aboutsummaryrefslogtreecommitdiffhomepage
diff options
context:
space:
mode:
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h228
-rw-r--r--unsupported/doc/examples/MatrixExponential.cpp3
-rw-r--r--unsupported/test/matrix_exponential.cpp13
-rw-r--r--unsupported/test/matrix_function.cpp14
4 files changed, 159 insertions, 99 deletions
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h b/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
index fd1938a87..147e21bc1 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixExponential.h
@@ -29,74 +29,32 @@
template <typename Scalar> Scalar log2(Scalar v) { return std::log(v)/std::log(Scalar(2)); }
#endif
-/** \ingroup MatrixFunctions_Module
- *
- * \brief Compute the matrix exponential.
- *
- * \param[in] M matrix whose exponential is to be computed.
- * \param[out] result pointer to the matrix in which to store the result.
- *
- * The matrix exponential of \f$ M \f$ is defined by
- * \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
- * The matrix exponential can be used to solve linear ordinary
- * differential equations: the solution of \f$ y' = My \f$ with the
- * initial condition \f$ y(0) = y_0 \f$ is given by
- * \f$ y(t) = \exp(M) y_0 \f$.
- *
- * The cost of the computation is approximately \f$ 20 n^3 \f$ for
- * matrices of size \f$ n \f$. The number 20 depends weakly on the
- * norm of the matrix.
- *
- * The matrix exponential is computed using the scaling-and-squaring
- * method combined with Pad&eacute; approximation. The matrix is first
- * rescaled, then the exponential of the reduced matrix is computed
- * approximant, and then the rescaling is undone by repeated
- * squaring. The degree of the Pad&eacute; approximant is chosen such
- * that the approximation error is less than the round-off
- * error. However, errors may accumulate during the squaring phase.
- *
- * Details of the algorithm can be found in: Nicholas J. Higham, "The
- * scaling and squaring method for the matrix exponential revisited,"
- * <em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179&ndash;1193,
- * 2005.
- *
- * Example: The following program checks that
- * \f[ \exp \left[ \begin{array}{ccc}
- * 0 & \frac14\pi & 0 \\
- * -\frac14\pi & 0 & 0 \\
- * 0 & 0 & 0
- * \end{array} \right] = \left[ \begin{array}{ccc}
- * \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
- * \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
- * 0 & 0 & 1
- * \end{array} \right]. \f]
- * This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
- * the z-axis.
- *
- * \include MatrixExponential.cpp
- * Output: \verbinclude MatrixExponential.out
- *
- * \note \p M has to be a matrix of \c float, \c double,
- * \c complex<float> or \c complex<double> .
- */
-template <typename Derived>
-EIGEN_STRONG_INLINE void ei_matrix_exponential(const MatrixBase<Derived> &M,
- typename MatrixBase<Derived>::PlainMatrixType* result);
/** \ingroup MatrixFunctions_Module
* \brief Class for computing the matrix exponential.
+ * \tparam MatrixType type of the argument of the exponential,
+ * expected to be an instantiation of the Matrix class template.
*/
template <typename MatrixType>
class MatrixExponential {
public:
- /** \brief Compute the matrix exponential.
- *
- * \param M matrix whose exponential is to be computed.
- * \param result pointer to the matrix in which to store the result.
- */
- MatrixExponential(const MatrixType &M, MatrixType *result);
+ /** \brief Constructor.
+ *
+ * The class stores a reference to \p M, so it should not be
+ * changed (or destroyed) before compute() is called.
+ *
+ * \param[in] M matrix whose exponential is to be computed.
+ */
+ MatrixExponential(const MatrixType &M);
+
+ /** \brief Computes the matrix exponential.
+ *
+ * \param[out] result the matrix exponential of \p M in the constructor.
+ */
+ template <typename ResultType>
+ void compute(ResultType &result);
private:
@@ -109,7 +67,7 @@ class MatrixExponential {
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
- * \param A Argument of matrix exponential
+ * \param[in] A Argument of matrix exponential
*/
void pade3(const MatrixType &A);
@@ -118,7 +76,7 @@ class MatrixExponential {
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
- * \param A Argument of matrix exponential
+ * \param[in] A Argument of matrix exponential
*/
void pade5(const MatrixType &A);
@@ -127,7 +85,7 @@ class MatrixExponential {
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
- * \param A Argument of matrix exponential
+ * \param[in] A Argument of matrix exponential
*/
void pade7(const MatrixType &A);
@@ -136,7 +94,7 @@ class MatrixExponential {
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
- * \param A Argument of matrix exponential
+ * \param[in] A Argument of matrix exponential
*/
void pade9(const MatrixType &A);
@@ -145,7 +103,7 @@ class MatrixExponential {
* After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Pad&eacute;
* approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$.
*
- * \param A Argument of matrix exponential
+ * \param[in] A Argument of matrix exponential
*/
void pade13(const MatrixType &A);
@@ -171,10 +129,10 @@ class MatrixExponential {
void computeUV(float);
typedef typename ei_traits<MatrixType>::Scalar Scalar;
- typedef typename NumTraits<typename ei_traits<MatrixType>::Scalar>::Real RealScalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
- /** \brief Pointer to matrix whose exponential is to be computed. */
- const MatrixType* m_M;
+ /** \brief Reference to matrix whose exponential is to be computed. */
+ const MatrixType& m_M;
/** \brief Even-degree terms in numerator of Pad&eacute; approximant. */
MatrixType m_U;
@@ -199,8 +157,8 @@ class MatrixExponential {
};
template <typename MatrixType>
-MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M, MatrixType *result) :
- m_M(&M),
+MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) :
+ m_M(M),
m_U(M.rows(),M.cols()),
m_V(M.rows(),M.cols()),
m_tmp1(M.rows(),M.cols()),
@@ -209,12 +167,19 @@ MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M, MatrixType
m_squarings(0),
m_l1norm(static_cast<float>(M.cwiseAbs().colwise().sum().maxCoeff()))
{
+ /* empty body */
+}
+
+template <typename MatrixType>
+template <typename ResultType>
+void MatrixExponential<MatrixType>::compute(ResultType &result)
+{
computeUV(RealScalar());
m_tmp1 = m_U + m_V; // numerator of Pade approximant
m_tmp2 = -m_U + m_V; // denominator of Pade approximant
- *result = m_tmp2.partialPivLu().solve(m_tmp1);
+ result = m_tmp2.partialPivLu().solve(m_tmp1);
for (int i=0; i<m_squarings; i++)
- *result *= *result; // undo scaling by repeated squaring
+ result *= result; // undo scaling by repeated squaring
}
template <typename MatrixType>
@@ -286,13 +251,13 @@ template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(float)
{
if (m_l1norm < 4.258730016922831e-001) {
- pade3(*m_M);
+ pade3(m_M);
} else if (m_l1norm < 1.880152677804762e+000) {
- pade5(*m_M);
+ pade5(m_M);
} else {
const float maxnorm = 3.925724783138660f;
m_squarings = std::max(0, (int)ceil(log2(m_l1norm / maxnorm)));
- MatrixType A = *m_M / std::pow(Scalar(2), Scalar(static_cast<RealScalar>(m_squarings)));
+ MatrixType A = m_M / std::pow(Scalar(2), Scalar(static_cast<RealScalar>(m_squarings)));
pade7(A);
}
}
@@ -301,27 +266,126 @@ template <typename MatrixType>
void MatrixExponential<MatrixType>::computeUV(double)
{
if (m_l1norm < 1.495585217958292e-002) {
- pade3(*m_M);
+ pade3(m_M);
} else if (m_l1norm < 2.539398330063230e-001) {
- pade5(*m_M);
+ pade5(m_M);
} else if (m_l1norm < 9.504178996162932e-001) {
- pade7(*m_M);
+ pade7(m_M);
} else if (m_l1norm < 2.097847961257068e+000) {
- pade9(*m_M);
+ pade9(m_M);
} else {
const double maxnorm = 5.371920351148152;
m_squarings = std::max(0, (int)ceil(log2(m_l1norm / maxnorm)));
- MatrixType A = *m_M / std::pow(Scalar(2), Scalar(m_squarings));
+ MatrixType A = m_M / std::pow(Scalar(2), Scalar(m_squarings));
pade13(A);
}
}
+/** \ingroup MatrixFunctions_Module
+ *
+ * \brief Proxy for the matrix exponential of some matrix (expression).
+ *
+ * \tparam Derived Type of the argument to the matrix exponential.
+ *
+ * This class holds the argument to the matrix exponential until it
+ * is assigned or evaluated for some other reason (so the argument
+ * should not be changed in the meantime). It is the return type of
+ * ei_matrix_exponential() and most of the time this is the only way
+ * it is used.
+ */
+template<typename Derived> struct MatrixExponentialReturnValue
+: public ReturnByValue<MatrixExponentialReturnValue<Derived> >
+{
+ public:
+ /** \brief Constructor.
+ *
+ * \param[in] src %Matrix (expression) forming the argument of the
+ * matrix exponential.
+ */
+ MatrixExponentialReturnValue(const Derived& src) : m_src(src) { }
+
+ /** \brief Compute the matrix exponential.
+ *
+ * \param[out] result the matrix exponential of \p src in the
+ * constructor.
+ */
+ template <typename ResultType>
+ inline void evalTo(ResultType& result) const
+ {
+ const typename ei_eval<Derived>::type srcEvaluated = m_src.eval();
+ MatrixExponential<typename Derived::PlainMatrixType> me(srcEvaluated);
+ me.compute(result);
+ }
+
+ int rows() const { return m_src.rows(); }
+ int cols() const { return m_src.cols(); }
+
+ protected:
+ const Derived& m_src;
+};
+
+template<typename Derived>
+struct ei_traits<MatrixExponentialReturnValue<Derived> >
+{
+ typedef typename Derived::PlainMatrixType ReturnMatrixType;
+};
+
+/** \ingroup MatrixFunctions_Module
+ *
+ * \brief Compute the matrix exponential.
+ *
+ * \param[in] M matrix whose exponential is to be computed.
+ * \returns expression representing the matrix exponential of \p M.
+ *
+ * The matrix exponential of \f$ M \f$ is defined by
+ * \f[ \exp(M) = \sum_{k=0}^\infty \frac{M^k}{k!}. \f]
+ * The matrix exponential can be used to solve linear ordinary
+ * differential equations: the solution of \f$ y' = My \f$ with the
+ * initial condition \f$ y(0) = y_0 \f$ is given by
+ * \f$ y(t) = \exp(M) y_0 \f$.
+ *
+ * The cost of the computation is approximately \f$ 20 n^3 \f$ for
+ * matrices of size \f$ n \f$. The number 20 depends weakly on the
+ * norm of the matrix.
+ *
+ * The matrix exponential is computed using the scaling-and-squaring
+ * method combined with Pad&eacute; approximation. The matrix is first
+ * rescaled, then the exponential of the reduced matrix is computed
+ * approximant, and then the rescaling is undone by repeated
+ * squaring. The degree of the Pad&eacute; approximant is chosen such
+ * that the approximation error is less than the round-off
+ * error. However, errors may accumulate during the squaring phase.
+ *
+ * Details of the algorithm can be found in: Nicholas J. Higham, "The
+ * scaling and squaring method for the matrix exponential revisited,"
+ * <em>SIAM J. %Matrix Anal. Applic.</em>, <b>26</b>:1179&ndash;1193,
+ * 2005.
+ *
+ * Example: The following program checks that
+ * \f[ \exp \left[ \begin{array}{ccc}
+ * 0 & \frac14\pi & 0 \\
+ * -\frac14\pi & 0 & 0 \\
+ * 0 & 0 & 0
+ * \end{array} \right] = \left[ \begin{array}{ccc}
+ * \frac12\sqrt2 & -\frac12\sqrt2 & 0 \\
+ * \frac12\sqrt2 & \frac12\sqrt2 & 0 \\
+ * 0 & 0 & 1
+ * \end{array} \right]. \f]
+ * This corresponds to a rotation of \f$ \frac14\pi \f$ radians around
+ * the z-axis.
+ *
+ * \include MatrixExponential.cpp
+ * Output: \verbinclude MatrixExponential.out
+ *
+ * \note \p M has to be a matrix of \c float, \c double,
+ * \c complex<float> or \c complex<double> .
+ */
template <typename Derived>
-EIGEN_STRONG_INLINE void ei_matrix_exponential(const MatrixBase<Derived> &M,
- typename MatrixBase<Derived>::PlainMatrixType* result)
+MatrixExponentialReturnValue<Derived>
+ei_matrix_exponential(const MatrixBase<Derived> &M)
{
ei_assert(M.rows() == M.cols());
- MatrixExponential<typename MatrixBase<Derived>::PlainMatrixType>(M, result);
+ return MatrixExponentialReturnValue<Derived>(M.derived());
}
#endif // EIGEN_MATRIX_EXPONENTIAL
diff --git a/unsupported/doc/examples/MatrixExponential.cpp b/unsupported/doc/examples/MatrixExponential.cpp
index 7dc2396df..801ee4d01 100644
--- a/unsupported/doc/examples/MatrixExponential.cpp
+++ b/unsupported/doc/examples/MatrixExponential.cpp
@@ -12,7 +12,6 @@ int main()
0, 0, 0;
std::cout << "The matrix A is:\n" << A << "\n\n";
- MatrixXd B;
- ei_matrix_exponential(A, &B);
+ MatrixXd B = ei_matrix_exponential(A);
std::cout << "The matrix exponential of A is:\n" << B << "\n\n";
}
diff --git a/unsupported/test/matrix_exponential.cpp b/unsupported/test/matrix_exponential.cpp
index a5b40adde..6150439c5 100644
--- a/unsupported/test/matrix_exponential.cpp
+++ b/unsupported/test/matrix_exponential.cpp
@@ -61,7 +61,7 @@ void test2dRotation(double tol)
std::cout << "test2dRotation: i = " << i << " error funm = " << relerr(C, B);
VERIFY(C.isApprox(B, static_cast<T>(tol)));
- ei_matrix_exponential(angle*A, &C);
+ C = ei_matrix_exponential(angle*A);
std::cout << " error expm = " << relerr(C, B) << "\n";
VERIFY(C.isApprox(B, static_cast<T>(tol)));
}
@@ -86,7 +86,7 @@ void test2dHyperbolicRotation(double tol)
std::cout << "test2dHyperbolicRotation: i = " << i << " error funm = " << relerr(C, B);
VERIFY(C.isApprox(B, static_cast<T>(tol)));
- ei_matrix_exponential(A, &C);
+ C = ei_matrix_exponential(A);
std::cout << " error expm = " << relerr(C, B) << "\n";
VERIFY(C.isApprox(B, static_cast<T>(tol)));
}
@@ -110,7 +110,7 @@ void testPascal(double tol)
std::cout << "testPascal: size = " << size << " error funm = " << relerr(C, B);
VERIFY(C.isApprox(B, static_cast<T>(tol)));
- ei_matrix_exponential(A, &C);
+ C = ei_matrix_exponential(A);
std::cout << " error expm = " << relerr(C, B) << "\n";
VERIFY(C.isApprox(B, static_cast<T>(tol)));
}
@@ -137,10 +137,9 @@ void randomTest(const MatrixType& m, double tol)
std::cout << "randomTest: error funm = " << relerr(identity, m2 * m3);
VERIFY(identity.isApprox(m2 * m3, static_cast<RealScalar>(tol)));
- ei_matrix_exponential(m1, &m2);
- ei_matrix_exponential(-m1, &m3);
- std::cout << " error expm = " << relerr(identity, m2 * m3) << "\n";
- VERIFY(identity.isApprox(m2 * m3, static_cast<RealScalar>(tol)));
+ m2 = ei_matrix_exponential(m1) * ei_matrix_exponential(-m1);
+ std::cout << " error expm = " << relerr(identity, m2) << "\n";
+ VERIFY(identity.isApprox(m2, static_cast<RealScalar>(tol)));
}
}
diff --git a/unsupported/test/matrix_function.cpp b/unsupported/test/matrix_function.cpp
index de63937ad..25134f21d 100644
--- a/unsupported/test/matrix_function.cpp
+++ b/unsupported/test/matrix_function.cpp
@@ -100,10 +100,9 @@ void testMatrixExponential(const MatrixType& A)
typedef std::complex<RealScalar> ComplexScalar;
for (int i = 0; i < g_repeat; i++) {
- MatrixType expA1, expA2;
- ei_matrix_exponential(A, &expA1);
- ei_matrix_function(A, StdStemFunctions<ComplexScalar>::exp, &expA2);
- VERIFY_IS_APPROX(expA1, expA2);
+ MatrixType expA;
+ ei_matrix_function(A, StdStemFunctions<ComplexScalar>::exp, &expA);
+ VERIFY_IS_APPROX(ei_matrix_exponential(A), expA);
}
}
@@ -111,10 +110,10 @@ template<typename MatrixType>
void testHyperbolicFunctions(const MatrixType& A)
{
for (int i = 0; i < g_repeat; i++) {
- MatrixType sinhA, coshA, expA;
+ MatrixType sinhA, coshA;
ei_matrix_sinh(A, &sinhA);
ei_matrix_cosh(A, &coshA);
- ei_matrix_exponential(A, &expA);
+ MatrixType expA = ei_matrix_exponential(A);
VERIFY_IS_APPROX(sinhA, (expA - expA.inverse())/2);
VERIFY_IS_APPROX(coshA, (expA + expA.inverse())/2);
}
@@ -136,8 +135,7 @@ void testGonioFunctions(const MatrixType& A)
for (int i = 0; i < g_repeat; i++) {
ComplexMatrix Ac = A.template cast<ComplexScalar>();
- ComplexMatrix exp_iA;
- ei_matrix_exponential(imagUnit * Ac, &exp_iA);
+ ComplexMatrix exp_iA = ei_matrix_exponential(imagUnit * Ac);
MatrixType sinA;
ei_matrix_sin(A, &sinA);