aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported
diff options
context:
space:
mode:
authorGravatar Benoit Steiner <benoit.steiner.goog@gmail.com>2015-08-31 08:18:53 -0700
committerGravatar Benoit Steiner <benoit.steiner.goog@gmail.com>2015-08-31 08:18:53 -0700
commitf41831e445f3fdd9dc324561135b2a19eafd9a56 (patch)
tree045cb917d62685b342ce129e384e03e63c916898 /unsupported
parent2ab603316af7c1bcf1d5e87d9ba50a2589b36e37 (diff)
Added support for argmax/argmin
Diffstat (limited to 'unsupported')
-rw-r--r--unsupported/Eigen/CXX11/Tensor1
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h288
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorBase.h59
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h2
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h34
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h54
-rw-r--r--unsupported/test/CMakeLists.txt2
-rw-r--r--unsupported/test/cxx11_tensor_argmax.cpp294
-rw-r--r--unsupported/test/cxx11_tensor_argmax_cuda.cpp241
9 files changed, 975 insertions, 0 deletions
diff --git a/unsupported/Eigen/CXX11/Tensor b/unsupported/Eigen/CXX11/Tensor
index d1908a4c3..cbe416602 100644
--- a/unsupported/Eigen/CXX11/Tensor
+++ b/unsupported/Eigen/CXX11/Tensor
@@ -73,6 +73,7 @@
#include "src/Tensor/TensorEvaluator.h"
#include "src/Tensor/TensorExpr.h"
#include "src/Tensor/TensorReduction.h"
+#include "src/Tensor/TensorArgMax.h"
#include "src/Tensor/TensorConcatenation.h"
#include "src/Tensor/TensorContraction.h"
#include "src/Tensor/TensorContractionThreadPool.h"
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h b/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h
new file mode 100644
index 000000000..ee3bf7fe3
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorArgMax.h
@@ -0,0 +1,288 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Eugene Brevdo <ebrevdo@gmail.com>
+// Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
+#define EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
+
+namespace Eigen {
+namespace internal {
+
+/** \class TensorIndexTuple
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Tensor + Index Tuple class.
+ *
+ *
+ */
+template<typename XprType>
+struct traits<TensorIndexTupleOp<XprType> > : public traits<XprType>
+{
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef Tuple<Index, typename XprTraits::Scalar> Scalar;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename XprType>
+struct eval<TensorIndexTupleOp<XprType>, Eigen::Dense>
+{
+ typedef const TensorIndexTupleOp<XprType>& type;
+};
+
+template<typename XprType>
+struct nested<TensorIndexTupleOp<XprType>, 1,
+ typename eval<TensorIndexTupleOp<XprType> >::type>
+{
+ typedef TensorIndexTupleOp<XprType> type;
+};
+
+} // end namespace internal
+
+template<typename XprType>
+class TensorIndexTupleOp : public TensorBase<TensorIndexTupleOp<XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename Eigen::internal::nested<TensorIndexTupleOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorIndexTupleOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorIndexTupleOp>::Index Index;
+ typedef Tuple<Index, typename XprType::CoeffReturnType> CoeffReturnType;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorIndexTupleOp(const XprType& expr)
+ : m_xpr(expr) {}
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+};
+
+// Eval as rvalue
+template<typename ArgType, typename Device>
+struct TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device>
+{
+ typedef TensorIndexTupleOp<ArgType> XprType;
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+
+ typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
+ static const int NumDims = internal::array_size<Dimensions>::value;
+
+ enum {
+ IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
+ PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false,
+ BlockAccess = false,
+ Layout = TensorEvaluator<ArgType, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_impl(op.expression(), device) { }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
+ return m_impl.dimensions();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ return CoeffReturnType(index, m_impl.coeff(index));
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ protected:
+ TensorEvaluator<ArgType, Device> m_impl;
+};
+
+namespace internal {
+
+/** \class TensorTupleIndex
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief Converts to Tensor<Tuple<Index, Scalar> > and reduces to Tensor<Index>.
+ *
+ */
+template<typename ReduceOp, typename Dims, typename XprType>
+struct traits<TensorTupleReducerOp<ReduceOp, Dims, XprType> > : public traits<XprType>
+{
+ typedef traits<XprType> XprTraits;
+ typedef typename XprTraits::StorageKind StorageKind;
+ typedef typename XprTraits::Index Index;
+ typedef Index Scalar;
+ typedef typename XprType::Nested Nested;
+ typedef typename remove_reference<Nested>::type _Nested;
+ static const int NumDimensions = XprTraits::NumDimensions;
+ static const int Layout = XprTraits::Layout;
+};
+
+template<typename ReduceOp, typename Dims, typename XprType>
+struct eval<TensorTupleReducerOp<ReduceOp, Dims, XprType>, Eigen::Dense>
+{
+ typedef const TensorTupleReducerOp<ReduceOp, Dims, XprType>& type;
+};
+
+template<typename ReduceOp, typename Dims, typename XprType>
+struct nested<TensorTupleReducerOp<ReduceOp, Dims, XprType>, 1,
+ typename eval<TensorTupleReducerOp<ReduceOp, Dims, XprType> >::type>
+{
+ typedef TensorTupleReducerOp<ReduceOp, Dims, XprType> type;
+};
+
+} // end namespace internal
+
+template<typename ReduceOp, typename Dims, typename XprType>
+class TensorTupleReducerOp : public TensorBase<TensorTupleReducerOp<ReduceOp, Dims, XprType>, ReadOnlyAccessors>
+{
+ public:
+ typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Scalar Scalar;
+ typedef typename Eigen::NumTraits<Scalar>::Real RealScalar;
+ typedef typename Eigen::internal::nested<TensorTupleReducerOp>::type Nested;
+ typedef typename Eigen::internal::traits<TensorTupleReducerOp>::StorageKind StorageKind;
+ typedef typename Eigen::internal::traits<TensorTupleReducerOp>::Index Index;
+ typedef Index CoeffReturnType;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorTupleReducerOp(const XprType& expr,
+ const ReduceOp& reduce_op,
+ const int return_dim,
+ const Dims& reduce_dims)
+ : m_xpr(expr), m_reduce_op(reduce_op), m_return_dim(return_dim), m_reduce_dims(reduce_dims) {}
+
+ EIGEN_DEVICE_FUNC
+ const typename internal::remove_all<typename XprType::Nested>::type&
+ expression() const { return m_xpr; }
+
+ EIGEN_DEVICE_FUNC
+ const ReduceOp& reduce_op() const { return m_reduce_op; }
+
+ EIGEN_DEVICE_FUNC
+ const Dims& reduce_dims() const { return m_reduce_dims; }
+
+ EIGEN_DEVICE_FUNC
+ int return_dim() const { return m_return_dim; }
+
+ protected:
+ typename XprType::Nested m_xpr;
+ const ReduceOp m_reduce_op;
+ const int m_return_dim;
+ const Dims m_reduce_dims;
+};
+
+// Eval as rvalue
+template<typename ReduceOp, typename Dims, typename ArgType, typename Device>
+struct TensorEvaluator<const TensorTupleReducerOp<ReduceOp, Dims, ArgType>, Device>
+{
+ typedef TensorTupleReducerOp<ReduceOp, Dims, ArgType> XprType;
+ typedef typename XprType::Index Index;
+ typedef typename XprType::Scalar Scalar;
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename TensorIndexTupleOp<ArgType>::CoeffReturnType TupleType;
+ typedef typename TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Dimensions Dimensions;
+ typedef typename TensorEvaluator<const TensorIndexTupleOp<ArgType> , Device>::Dimensions InputDimensions;
+ static const int NumDims = internal::array_size<InputDimensions>::value;
+ typedef array<Index, NumDims> StrideDims;
+
+ enum {
+ IsAligned = /*TensorEvaluator<ArgType, Device>::IsAligned*/ false,
+ PacketAccess = /*TensorEvaluator<ArgType, Device>::PacketAccess*/ false,
+ BlockAccess = false,
+ Layout = TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device>::Layout,
+ CoordAccess = false, // to be implemented
+ };
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
+ : m_orig_impl(op.expression(), device),
+ m_impl(op.expression().index_tuples().reduce(op.reduce_dims(), op.reduce_op()), device),
+ m_return_dim(op.return_dim()),
+ m_strides(gen_strides(m_orig_impl.dimensions())),
+ m_stride_mod(gen_stride_mod(m_orig_impl.dimensions())),
+ m_stride_div(gen_stride_div()) { }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const {
+ return m_impl.dimensions();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) {
+ m_impl.evalSubExprsIfNeeded(NULL);
+ return true;
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() {
+ m_impl.cleanup();
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
+ const TupleType v = m_impl.coeff(index);
+ return (m_return_dim < 0) ? v.first : (v.first % m_stride_mod) / m_stride_div;
+ }
+
+ EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; }
+
+ private:
+ EIGEN_DEVICE_FUNC StrideDims gen_strides(const InputDimensions& dims) {
+ StrideDims strides;
+ if (m_return_dim < 0) return strides; // Won't be using these.
+ eigen_assert(m_return_dim < NumDims &&
+ "Asking to convert index to a dimension outside of the rank");
+
+ // Calculate m_stride_div and m_stride_mod, which are used to
+ // calculate the value of an index w.r.t. the m_return_dim.
+ if (Layout == static_cast<int>(ColMajor)) {
+ strides[0] = 1;
+ for (int i = 1; i < NumDims; ++i) {
+ strides[i] = strides[i-1] * dims[i-1];
+ }
+ } else {
+ strides[NumDims-1] = 1;
+ for (int i = NumDims - 2; i >= 0; --i) {
+ strides[i] = strides[i+1] * dims[i+1];
+ }
+ }
+ return strides;
+ }
+
+ EIGEN_DEVICE_FUNC Index gen_stride_mod(const InputDimensions& dims) {
+ if (Layout == static_cast<int>(ColMajor)) {
+ return (m_return_dim < NumDims - 1) ? m_strides[m_return_dim + 1] : dims.TotalSize();
+ } else {
+ return (m_return_dim > 0) ? m_strides[m_return_dim - 1] : dims.TotalSize();
+ }
+ }
+
+ EIGEN_DEVICE_FUNC Index gen_stride_div() {
+ return m_strides[m_return_dim];
+ }
+
+ protected:
+ TensorEvaluator<const TensorIndexTupleOp<ArgType>, Device> m_orig_impl;
+ TensorEvaluator<const TensorReductionOp<ReduceOp, Dims, const TensorIndexTupleOp<ArgType> >, Device> m_impl;
+ const int m_return_dim;
+ const StrideDims m_strides;
+ const Index m_stride_mod;
+ const Index m_stride_div;
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_ARG_MAX_H
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h b/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
index 0e5e4b426..477e4a174 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h
@@ -363,6 +363,58 @@ class TensorBase<Derived, ReadOnlyAccessors>
return TensorReductionOp<internal::MinReducer<CoeffReturnType>, const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims, internal::MinReducer<CoeffReturnType>());
}
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorTupleReducerOp<
+ internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, NumDimensions>, const Derived>
+ argmax() const {
+ array<Index, NumDimensions> in_dims;
+ for (int d = 0; d < NumDimensions; ++d) in_dims[d] = d;
+ return TensorTupleReducerOp<
+ internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, NumDimensions>,
+ const Derived>(derived(), internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >(), -1, in_dims);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorTupleReducerOp<
+ internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, NumDimensions>, const Derived>
+ argmin() const {
+ array<Index, NumDimensions> in_dims;
+ for (int d = 0; d < NumDimensions; ++d) in_dims[d] = d;
+ return TensorTupleReducerOp<
+ internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, NumDimensions>,
+ const Derived>(derived(), internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >(), -1, in_dims);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorTupleReducerOp<
+ internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, 1>, const Derived>
+ argmax(const int return_dim) const {
+ array<Index, 1> in_dims;
+ in_dims[0] = return_dim;
+ return TensorTupleReducerOp<
+ internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, 1>,
+ const Derived>(derived(), internal::ArgMaxTupleReducer<Tuple<Index, CoeffReturnType> >(), return_dim, in_dims);
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorTupleReducerOp<
+ internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, 1>, const Derived>
+ argmin(const int return_dim) const {
+ array<Index, 1> in_dims;
+ in_dims[0] = return_dim;
+ return TensorTupleReducerOp<
+ internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >,
+ const array<Index, 1>,
+ const Derived>(derived(), internal::ArgMinTupleReducer<Tuple<Index, CoeffReturnType> >(), return_dim, in_dims);
+ }
+
template <typename Reducer, typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const TensorReductionOp<Reducer, const Dims, const Derived>
reduce(const Dims& dims, const Reducer& reducer) const {
@@ -483,6 +535,13 @@ class TensorBase<Derived, ReadOnlyAccessors>
return TensorInflationOp<const Strides, const Derived>(derived(), strides);
}
+ // Returns a tensor containing index/value tuples
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ const TensorIndexTupleOp<const Derived>
+ index_tuples() const {
+ return TensorIndexTupleOp<const Derived>(derived());
+ }
+
// Support for custom unary and binary operations
template <typename CustomUnaryFunc>
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h b/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
index 17b0e6153..c22444e6f 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h
@@ -23,6 +23,8 @@ template<typename UnaryOp, typename XprType> class TensorCwiseUnaryOp;
template<typename BinaryOp, typename LeftXprType, typename RightXprType> class TensorCwiseBinaryOp;
template<typename IfXprType, typename ThenXprType, typename ElseXprType> class TensorSelectOp;
template<typename Op, typename Dims, typename XprType> class TensorReductionOp;
+template<typename XprType> class TensorIndexTupleOp;
+template<typename ReduceOp, typename Dims, typename XprType> class TensorTupleReducerOp;
template<typename Axis, typename LeftXprType, typename RightXprType> class TensorConcatenationOp;
template<typename Dimensions, typename LeftXprType, typename RightXprType> class TensorContractionOp;
template<typename TargetType, typename XprType> class TensorConversionOp;
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h b/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h
index d9061c216..ed259399b 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorFunctors.h
@@ -219,6 +219,40 @@ template <typename T> struct ProdReducer
};
+// Argmin/Argmax reducers
+template <typename T> struct ArgMaxTupleReducer
+{
+ static const bool PacketAccess = false;
+ static const bool IsStateful = false;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T t, T* accum) const {
+ if (t.second > accum->second) { *accum = t; }
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
+ return T(0, NumTraits<typename T::second_type>::lowest());
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T& accum) const {
+ return accum;
+ }
+};
+
+template <typename T> struct ArgMinTupleReducer
+{
+ static const bool PacketAccess = false;
+ static const bool IsStateful = false;
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void reduce(const T& t, T* accum) const {
+ if (t.second < accum->second) { *accum = t; }
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T initialize() const {
+ return T(0, NumTraits<typename T::second_type>::highest());
+ }
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE T finalize(const T& accum) const {
+ return accum;
+ }
+};
+
+
// Random number generation
namespace {
#ifdef __CUDA_ARCH__
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h b/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h
index 78feb85cd..7dfa04760 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorMeta.h
@@ -31,6 +31,60 @@ template <> struct max_n_1<0> {
static const size_t size = 1;
};
+
+
+
+#if defined(EIGEN_HAS_CONSTEXPR)
+#define EIGEN_CONSTEXPR constexpr
+#else
+#define EIGEN_CONSTEXPR
+#endif
+
+// Tuple mimics std::pair but works on e.g. nvcc.
+template <typename U, typename V> struct Tuple {
+ public:
+ U first;
+ V second;
+
+ typedef U first_type;
+ typedef V second_type;
+
+ EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Tuple() : first(), second() {}
+
+ EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Tuple(const U& f, const V& s) : first(f), second(s) {}
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ Tuple& operator= (const Tuple& rhs) {
+ if (&rhs == this) return *this;
+ first = rhs.first;
+ second = rhs.second;
+ return *this;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+ void swap(Tuple& rhs) {
+ using numext::swap;
+ swap(first, rhs.first);
+ swap(second, rhs.second);
+ }
+};
+
+template <typename U, typename V>
+EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+bool operator==(const Tuple<U, V>& x, const Tuple<U, V>& y) {
+ return (x.first == y.first && x.second == y.second);
+}
+
+template <typename U, typename V>
+EIGEN_CONSTEXPR EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
+bool operator!=(const Tuple<U, V>& x, const Tuple<U, V>& y) {
+ return !(x == y);
+}
+
+#undef EIGEN_CONSTEXPR
+
} // namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_META_H
diff --git a/unsupported/test/CMakeLists.txt b/unsupported/test/CMakeLists.txt
index 7c8fb8dde..b161cb370 100644
--- a/unsupported/test/CMakeLists.txt
+++ b/unsupported/test/CMakeLists.txt
@@ -130,6 +130,7 @@ if(EIGEN_TEST_CXX11)
ei_add_test(cxx11_tensor_image_patch "-std=c++0x")
ei_add_test(cxx11_tensor_volume_patch "-std=c++0x")
ei_add_test(cxx11_tensor_reduction "-std=c++0x")
+ ei_add_test(cxx11_tensor_argmax "-std=c++0x")
ei_add_test(cxx11_tensor_shuffling "-std=c++0x")
ei_add_test(cxx11_tensor_striding "-std=c++0x")
ei_add_test(cxx11_tensor_thread_pool "-std=c++0x")
@@ -148,5 +149,6 @@ if(EIGEN_TEST_CXX11)
# ei_add_test(cxx11_tensor_contract_cuda "-std=c++0x")
# ei_add_test(cxx11_tensor_reduction_cuda "-std=c++0x")
# ei_add_test(cxx11_tensor_random_cuda "-std=c++0x")
+# ei_add_test(cxx11_tensor_argmax_cuda "-std=c++0x")
endif()
diff --git a/unsupported/test/cxx11_tensor_argmax.cpp b/unsupported/test/cxx11_tensor_argmax.cpp
new file mode 100644
index 000000000..4c532409e
--- /dev/null
+++ b/unsupported/test/cxx11_tensor_argmax.cpp
@@ -0,0 +1,294 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015 Eugene Brevdo <ebrevdo@google.com>
+// Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+
+#include <Eigen/CXX11/Tensor>
+
+using Eigen::Tensor;
+using Eigen::array;
+using Eigen::Tuple;
+
+template <int DataLayout>
+static void test_simple_index_tuples()
+{
+ Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+ tensor.setRandom();
+ tensor = (tensor + tensor.constant(0.5)).log();
+
+ Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
+ index_tuples = tensor.index_tuples();
+
+ for (DenseIndex n = 0; n < 2*3*5*7; ++n) {
+ const Tuple<DenseIndex, float>& v = index_tuples.coeff(n);
+ VERIFY_IS_EQUAL(v.first, n);
+ VERIFY_IS_EQUAL(v.second, tensor.coeff(n));
+ }
+}
+
+template <int DataLayout>
+static void test_index_tuples_dim()
+{
+ Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+ tensor.setRandom();
+ tensor = (tensor + tensor.constant(0.5)).log();
+
+ Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
+
+ index_tuples = tensor.index_tuples();
+
+ for (Eigen::DenseIndex n = 0; n < tensor.size(); ++n) {
+ const Tuple<DenseIndex, float>& v = index_tuples(n); //(i, j, k, l);
+ VERIFY_IS_EQUAL(v.first, n);
+ VERIFY_IS_EQUAL(v.second, tensor(n));
+ }
+}
+
+template <int DataLayout>
+static void test_argmax_tuple_reducer()
+{
+ Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+ tensor.setRandom();
+ tensor = (tensor + tensor.constant(0.5)).log();
+
+ Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
+ index_tuples = tensor.index_tuples();
+
+ Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced(1);
+ DimensionList<DenseIndex, 4> dims;
+ reduced = index_tuples.reduce(
+ dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float>>());
+
+ Tensor<float, 1, DataLayout> maxi = tensor.maximum();
+
+ VERIFY_IS_EQUAL(maxi(0), reduced(0).second);
+
+ array<DenseIndex, 3> reduce_dims;
+ for (int d = 0; d < 3; ++d) reduce_dims[d] = d;
+ Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced_by_dims(7);
+ reduced_by_dims = index_tuples.reduce(
+ reduce_dims, internal::ArgMaxTupleReducer<Tuple<DenseIndex, float>>());
+
+ Tensor<float, 1, DataLayout> max_by_dims = tensor.maximum(reduce_dims);
+
+ for (int l = 0; l < 7; ++l) {
+ VERIFY_IS_EQUAL(max_by_dims(l), reduced_by_dims(l).second);
+ }
+}
+
+template <int DataLayout>
+static void test_argmin_tuple_reducer()
+{
+ Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+ tensor.setRandom();
+ tensor = (tensor + tensor.constant(0.5)).log();
+
+ Tensor<Tuple<DenseIndex, float>, 4, DataLayout> index_tuples(2,3,5,7);
+ index_tuples = tensor.index_tuples();
+
+ Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced(1);
+ DimensionList<DenseIndex, 4> dims;
+ reduced = index_tuples.reduce(
+ dims, internal::ArgMinTupleReducer<Tuple<DenseIndex, float>>());
+
+ Tensor<float, 1, DataLayout> mini = tensor.minimum();
+
+ VERIFY_IS_EQUAL(mini(0), reduced(0).second);
+
+ array<DenseIndex, 3> reduce_dims;
+ for (int d = 0; d < 3; ++d) reduce_dims[d] = d;
+ Tensor<Tuple<DenseIndex, float>, 1, DataLayout> reduced_by_dims(7);
+ reduced_by_dims = index_tuples.reduce(
+ reduce_dims, internal::ArgMinTupleReducer<Tuple<DenseIndex, float>>());
+
+ Tensor<float, 1, DataLayout> min_by_dims = tensor.minimum(reduce_dims);
+
+ for (int l = 0; l < 7; ++l) {
+ VERIFY_IS_EQUAL(min_by_dims(l), reduced_by_dims(l).second);
+ }
+}
+
+template <int DataLayout>
+static void test_simple_argmax()
+{
+ Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+ tensor.setRandom();
+ tensor = (tensor + tensor.constant(0.5)).log();
+ tensor(0,0,0,0) = 10.0;
+
+ Tensor<DenseIndex, 1, DataLayout> tensor_argmax(1);
+
+ tensor_argmax = tensor.argmax();
+
+ VERIFY_IS_EQUAL(tensor_argmax(0), 0);
+
+ tensor(1,2,4,6) = 20.0;
+
+ tensor_argmax = tensor.argmax();
+
+ VERIFY_IS_EQUAL(tensor_argmax(0), 2*3*5*7 - 1);
+}
+
+template <int DataLayout>
+static void test_simple_argmin()
+{
+ Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+ tensor.setRandom();
+ tensor = (tensor + tensor.constant(0.5)).log();
+ tensor(0,0,0,0) = -10.0;
+
+ Tensor<DenseIndex, 1, DataLayout> tensor_argmin(1);
+
+ tensor_argmin = tensor.argmin();
+
+ VERIFY_IS_EQUAL(tensor_argmin(0), 0);
+
+ tensor(1,2,4,6) = -20.0;
+
+ tensor_argmin = tensor.argmin();
+
+ VERIFY_IS_EQUAL(tensor_argmin(0), 2*3*5*7 - 1);
+}
+
+template <int DataLayout>
+static void test_argmax_dim()
+{
+ Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+ std::vector<int> dims {2, 3, 5, 7};
+
+ for (int dim = 0; dim < 4; ++dim) {
+ tensor.setRandom();
+ tensor = (tensor + tensor.constant(0.5)).log();
+
+ Tensor<DenseIndex, 3, DataLayout> tensor_argmax;
+ array<DenseIndex, 4> ix;
+ for (int i = 0; i < 2; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ for (int k = 0; k < 5; ++k) {
+ for (int l = 0; l < 7; ++l) {
+ ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+ if (ix[dim] != 0) continue;
+ // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
+ tensor(ix) = 10.0;
+ }
+ }
+ }
+ }
+
+ tensor_argmax = tensor.argmax(dim);
+
+ VERIFY_IS_EQUAL(tensor_argmax.dimensions().TotalSize(),
+ size_t(2*3*5*7 / tensor.dimension(dim)));
+ for (size_t n = 0; n < tensor_argmax.dimensions().TotalSize(); ++n) {
+ // Expect max to be in the first index of the reduced dimension
+ VERIFY_IS_EQUAL(tensor_argmax.data()[n], 0);
+ }
+
+ for (int i = 0; i < 2; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ for (int k = 0; k < 5; ++k) {
+ for (int l = 0; l < 7; ++l) {
+ ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+ if (ix[dim] != tensor.dimension(dim) - 1) continue;
+ // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
+ tensor(ix) = 20.0;
+ }
+ }
+ }
+ }
+
+ tensor_argmax = tensor.argmax(dim);
+
+ VERIFY_IS_EQUAL(tensor_argmax.dimensions().TotalSize(),
+ size_t(2*3*5*7 / tensor.dimension(dim)));
+ for (size_t n = 0; n < tensor_argmax.dimensions().TotalSize(); ++n) {
+ // Expect max to be in the last index of the reduced dimension
+ VERIFY_IS_EQUAL(tensor_argmax.data()[n], tensor.dimension(dim) - 1);
+ }
+ }
+}
+
+template <int DataLayout>
+static void test_argmin_dim()
+{
+ Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+ std::vector<int> dims {2, 3, 5, 7};
+
+ for (int dim = 0; dim < 4; ++dim) {
+ tensor.setRandom();
+ tensor = (tensor + tensor.constant(0.5)).log();
+
+ Tensor<DenseIndex, 3, DataLayout> tensor_argmin;
+ array<DenseIndex, 4> ix;
+ for (int i = 0; i < 2; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ for (int k = 0; k < 5; ++k) {
+ for (int l = 0; l < 7; ++l) {
+ ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+ if (ix[dim] != 0) continue;
+ // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = -10.0
+ tensor(ix) = -10.0;
+ }
+ }
+ }
+ }
+
+ tensor_argmin = tensor.argmin(dim);
+
+ VERIFY_IS_EQUAL(tensor_argmin.dimensions().TotalSize(),
+ size_t(2*3*5*7 / tensor.dimension(dim)));
+ for (size_t n = 0; n < tensor_argmin.dimensions().TotalSize(); ++n) {
+ // Expect min to be in the first index of the reduced dimension
+ VERIFY_IS_EQUAL(tensor_argmin.data()[n], 0);
+ }
+
+ for (int i = 0; i < 2; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ for (int k = 0; k < 5; ++k) {
+ for (int l = 0; l < 7; ++l) {
+ ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+ if (ix[dim] != tensor.dimension(dim) - 1) continue;
+ // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = -20.0
+ tensor(ix) = -20.0;
+ }
+ }
+ }
+ }
+
+ tensor_argmin = tensor.argmin(dim);
+
+ VERIFY_IS_EQUAL(tensor_argmin.dimensions().TotalSize(),
+ size_t(2*3*5*7 / tensor.dimension(dim)));
+ for (size_t n = 0; n < tensor_argmin.dimensions().TotalSize(); ++n) {
+ // Expect min to be in the last index of the reduced dimension
+ VERIFY_IS_EQUAL(tensor_argmin.data()[n], tensor.dimension(dim) - 1);
+ }
+ }
+}
+
+void test_cxx11_tensor_argmax()
+{
+ CALL_SUBTEST(test_simple_index_tuples<RowMajor>());
+ CALL_SUBTEST(test_simple_index_tuples<ColMajor>());
+ CALL_SUBTEST(test_index_tuples_dim<RowMajor>());
+ CALL_SUBTEST(test_index_tuples_dim<ColMajor>());
+ CALL_SUBTEST(test_argmax_tuple_reducer<RowMajor>());
+ CALL_SUBTEST(test_argmax_tuple_reducer<ColMajor>());
+ CALL_SUBTEST(test_argmin_tuple_reducer<RowMajor>());
+ CALL_SUBTEST(test_argmin_tuple_reducer<ColMajor>());
+ CALL_SUBTEST(test_simple_argmax<RowMajor>());
+ CALL_SUBTEST(test_simple_argmax<ColMajor>());
+ CALL_SUBTEST(test_simple_argmin<RowMajor>());
+ CALL_SUBTEST(test_simple_argmin<ColMajor>());
+ CALL_SUBTEST(test_argmax_dim<RowMajor>());
+ CALL_SUBTEST(test_argmax_dim<ColMajor>());
+ CALL_SUBTEST(test_argmin_dim<RowMajor>());
+ CALL_SUBTEST(test_argmin_dim<ColMajor>());
+}
diff --git a/unsupported/test/cxx11_tensor_argmax_cuda.cpp b/unsupported/test/cxx11_tensor_argmax_cuda.cpp
new file mode 100644
index 000000000..d37490d15
--- /dev/null
+++ b/unsupported/test/cxx11_tensor_argmax_cuda.cpp
@@ -0,0 +1,241 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+// TODO(mdevin): Free the cuda memory.
+
+#define EIGEN_TEST_FUNC cxx11_tensor_cuda
+#define EIGEN_USE_GPU
+
+#include "main.h"
+#include <unsupported/Eigen/CXX11/Tensor>
+
+using Eigen::Tensor;
+
+template <int Layout>
+void test_cuda_simple_argmax()
+{
+ Tensor<double, 3, Layout> in(Eigen::array<DenseIndex, 3>(72,53,97));
+ Tensor<DenseIndex, 1, Layout> out_max(Eigen::array<DenseIndex, 1>(1));
+ Tensor<DenseIndex, 1, Layout> out_min(Eigen::array<DenseIndex, 1>(1));
+ in.setRandom();
+ in *= in.constant(100.0);
+ in(0, 0, 0) = -1000.0;
+ in(71, 52, 96) = 1000.0;
+
+ std::size_t in_bytes = in.size() * sizeof(double);
+ std::size_t out_bytes = out_max.size() * sizeof(DenseIndex);
+
+ double* d_in;
+ DenseIndex* d_out_max;
+ DenseIndex* d_out_min;
+ cudaMalloc((void**)(&d_in), in_bytes);
+ cudaMalloc((void**)(&d_out_max), out_bytes);
+ cudaMalloc((void**)(&d_out_min), out_bytes);
+
+ cudaMemcpy(d_in, in.data(), in_bytes, cudaMemcpyHostToDevice);
+
+ Eigen::CudaStreamDevice stream;
+ Eigen::GpuDevice gpu_device(&stream);
+
+ Eigen::TensorMap<Eigen::Tensor<double, 3, Layout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 3>(72,53,97));
+ Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_max(d_out_max, Eigen::array<DenseIndex, 1>(1));
+ Eigen::TensorMap<Eigen::Tensor<DenseIndex, 1, Layout>, Aligned > gpu_out_min(d_out_min, Eigen::array<DenseIndex, 1>(1));
+
+ gpu_out_max.device(gpu_device) = gpu_in.argmax();
+ gpu_out_min.device(gpu_device) = gpu_in.argmin();
+
+ assert(cudaMemcpyAsync(out_max.data(), d_out_max, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
+ assert(cudaMemcpyAsync(out_min.data(), d_out_min, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
+ assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
+
+ VERIFY_IS_EQUAL(out_max(Eigen::array<DenseIndex, 1>(0)), 72*53*97 - 1);
+ VERIFY_IS_EQUAL(out_min(Eigen::array<DenseIndex, 1>(0)), 0);
+}
+
+template <int DataLayout>
+void test_cuda_argmax_dim()
+{
+ Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+ std::vector<int> dims;
+ dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7);
+
+ for (int dim = 0; dim < 4; ++dim) {
+ tensor.setRandom();
+ tensor = (tensor + tensor.constant(0.5)).log();
+
+ array<DenseIndex, 3> out_shape;
+ for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
+
+ Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
+
+ array<DenseIndex, 4> ix;
+ for (int i = 0; i < 2; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ for (int k = 0; k < 5; ++k) {
+ for (int l = 0; l < 7; ++l) {
+ ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+ if (ix[dim] != 0) continue;
+ // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
+ tensor(ix) = 10.0;
+ }
+ }
+ }
+ }
+
+ std::size_t in_bytes = tensor.size() * sizeof(float);
+ std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
+
+ float* d_in;
+ DenseIndex* d_out;
+ cudaMalloc((void**)(&d_in), in_bytes);
+ cudaMalloc((void**)(&d_out), out_bytes);
+
+ cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
+
+ Eigen::CudaStreamDevice stream;
+ Eigen::GpuDevice gpu_device(&stream);
+
+ Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
+ Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape);
+
+ gpu_out.device(gpu_device) = gpu_in.argmax(dim);
+
+ assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
+ assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
+
+ VERIFY_IS_EQUAL(tensor_arg.dimensions().TotalSize(),
+ size_t(2*3*5*7 / tensor.dimension(dim)));
+
+ for (size_t n = 0; n < tensor_arg.dimensions().TotalSize(); ++n) {
+ // Expect max to be in the first index of the reduced dimension
+ VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
+ }
+
+ for (int i = 0; i < 2; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ for (int k = 0; k < 5; ++k) {
+ for (int l = 0; l < 7; ++l) {
+ ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+ if (ix[dim] != tensor.dimension(dim) - 1) continue;
+ // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
+ tensor(ix) = 20.0;
+ }
+ }
+ }
+ }
+
+ cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
+
+ gpu_out.device(gpu_device) = gpu_in.argmax(dim);
+
+ assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
+ assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
+
+ for (size_t n = 0; n < tensor_arg.dimensions().TotalSize(); ++n) {
+ // Expect max to be in the last index of the reduced dimension
+ VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
+ }
+ }
+}
+
+template <int DataLayout>
+void test_cuda_argmin_dim()
+{
+ Tensor<float, 4, DataLayout> tensor(2,3,5,7);
+ std::vector<int> dims;
+ dims.push_back(2); dims.push_back(3); dims.push_back(5); dims.push_back(7);
+
+ for (int dim = 0; dim < 4; ++dim) {
+ tensor.setRandom();
+ tensor = (tensor + tensor.constant(0.5)).log();
+
+ array<DenseIndex, 3> out_shape;
+ for (int d = 0; d < 3; ++d) out_shape[d] = (d < dim) ? dims[d] : dims[d+1];
+
+ Tensor<DenseIndex, 3, DataLayout> tensor_arg(out_shape);
+
+ array<DenseIndex, 4> ix;
+ for (int i = 0; i < 2; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ for (int k = 0; k < 5; ++k) {
+ for (int l = 0; l < 7; ++l) {
+ ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+ if (ix[dim] != 0) continue;
+ // suppose dim == 1, then for all i, k, l, set tensor(i, 0, k, l) = 10.0
+ tensor(ix) = -10.0;
+ }
+ }
+ }
+ }
+
+ std::size_t in_bytes = tensor.size() * sizeof(float);
+ std::size_t out_bytes = tensor_arg.size() * sizeof(DenseIndex);
+
+ float* d_in;
+ DenseIndex* d_out;
+ cudaMalloc((void**)(&d_in), in_bytes);
+ cudaMalloc((void**)(&d_out), out_bytes);
+
+ cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
+
+ Eigen::CudaStreamDevice stream;
+ Eigen::GpuDevice gpu_device(&stream);
+
+ Eigen::TensorMap<Eigen::Tensor<float, 4, DataLayout>, Aligned > gpu_in(d_in, Eigen::array<DenseIndex, 4>(2, 3, 5, 7));
+ Eigen::TensorMap<Eigen::Tensor<DenseIndex, 3, DataLayout>, Aligned > gpu_out(d_out, out_shape);
+
+ gpu_out.device(gpu_device) = gpu_in.argmin(dim);
+
+ assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
+ assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
+
+ VERIFY_IS_EQUAL(tensor_arg.dimensions().TotalSize(),
+ size_t(2*3*5*7 / tensor.dimension(dim)));
+
+ for (size_t n = 0; n < tensor_arg.dimensions().TotalSize(); ++n) {
+ // Expect min to be in the first index of the reduced dimension
+ VERIFY_IS_EQUAL(tensor_arg.data()[n], 0);
+ }
+
+ for (int i = 0; i < 2; ++i) {
+ for (int j = 0; j < 3; ++j) {
+ for (int k = 0; k < 5; ++k) {
+ for (int l = 0; l < 7; ++l) {
+ ix[0] = i; ix[1] = j; ix[2] = k; ix[3] = l;
+ if (ix[dim] != tensor.dimension(dim) - 1) continue;
+ // suppose dim == 1, then for all i, k, l, set tensor(i, 2, k, l) = 20.0
+ tensor(ix) = -20.0;
+ }
+ }
+ }
+ }
+
+ cudaMemcpy(d_in, tensor.data(), in_bytes, cudaMemcpyHostToDevice);
+
+ gpu_out.device(gpu_device) = gpu_in.argmin(dim);
+
+ assert(cudaMemcpyAsync(tensor_arg.data(), d_out, out_bytes, cudaMemcpyDeviceToHost, gpu_device.stream()) == cudaSuccess);
+ assert(cudaStreamSynchronize(gpu_device.stream()) == cudaSuccess);
+
+ for (size_t n = 0; n < tensor_arg.dimensions().TotalSize(); ++n) {
+ // Expect max to be in the last index of the reduced dimension
+ VERIFY_IS_EQUAL(tensor_arg.data()[n], tensor.dimension(dim) - 1);
+ }
+ }
+}
+
+void test_cxx11_tensor_cuda()
+{
+ CALL_SUBTEST(test_cuda_simple_argmax<RowMajor>());
+ CALL_SUBTEST(test_cuda_simple_argmax<ColMajor>());
+ CALL_SUBTEST(test_cuda_argmax_dim<RowMajor>());
+ CALL_SUBTEST(test_cuda_argmax_dim<ColMajor>());
+ CALL_SUBTEST(test_cuda_argmin_dim<RowMajor>());
+ CALL_SUBTEST(test_cuda_argmin_dim<ColMajor>());
+}