Blocking::nr)) << "\n\n"; + +// MatrixXf aux(Blocking::PacketSize*Blocking::nr*actual_kc, cols/Blocking::nr+(cols%Blocking::nr)); +// aux.setZero(); + +// ei_gemm_pack_rhs<Scalar,Blocking::nr,RhsStorageOrder>() +// (aux.data(), &rhs(k2,0), rhsStride, -1, actual_kc, cols); + +// std::cerr << Map<MatrixXf>(blockB,Blocking::PacketSize*Blocking::nr*actual_kc, cols/Blocking::nr+(cols%Blocking::nr)) - aux << "\n\n"; + + + // gebp + int i = k1+actualPanelWidth; + int rs = actual_kc-i; + +// ei_gemm_pack_rhs<Scalar,Blocking::nr,RhsStorageOrder>() +// (blockB, &rhs(k1,0), rhsStride, -1, actualPanelWidth, cols); + + ei_gemm_pack_lhs<Scalar,Blocking::mr,LhsStorageOrder>() + (blockA, &lhs(k2+i, k2+k1), lhsStride, actualPanelWidth, rs); + + if (rs>0) + rhs.block(i,0,actual_kc-i,cols) -= lhs.block(i,k1,rs,actualPanelWidth) * rhs.block(k1,0,actualPanelWidth,cols); + +// gebp_kernel(_rhs+i+k2, rhsStride, +// blockA/*+actual_kc*i+k1*rs*/, blockB/*+k1*Blocking::PacketSize*Blocking::nr*/, rs, actualPanelWidth, cols, actualPanelWidth/*actual_kc*/, actual_kc, 0, k1*Blocking::PacketSize); + +// gebp_kernel(_rhs+i, rhsStride, +// blockA+actual_kc*i+k1*rs, blockB+k1*Blocking::PacketSize*Blocking::nr, rs, actualPanelWidth, cols, actual_kc, actual_kc); + +// gebp_kernel(_rhs+k2+i, rhsStride, +// blockA+actual_kc*i+k1, blockB+k1*Blocking::PacketSize, actual_kc-i, actualPanelWidth, cols, actual_kc, actual_kc); + } + } + + // - R2 = A2 * B => GEPP + for(int i2=k2+kc; i2<size; i2+=mc) + { + const int actual_mc = std::min(i2+mc,size)-i2; + ei_gemm_pack_lhs<Scalar,Blocking::mr,LhsStorageOrder>() + (blockA, &lhs(k2, i2), lhsStride, actual_kc, actual_mc); + + std::cerr << i2 << " sur " << actual_mc << " -= " << i2 << "x" << k2 << "+" << actual_mc<<"," <<actual_kc << " * " << k2 << " sur " << actual_kc << "\n"; + rhs.block(i2,0,actual_mc,cols) -= lhs.block(i2,k2,actual_mc,actual_kc) * rhs.block(k2,0,actual_kc,cols); + +// gebp_kernel(_rhs+i2, rhsStride, blockA, blockB, actual_mc, actual_kc, cols); + } + } + + ei_aligned_stack_delete(Scalar, blockA, kc*mc); + ei_aligned_stack_delete(Scalar, blockB, kc*cols*Blocking::PacketSize); + } +}; + +#endif // EIGEN_TRIANGULAR_SOLVER_MATRIX_H |