aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2014-09-03 10:15:24 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2014-09-03 10:15:24 +0200
commitc82dc227f19e75571ff4d8c47dfbd66765c8dbc5 (patch)
treeae1444f87861aa2bd6197249e7d2fecd6f4306bc /unsupported
parenta96f3d629cfd5e562430f49c9c4d632c365e8020 (diff)
Cleaning in BDCSVD (formating, handling of transpose case, remove some for loops)
Diffstat (limited to 'unsupported')
-rw-r--r--unsupported/Eigen/src/BDCSVD/BDCSVD.h441
1 files changed, 202 insertions, 239 deletions
diff --git a/unsupported/Eigen/src/BDCSVD/BDCSVD.h b/unsupported/Eigen/src/BDCSVD/BDCSVD.h
index 829446911..64cee029b 100644
--- a/unsupported/Eigen/src/BDCSVD/BDCSVD.h
+++ b/unsupported/Eigen/src/BDCSVD/BDCSVD.h
@@ -19,10 +19,6 @@
#ifndef EIGEN_BDCSVD_H
#define EIGEN_BDCSVD_H
-#define EPSILON 0.0000000000000001
-
-#define ALGOSWAP 16
-
namespace Eigen {
template<typename _MatrixType> class BDCSVD;
@@ -88,7 +84,7 @@ public:
* The default constructor is useful in cases in which the user intends to
* perform decompositions via BDCSVD::compute(const MatrixType&).
*/
- BDCSVD() : algoswap(ALGOSWAP), m_numIters(0)
+ BDCSVD() : m_algoswap(16), m_numIters(0)
{}
@@ -99,7 +95,7 @@ public:
* \sa BDCSVD()
*/
BDCSVD(Index rows, Index cols, unsigned int computationOptions = 0)
- : algoswap(ALGOSWAP), m_numIters(0)
+ : m_algoswap(16), m_numIters(0)
{
allocate(rows, cols, computationOptions);
}
@@ -115,7 +111,7 @@ public:
* available with the (non - default) FullPivHouseholderQR preconditioner.
*/
BDCSVD(const MatrixType& matrix, unsigned int computationOptions = 0)
- : algoswap(ALGOSWAP), m_numIters(0)
+ : m_algoswap(16), m_numIters(0)
{
compute(matrix, computationOptions);
}
@@ -150,35 +146,7 @@ public:
void setSwitchSize(int s)
{
eigen_assert(s>3 && "BDCSVD the size of the algo switch has to be greater than 3");
- algoswap = s;
- }
-
- const MatrixUType& matrixU() const
- {
- eigen_assert(this->m_isInitialized && "SVD is not initialized.");
- if (isTranspose){
- eigen_assert(this->computeV() && "This SVD decomposition didn't compute U. Did you ask for it?");
- return this->m_matrixV;
- }
- else
- {
- eigen_assert(this->computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
- return this->m_matrixU;
- }
- }
-
- const MatrixVType& matrixV() const
- {
- eigen_assert(this->m_isInitialized && "SVD is not initialized.");
- if (isTranspose){
- eigen_assert(this->computeU() && "This SVD decomposition didn't compute V. Did you ask for it?");
- return this->m_matrixU;
- }
- else
- {
- eigen_assert(this->computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
- return this->m_matrixV;
- }
+ m_algoswap = s;
}
private:
@@ -194,15 +162,26 @@ private:
void deflation43(Index firstCol, Index shift, Index i, Index size);
void deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size);
void deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift);
- void copyUV(const typename internal::UpperBidiagonalization<MatrixX>::HouseholderUSequenceType& householderU,
- const typename internal::UpperBidiagonalization<MatrixX>::HouseholderVSequenceType& householderV);
+ template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
+ void copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naivev);
protected:
MatrixXr m_naiveU, m_naiveV;
MatrixXr m_computed;
- Index nRec;
- int algoswap;
- bool isTranspose, compU, compV;
+ Index m_nRec;
+ int m_algoswap;
+ bool m_isTranspose, m_compU, m_compV;
+
+ using Base::m_singularValues;
+ using Base::m_diagSize;
+ using Base::m_computeFullU;
+ using Base::m_computeFullV;
+ using Base::m_computeThinU;
+ using Base::m_computeThinV;
+ using Base::m_matrixU;
+ using Base::m_matrixV;
+ using Base::m_isInitialized;
+ using Base::m_nonzeroSingularValues;
public:
int m_numIters;
@@ -213,50 +192,35 @@ public:
template<typename MatrixType>
void BDCSVD<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
{
- isTranspose = (cols > rows);
- if (Base::allocate(rows, cols, computationOptions)) return;
- m_computed = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize );
- if (isTranspose){
- compU = this->computeU();
- compV = this->computeV();
- }
- else
- {
- compV = this->computeU();
- compU = this->computeV();
- }
- if (compU) m_naiveU = MatrixXr::Zero(this->m_diagSize + 1, this->m_diagSize + 1 );
- else m_naiveU = MatrixXr::Zero(2, this->m_diagSize + 1 );
+ m_isTranspose = (cols > rows);
+ if (Base::allocate(rows, cols, computationOptions))
+ return;
- if (compV) m_naiveV = MatrixXr::Zero(this->m_diagSize, this->m_diagSize);
+ m_computed = MatrixXr::Zero(m_diagSize + 1, m_diagSize );
+ m_compU = computeV();
+ m_compV = computeU();
+ if (m_isTranspose)
+ std::swap(m_compU, m_compV);
-
- //should be changed for a cleaner implementation
- if (isTranspose){
- bool aux;
- if (this->computeU()||this->computeV()){
- aux = this->m_computeFullU;
- this->m_computeFullU = this->m_computeFullV;
- this->m_computeFullV = aux;
- aux = this->m_computeThinU;
- this->m_computeThinU = this->m_computeThinV;
- this->m_computeThinV = aux;
- }
- }
+ if (m_compU) m_naiveU = MatrixXr::Zero(m_diagSize + 1, m_diagSize + 1 );
+ else m_naiveU = MatrixXr::Zero(2, m_diagSize + 1 );
+
+ if (m_compV) m_naiveV = MatrixXr::Zero(m_diagSize, m_diagSize);
}// end allocate
// Methode which compute the BDCSVD for the int
template<>
-BDCSVD<Matrix<int, Dynamic, Dynamic> >& BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions) {
+BDCSVD<Matrix<int, Dynamic, Dynamic> >& BDCSVD<Matrix<int, Dynamic, Dynamic> >::compute(const MatrixType& matrix, unsigned int computationOptions)
+{
allocate(matrix.rows(), matrix.cols(), computationOptions);
- this->m_nonzeroSingularValues = 0;
+ m_nonzeroSingularValues = 0;
m_computed = Matrix<int, Dynamic, Dynamic>::Zero(rows(), cols());
- for (int i=0; i<this->m_diagSize; i++) {
- this->m_singularValues.coeffRef(i) = 0;
- }
- if (this->m_computeFullU) this->m_matrixU = Matrix<int, Dynamic, Dynamic>::Zero(rows(), rows());
- if (this->m_computeFullV) this->m_matrixV = Matrix<int, Dynamic, Dynamic>::Zero(cols(), cols());
- this->m_isInitialized = true;
+
+ m_singularValues.head(m_diagSize).setZero();
+
+ if (m_computeFullU) m_matrixU.setZero(rows(), rows());
+ if (m_computeFullV) m_matrixV.setZero(cols(), cols());
+ m_isInitialized = true;
return *this;
}
@@ -268,59 +232,62 @@ BDCSVD<MatrixType>& BDCSVD<MatrixType>::compute(const MatrixType& matrix, unsign
allocate(matrix.rows(), matrix.cols(), computationOptions);
using std::abs;
- //**** step 1 Bidiagonalization isTranspose = (matrix.cols()>matrix.rows()) ;
+ //**** step 1 Bidiagonalization m_isTranspose = (matrix.cols()>matrix.rows()) ;
MatrixType copy;
- if (isTranspose) copy = matrix.adjoint();
- else copy = matrix;
+ if (m_isTranspose) copy = matrix.adjoint();
+ else copy = matrix;
internal::UpperBidiagonalization<MatrixX> bid(copy);
//**** step 2 Divide
- m_computed.topRows(this->m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
+ m_computed.topRows(m_diagSize) = bid.bidiagonal().toDenseMatrix().transpose();
m_computed.template bottomRows<1>().setZero();
- divide(0, this->m_diagSize - 1, 0, 0, 0);
+ divide(0, m_diagSize - 1, 0, 0, 0);
//**** step 3 copy
- for (int i=0; i<this->m_diagSize; i++) {
+ for (int i=0; i<m_diagSize; i++)
+ {
RealScalar a = abs(m_computed.coeff(i, i));
- this->m_singularValues.coeffRef(i) = a;
- if (a == 0){
- this->m_nonzeroSingularValues = i;
- this->m_singularValues.tail(this->m_diagSize - i - 1).setZero();
+ m_singularValues.coeffRef(i) = a;
+ if (a == 0)
+ {
+ m_nonzeroSingularValues = i;
+ m_singularValues.tail(m_diagSize - i - 1).setZero();
break;
}
- else if (i == this->m_diagSize - 1)
+ else if (i == m_diagSize - 1)
{
- this->m_nonzeroSingularValues = i + 1;
+ m_nonzeroSingularValues = i + 1;
break;
}
}
- copyUV(bid.householderU(), bid.householderV());
- this->m_isInitialized = true;
+ if(m_isTranspose) copyUV(bid.householderV(), bid.householderU(), m_naiveV, m_naiveU);
+ else copyUV(bid.householderU(), bid.householderV(), m_naiveU, m_naiveV);
+ m_isInitialized = true;
return *this;
}// end compute
template<typename MatrixType>
-void BDCSVD<MatrixType>::copyUV(const typename internal::UpperBidiagonalization<MatrixX>::HouseholderUSequenceType& householderU,
- const typename internal::UpperBidiagonalization<MatrixX>::HouseholderVSequenceType& householderV)
+template<typename HouseholderU, typename HouseholderV, typename NaiveU, typename NaiveV>
+void BDCSVD<MatrixType>::copyUV(const HouseholderU &householderU, const HouseholderV &householderV, const NaiveU &naiveU, const NaiveV &naiveV)
{
// Note exchange of U and V: m_matrixU is set from m_naiveV and vice versa
- if (this->computeU()){
- Index Ucols = this->m_computeThinU ? this->m_nonzeroSingularValues : householderU.cols();
- this->m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
- Index blockCols = this->m_computeThinU ? this->m_nonzeroSingularValues : this->m_diagSize;
- this->m_matrixU.block(0, 0, this->m_diagSize, blockCols) =
- m_naiveV.template cast<Scalar>().block(0, 0, this->m_diagSize, blockCols);
- this->m_matrixU = householderU * this->m_matrixU;
+ if (computeU())
+ {
+ Index Ucols = m_computeThinU ? m_nonzeroSingularValues : householderU.cols();
+ m_matrixU = MatrixX::Identity(householderU.cols(), Ucols);
+ Index blockCols = m_computeThinU ? m_nonzeroSingularValues : m_diagSize;
+ m_matrixU.topLeftCorner(m_diagSize, blockCols) = naiveV.template cast<Scalar>().topLeftCorner(m_diagSize, blockCols);
+ m_matrixU = householderU * m_matrixU;
}
- if (this->computeV()){
- Index Vcols = this->m_computeThinV ? this->m_nonzeroSingularValues : householderV.cols();
- this->m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
- Index blockCols = this->m_computeThinV ? this->m_nonzeroSingularValues : this->m_diagSize;
- this->m_matrixV.block(0, 0, this->m_diagSize, blockCols) =
- m_naiveU.template cast<Scalar>().block(0, 0, this->m_diagSize, blockCols);
- this->m_matrixV = householderV * this->m_matrixV;
+ if (computeV())
+ {
+ Index Vcols = m_computeThinV ? m_nonzeroSingularValues : householderV.cols();
+ m_matrixV = MatrixX::Identity(householderV.cols(), Vcols);
+ Index blockCols = m_computeThinV ? m_nonzeroSingularValues : m_diagSize;
+ m_matrixV.topLeftCorner(m_diagSize, blockCols) = naiveU.template cast<Scalar>().topLeftCorner(m_diagSize, blockCols);
+ m_matrixV = householderV * m_matrixV;
}
}
@@ -335,8 +302,7 @@ void BDCSVD<MatrixType>::copyUV(const typename internal::UpperBidiagonalization<
//@param shift : Each time one takes the left submatrix, one must add 1 to the shift. Why? Because! We actually want the last column of the U submatrix
// to become the first column (*coeff) and to shift all the other columns to the right. There are more details on the reference paper.
template<typename MatrixType>
-void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
- Index firstColW, Index shift)
+void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW, Index firstColW, Index shift)
{
// requires nbRows = nbCols + 1;
using std::pow;
@@ -351,21 +317,19 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
MatrixXr l, f;
// We use the other algorithm which is more efficient for small
// matrices.
- if (n < algoswap){
- JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n),
- ComputeFullU | (ComputeFullV * compV)) ;
- if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() << b.matrixU();
+ if (n < m_algoswap)
+ {
+ JacobiSVD<MatrixXr> b(m_computed.block(firstCol, firstCol, n + 1, n), ComputeFullU | (m_compV ? ComputeFullV : 0)) ;
+ if (m_compU)
+ m_naiveU.block(firstCol, firstCol, n + 1, n + 1).real() = b.matrixU();
else
{
- m_naiveU.row(0).segment(firstCol, n + 1).real() << b.matrixU().row(0);
- m_naiveU.row(1).segment(firstCol, n + 1).real() << b.matrixU().row(n);
+ m_naiveU.row(0).segment(firstCol, n + 1).real() = b.matrixU().row(0);
+ m_naiveU.row(1).segment(firstCol, n + 1).real() = b.matrixU().row(n);
}
- if (compV) m_naiveV.block(firstRowW, firstColW, n, n).real() << b.matrixV();
+ if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n).real() = b.matrixV();
m_computed.block(firstCol + shift, firstCol + shift, n + 1, n).setZero();
- for (int i=0; i<n; i++)
- {
- m_computed(firstCol + shift + i, firstCol + shift +i) = b.singularValues().coeffRef(i);
- }
+ m_computed.diagonal().segment(firstCol + shift, n) = b.singularValues().head(n);
return;
}
// We use the divide and conquer algorithm
@@ -376,7 +340,7 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
// right submatrix before the left one.
divide(k + 1 + firstCol, lastCol, k + 1 + firstRowW, k + 1 + firstColW, shift);
divide(firstCol, k - 1 + firstCol, firstRowW, firstColW + 1, shift + 1);
- if (compU)
+ if (m_compU)
{
lambda = m_naiveU(firstCol + k, firstCol + k);
phi = m_naiveU(firstCol + k + 1, lastCol + 1);
@@ -386,9 +350,8 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
lambda = m_naiveU(1, firstCol + k);
phi = m_naiveU(0, lastCol + 1);
}
- r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda))
- + abs(betaK * phi) * abs(betaK * phi));
- if (compU)
+ r0 = sqrt((abs(alphaK * lambda) * abs(alphaK * lambda)) + abs(betaK * phi) * abs(betaK * phi));
+ if (m_compU)
{
l = m_naiveU.row(firstCol + k).segment(firstCol, k);
f = m_naiveU.row(firstCol + k + 1).segment(firstCol + k + 1, n - k - 1);
@@ -398,7 +361,7 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
l = m_naiveU.row(1).segment(firstCol, k);
f = m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1);
}
- if (compV) m_naiveV(firstRowW+k, firstColW) = 1;
+ if (m_compV) m_naiveV(firstRowW+k, firstColW) = 1;
if (r0 == 0)
{
c0 = 1;
@@ -409,21 +372,18 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
c0 = alphaK * lambda / r0;
s0 = betaK * phi / r0;
}
- if (compU)
+ if (m_compU)
{
MatrixXr q1 (m_naiveU.col(firstCol + k).segment(firstCol, k + 1));
// we shiftW Q1 to the right
for (Index i = firstCol + k - 1; i >= firstCol; i--)
- {
- m_naiveU.col(i + 1).segment(firstCol, k + 1) << m_naiveU.col(i).segment(firstCol, k + 1);
- }
+ m_naiveU.col(i + 1).segment(firstCol, k + 1) = m_naiveU.col(i).segment(firstCol, k + 1);
// we shift q1 at the left with a factor c0
- m_naiveU.col(firstCol).segment( firstCol, k + 1) << (q1 * c0);
+ m_naiveU.col(firstCol).segment( firstCol, k + 1) = (q1 * c0);
// last column = q1 * - s0
- m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) << (q1 * ( - s0));
+ m_naiveU.col(lastCol + 1).segment(firstCol, k + 1) = (q1 * ( - s0));
// first column = q2 * s0
- m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) <<
- m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *s0;
+ m_naiveU.col(firstCol).segment(firstCol + k + 1, n - k) = m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) * s0;
// q2 *= c0
m_naiveU.col(lastCol + 1).segment(firstCol + k + 1, n - k) *= c0;
}
@@ -432,9 +392,7 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
RealScalar q1 = (m_naiveU(0, firstCol + k));
// we shift Q1 to the right
for (Index i = firstCol + k - 1; i >= firstCol; i--)
- {
m_naiveU(0, i + 1) = m_naiveU(0, i);
- }
// we shift q1 at the left with a factor c0
m_naiveU(0, firstCol) = (q1 * c0);
// last column = q1 * - s0
@@ -447,8 +405,8 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
m_naiveU.row(0).segment(firstCol + k + 1, n - k - 1).setZero();
}
m_computed(firstCol + shift, firstCol + shift) = r0;
- m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) << alphaK * l.transpose().real();
- m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) << betaK * f.transpose().real();
+ m_computed.col(firstCol + shift).segment(firstCol + shift + 1, k) = alphaK * l.transpose().real();
+ m_computed.col(firstCol + shift).segment(firstCol + shift + k + 1, n - k - 1) = betaK * f.transpose().real();
// Second part: try to deflate singular values in combined matrix
@@ -458,9 +416,9 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
MatrixXr UofSVD, VofSVD;
VectorType singVals;
computeSVDofM(firstCol + shift, n, UofSVD, singVals, VofSVD);
- if (compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1) *= UofSVD;
- else m_naiveU.block(0, firstCol, 2, n + 1) *= UofSVD;
- if (compV) m_naiveV.block(firstRowW, firstColW, n, n) *= VofSVD;
+ if (m_compU) m_naiveU.block(firstCol, firstCol, n + 1, n + 1) *= UofSVD; // FIXME this requires a temporary
+ else m_naiveU.block(0, firstCol, 2, n + 1) *= UofSVD; // FIXME this requires a temporary, and exploit that there are 2 rows at compile time
+ if (m_compV) m_naiveV.block(firstRowW, firstColW, n, n) *= VofSVD; // FIXME this requires a temporary
m_computed.block(firstCol + shift, firstCol + shift, n, n).setZero();
m_computed.block(firstCol + shift, firstCol + shift, n, n).diagonal() = singVals;
}// end divide
@@ -468,7 +426,7 @@ void BDCSVD<MatrixType>::divide (Index firstCol, Index lastCol, Index firstRowW,
// Compute SVD of m_computed.block(firstCol, firstCol, n + 1, n); this block only has non-zeros in
// the first column and on the diagonal and has undergone deflation, so diagonal is in increasing
// order except for possibly the (0,0) entry. The computed SVD is stored U, singVals and V, except
-// that if compV is false, then V is not computed. Singular values are sorted in decreasing order.
+// that if m_compV is false, then V is not computed. Singular values are sorted in decreasing order.
//
// TODO Opportunities for optimization: better root finding algo, better stopping criterion, better
// handling of round-off errors, be consistent in ordering
@@ -483,7 +441,7 @@ void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, Vec
// compute singular values and vectors (in decreasing order)
singVals.resize(n);
U.resize(n+1, n+1);
- if (compV) V.resize(n, n);
+ if (m_compV) V.resize(n, n);
if (col0.hasNaN() || diag.hasNaN()) return;
@@ -495,7 +453,7 @@ void BDCSVD<MatrixType>::computeSVDofM(Index firstCol, Index n, MatrixXr& U, Vec
// Reverse order so that singular values in increased order
singVals.reverseInPlace();
U.leftCols(n) = U.leftCols(n).rowwise().reverse().eval();
- if (compV) V = V.rowwise().reverse().eval();
+ if (m_compV) V = V.rowwise().reverse().eval();
}
template <typename MatrixType>
@@ -504,10 +462,13 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayXr& col0, const ArrayXr& dia
{
using std::abs;
using std::swap;
+ using std::max;
Index n = col0.size();
- for (Index k = 0; k < n; ++k) {
- if (col0(k) == 0) {
+ for (Index k = 0; k < n; ++k)
+ {
+ if (col0(k) == 0)
+ {
// entry is deflated, so singular value is on diagonal
singVals(k) = diag(k);
mus(k) = 0;
@@ -523,27 +484,29 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayXr& col0, const ArrayXr& dia
RealScalar mid = left + (right-left) / 2;
RealScalar fMid = 1 + (col0.square() / ((diag + mid) * (diag - mid))).sum();
- RealScalar shift;
- if (k == n-1 || fMid > 0) shift = left;
- else shift = right;
+ RealScalar shift = (k == n-1 || fMid > 0) ? left : right;
// measure everything relative to shift
ArrayXr diagShifted = diag - shift;
// initial guess
RealScalar muPrev, muCur;
- if (shift == left) {
+ if (shift == left)
+ {
muPrev = (right - left) * 0.1;
if (k == n-1) muCur = right - left;
- else muCur = (right - left) * 0.5;
- } else {
+ else muCur = (right - left) * 0.5;
+ }
+ else
+ {
muPrev = -(right - left) * 0.1;
muCur = -(right - left) * 0.5;
}
RealScalar fPrev = 1 + (col0.square() / ((diagShifted - muPrev) * (diag + shift + muPrev))).sum();
RealScalar fCur = 1 + (col0.square() / ((diagShifted - muCur) * (diag + shift + muCur))).sum();
- if (abs(fPrev) < abs(fCur)) {
+ if (abs(fPrev) < abs(fCur))
+ {
swap(fPrev, fCur);
swap(muPrev, muCur);
}
@@ -551,7 +514,8 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayXr& col0, const ArrayXr& dia
// rational interpolation: fit a function of the form a / mu + b through the two previous
// iterates and use its zero to compute the next iterate
bool useBisection = false;
- while (abs(muCur - muPrev) > 8 * NumTraits<RealScalar>::epsilon() * (std::max)(abs(muCur), abs(muPrev)) && fCur != fPrev && !useBisection) {
+ while (abs(muCur - muPrev) > 8 * NumTraits<RealScalar>::epsilon() * (max)(abs(muCur), abs(muPrev)) && fCur != fPrev && !useBisection)
+ {
++m_numIters;
RealScalar a = (fCur - fPrev) / (1/muCur - 1/muPrev);
@@ -567,13 +531,17 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayXr& col0, const ArrayXr& dia
}
// fall back on bisection method if rational interpolation did not work
- if (useBisection) {
+ if (useBisection)
+ {
RealScalar leftShifted, rightShifted;
- if (shift == left) {
+ if (shift == left)
+ {
leftShifted = 1e-30;
if (k == 0) rightShifted = right - left;
- else rightShifted = (right - left) * 0.6; // theoretically we can take 0.5, but let's be safe
- } else {
+ else rightShifted = (right - left) * 0.6; // theoretically we can take 0.5, but let's be safe
+ }
+ else
+ {
leftShifted = -(right - left) * 0.6;
rightShifted = -1e-30;
}
@@ -582,13 +550,17 @@ void BDCSVD<MatrixType>::computeSingVals(const ArrayXr& col0, const ArrayXr& dia
RealScalar fRight = 1 + (col0.square() / ((diagShifted - rightShifted) * (diag + shift + rightShifted))).sum();
assert(fLeft * fRight < 0);
- while (rightShifted - leftShifted > 2 * NumTraits<RealScalar>::epsilon() * (std::max)(abs(leftShifted), abs(rightShifted))) {
+ while (rightShifted - leftShifted > 2 * NumTraits<RealScalar>::epsilon() * (max)(abs(leftShifted), abs(rightShifted)))
+ {
RealScalar midShifted = (leftShifted + rightShifted) / 2;
RealScalar fMid = 1 + (col0.square() / ((diagShifted - midShifted) * (diag + shift + midShifted))).sum();
- if (fLeft * fMid < 0) {
+ if (fLeft * fMid < 0)
+ {
rightShifted = midShifted;
fRight = fMid;
- } else {
+ }
+ else
+ {
leftShifted = midShifted;
fLeft = fMid;
}
@@ -615,13 +587,15 @@ void BDCSVD<MatrixType>::perturbCol0
(const ArrayXr& col0, const ArrayXr& diag, const VectorType& singVals,
const ArrayXr& shifts, const ArrayXr& mus, ArrayXr& zhat)
{
+ using std::sqrt;
Index n = col0.size();
- for (Index k = 0; k < n; ++k) {
+ for (Index k = 0; k < n; ++k)
+ {
if (col0(k) == 0)
zhat(k) = 0;
- else {
+ else
+ {
// see equation (3.6)
- using std::sqrt;
RealScalar tmp =
sqrt(
(singVals(n-1) + diag(k)) * (mus(n-1) + (shifts(n-1) - diag(k)))
@@ -647,16 +621,21 @@ void BDCSVD<MatrixType>::computeSingVecs
const ArrayXr& shifts, const ArrayXr& mus, MatrixXr& U, MatrixXr& V)
{
Index n = zhat.size();
- for (Index k = 0; k < n; ++k) {
- if (zhat(k) == 0) {
+ for (Index k = 0; k < n; ++k)
+ {
+ if (zhat(k) == 0)
+ {
U.col(k) = VectorType::Unit(n+1, k);
- if (compV) V.col(k) = VectorType::Unit(n, k);
- } else {
+ if (m_compV) V.col(k) = VectorType::Unit(n, k);
+ }
+ else
+ {
U.col(k).head(n) = zhat / (((diag - shifts(k)) - mus(k)) * (diag + singVals[k]));
U(n,k) = 0;
U.col(k).normalize();
- if (compV) {
+ if (m_compV)
+ {
V.col(k).tail(n-1) = (diag * zhat / (((diag - shifts(k)) - mus(k)) * (diag + singVals[k]))).tail(n-1);
V(0,k) = -1;
V.col(k).normalize();
@@ -671,15 +650,17 @@ void BDCSVD<MatrixType>::computeSingVecs
// i >= 1, di almost null and zi non null.
// We use a rotation to zero out zi applied to the left of M
template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size){
+void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index size)
+{
using std::abs;
using std::sqrt;
using std::pow;
RealScalar c = m_computed(firstCol + shift, firstCol + shift);
RealScalar s = m_computed(i, firstCol + shift);
RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
- if (r == 0){
- m_computed(i, i)=0;
+ if (r == 0)
+ {
+ m_computed(i, i) = 0;
return;
}
c/=r;
@@ -687,7 +668,8 @@ void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index
m_computed(firstCol + shift, firstCol + shift) = r;
m_computed(i, firstCol + shift) = 0;
m_computed(i, i) = 0;
- if (compU){
+ if (m_compU)
+ {
m_naiveU.col(firstCol).segment(firstCol,size) =
c * m_naiveU.col(firstCol).segment(firstCol, size) -
s * m_naiveU.col(i).segment(firstCol, size) ;
@@ -703,7 +685,8 @@ void BDCSVD<MatrixType>::deflation43(Index firstCol, Index shift, Index i, Index
// i,j >= 1, i != j and |di - dj| < epsilon * norm2(M)
// We apply two rotations to have zj = 0;
template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size){
+void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index firstRowW, Index firstColW, Index i, Index j, Index size)
+{
using std::abs;
using std::sqrt;
using std::conj;
@@ -711,7 +694,8 @@ void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index fi
RealScalar c = m_computed(firstColm, firstColm + j - 1);
RealScalar s = m_computed(firstColm, firstColm + i - 1);
RealScalar r = sqrt(pow(abs(c), 2) + pow(abs(s), 2));
- if (r==0){
+ if (r==0)
+ {
m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
return;
}
@@ -720,7 +704,8 @@ void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index fi
m_computed(firstColm + i, firstColm) = r;
m_computed(firstColm + i, firstColm + i) = m_computed(firstColm + j, firstColm + j);
m_computed(firstColm + j, firstColm) = 0;
- if (compU){
+ if (m_compU)
+ {
m_naiveU.col(firstColu + i).segment(firstColu, size) =
c * m_naiveU.col(firstColu + i).segment(firstColu, size) -
s * m_naiveU.col(firstColu + j).segment(firstColu, size) ;
@@ -729,7 +714,8 @@ void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index fi
(c + s*s/c) * m_naiveU.col(firstColu + j).segment(firstColu, size) +
(s/c) * m_naiveU.col(firstColu + i).segment(firstColu, size);
}
- if (compV){
+ if (m_compV)
+ {
m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) =
c * m_naiveV.col(firstColW + i).segment(firstRowW, size - 1) +
s * m_naiveV.col(firstColW + j).segment(firstRowW, size - 1) ;
@@ -743,72 +729,56 @@ void BDCSVD<MatrixType>::deflation44(Index firstColu , Index firstColm, Index fi
// acts on block from (firstCol+shift, firstCol+shift) to (lastCol+shift, lastCol+shift) [inclusive]
template <typename MatrixType>
-void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift){
+void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index firstRowW, Index firstColW, Index shift)
+{
//condition 4.1
using std::sqrt;
+ using std::abs;
const Index length = lastCol + 1 - firstCol;
RealScalar norm1 = m_computed.block(firstCol+shift, firstCol+shift, length, 1).squaredNorm();
RealScalar norm2 = m_computed.block(firstCol+shift, firstCol+shift, length, length).diagonal().squaredNorm();
- RealScalar EPS = 10 * NumTraits<RealScalar>::epsilon() * sqrt(norm1 + norm2);
- if (m_computed(firstCol + shift, firstCol + shift) < EPS){
- m_computed(firstCol + shift, firstCol + shift) = EPS;
- }
+ RealScalar epsilon = 10 * NumTraits<RealScalar>::epsilon() * sqrt(norm1 + norm2);
+ if (m_computed(firstCol + shift, firstCol + shift) < epsilon)
+ m_computed(firstCol + shift, firstCol + shift) = epsilon;
//condition 4.2
- for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++){
- if (std::abs(m_computed(i, firstCol + shift)) < EPS){
+ for (Index i=firstCol + shift + 1;i<=lastCol + shift;i++)
+ if (abs(m_computed(i, firstCol + shift)) < epsilon)
m_computed(i, firstCol + shift) = 0;
- }
- }
//condition 4.3
- for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++){
- if (m_computed(i, i) < EPS){
+ for (Index i=firstCol + shift + 1;i<=lastCol + shift; i++)
+ if (m_computed(i, i) < epsilon)
deflation43(firstCol, shift, i, length);
- }
- }
//condition 4.4
Index i=firstCol + shift + 1, j=firstCol + shift + k + 1;
//we stock the final place of each line
- Index *permutation = new Index[length];
+ Index *permutation = new Index[length]; // FIXME avoid repeated dynamic memory allocation
- for (Index p =1; p < length; p++) {
- if (i> firstCol + shift + k){
- permutation[p] = j;
- j++;
- } else if (j> lastCol + shift)
- {
- permutation[p] = i;
- i++;
- }
- else
- {
- if (m_computed(i, i) < m_computed(j, j)){
- permutation[p] = j;
- j++;
- }
- else
- {
- permutation[p] = i;
- i++;
- }
- }
+ for (Index p =1; p < length; p++)
+ {
+ if (i> firstCol + shift + k) permutation[p] = j++;
+ else if (j> lastCol + shift) permutation[p] = i++;
+ else if (m_computed(i, i) < m_computed(j, j)) permutation[p] = j++;
+ else permutation[p] = i++;
}
//we do the permutation
RealScalar aux;
//we stock the current index of each col
//and the column of each index
- Index *realInd = new Index[length];
- Index *realCol = new Index[length];
- for (int pos = 0; pos< length; pos++){
+ Index *realInd = new Index[length]; // FIXME avoid repeated dynamic memory allocation
+ Index *realCol = new Index[length]; // FIXME avoid repeated dynamic memory allocation
+ for (int pos = 0; pos< length; pos++)
+ {
realCol[pos] = pos + firstCol + shift;
realInd[pos] = pos;
}
const Index Zero = firstCol + shift;
VectorType temp;
- for (int i = 1; i < length - 1; i++){
+ for (int i = 1; i < length - 1; i++)
+ {
const Index I = i + Zero;
const Index realI = realInd[i];
const Index j = permutation[length - i] - Zero;
@@ -825,25 +795,25 @@ void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index
m_computed(J, Zero) = aux;
// change columns
- if (compU) {
+ if (m_compU)
+ {
temp = m_naiveU.col(I - shift).segment(firstCol, length + 1);
- m_naiveU.col(I - shift).segment(firstCol, length + 1) <<
- m_naiveU.col(J - shift).segment(firstCol, length + 1);
- m_naiveU.col(J - shift).segment(firstCol, length + 1) << temp;
+ m_naiveU.col(I - shift).segment(firstCol, length + 1) = m_naiveU.col(J - shift).segment(firstCol, length + 1);
+ m_naiveU.col(J - shift).segment(firstCol, length + 1) = temp;
}
else
{
temp = m_naiveU.col(I - shift).segment(0, 2);
- m_naiveU.col(I - shift).segment(0, 2) <<
- m_naiveU.col(J - shift).segment(0, 2);
- m_naiveU.col(J - shift).segment(0, 2) << temp;
+ m_naiveU.col(I - shift).template head<2>() = m_naiveU.col(J - shift).segment(0, 2);
+ m_naiveU.col(J - shift).template head<2>() = temp;
}
- if (compV) {
+ if (m_compV)
+ {
const Index CWI = I + firstColW - Zero;
const Index CWJ = J + firstColW - Zero;
temp = m_naiveV.col(CWI).segment(firstRowW, length);
- m_naiveV.col(CWI).segment(firstRowW, length) << m_naiveV.col(CWJ).segment(firstRowW, length);
- m_naiveV.col(CWJ).segment(firstRowW, length) << temp;
+ m_naiveV.col(CWI).segment(firstRowW, length) = m_naiveV.col(CWJ).segment(firstRowW, length);
+ m_naiveV.col(CWJ).segment(firstRowW, length) = temp;
}
//update real pos
@@ -852,20 +822,13 @@ void BDCSVD<MatrixType>::deflation(Index firstCol, Index lastCol, Index k, Index
realInd[J - Zero] = realI;
realInd[I - Zero] = j;
}
- for (Index i = firstCol + shift + 1; i<lastCol + shift;i++){
- if ((m_computed(i + 1, i + 1) - m_computed(i, i)) < EPS){
- deflation44(firstCol ,
- firstCol + shift,
- firstRowW,
- firstColW,
- i - Zero,
- i + 1 - Zero,
- length);
- }
- }
- delete [] permutation;
- delete [] realInd;
- delete [] realCol;
+ for (Index i = firstCol + shift + 1; i<lastCol + shift;i++)
+ if ((m_computed(i + 1, i + 1) - m_computed(i, i)) < epsilon)
+ deflation44(firstCol, firstCol + shift, firstRowW, firstColW, i - Zero, i + 1 - Zero, length);
+
+ delete[] permutation;
+ delete[] realInd;
+ delete[] realCol;
}//end deflation