diff options
author | Chen-Pang He <jdh8@ms63.hinet.net> | 2012-10-15 00:21:12 +0800 |
---|---|---|
committer | Chen-Pang He <jdh8@ms63.hinet.net> | 2012-10-15 00:21:12 +0800 |
commit | c4b83461d97a2520fecc00f647ca2ae9c4bf04d2 (patch) | |
tree | e146e77321041b851ae70acd53da527d710645f0 /unsupported | |
parent | f34db6578a36438c6d229a9be25378cfe6fab38b (diff) |
Make kroneckerProduct take two arguments and return an expression, which is more straight-forward.
Diffstat (limited to 'unsupported')
-rw-r--r-- | unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h | 258 | ||||
-rw-r--r-- | unsupported/test/kronecker_product.cpp | 61 |
2 files changed, 201 insertions, 118 deletions
diff --git a/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h b/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h index 14502f03f..a7cb5215b 100644 --- a/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h +++ b/unsupported/Eigen/src/KroneckerProduct/KroneckerTensorProduct.h @@ -3,138 +3,230 @@ // // Copyright (C) 2011 Kolja Brix <brix@igpm.rwth-aachen.de> // Copyright (C) 2011 Andreas Platen <andiplaten@gmx.de> +// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. - #ifndef KRONECKER_TENSOR_PRODUCT_H #define KRONECKER_TENSOR_PRODUCT_H +#define EIGEN_SIZE_PRODUCT(a,b) (!((int)a && (int)b) ? 0 \ + : ((int)a == Dynamic || (int)b == Dynamic) ? Dynamic \ + : (int)a * (int)b) namespace Eigen { namespace internal { -/*! - * Kronecker tensor product helper function for dense matrices - * - * \param A Dense matrix A - * \param B Dense matrix B - * \param AB_ Kronecker tensor product of A and B - */ -template<typename Derived_A, typename Derived_B, typename Derived_AB> -void kroneckerProduct_full(const Derived_A& A, const Derived_B& B, Derived_AB & AB) +template<typename _Lhs, typename _Rhs> +struct traits<KroneckerProduct<_Lhs,_Rhs> > { - const unsigned int Ar = A.rows(), - Ac = A.cols(), - Br = B.rows(), - Bc = B.cols(); - AB.resize(Ar*Br,Ac*Bc); - - for (unsigned int i=0; i<Ar; ++i) - for (unsigned int j=0; j<Ac; ++j) - AB.block(i*Br,j*Bc,Br,Bc) = A(i,j)*B; -} + typedef MatrixXpr XprKind; + typedef typename remove_all<_Lhs>::type Lhs; + typedef typename remove_all<_Rhs>::type Rhs; + typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar; + typedef Dense StorageKind; + typedef typename promote_index_type<typename Lhs::Index, typename Rhs::Index>::type Index; + + enum { + RowsAtCompileTime = EIGEN_SIZE_PRODUCT(traits<Lhs>::RowsAtCompileTime, traits<Rhs>::RowsAtCompileTime), + ColsAtCompileTime = EIGEN_SIZE_PRODUCT(traits<Lhs>::ColsAtCompileTime, traits<Rhs>::ColsAtCompileTime), + MaxRowsAtCompileTime = EIGEN_SIZE_PRODUCT(traits<Lhs>::MaxRowsAtCompileTime, traits<Rhs>::MaxRowsAtCompileTime), + MaxColsAtCompileTime = EIGEN_SIZE_PRODUCT(traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime), + Flags = (MaxRowsAtCompileTime==1 ? RowMajorBit : 0) + | EvalBeforeNestingBit | EvalBeforeAssigningBit | NestByRefBit, + CoeffReadCost = Lhs::CoeffReadCost + Rhs::CoeffReadCost + NumTraits<Scalar>::MulCost + }; +}; + +template<typename _Lhs, typename _Rhs> +struct traits<KroneckerProductSparse<_Lhs,_Rhs> > +{ + typedef MatrixXpr XprKind; + typedef typename remove_all<_Lhs>::type Lhs; + typedef typename remove_all<_Rhs>::type Rhs; + typedef typename scalar_product_traits<typename Lhs::Scalar, typename Rhs::Scalar>::ReturnType Scalar; + typedef Sparse StorageKind; + typedef typename promote_index_type<typename Lhs::Index, typename Rhs::Index>::type Index; + + enum { + LhsFlags = Lhs::Flags, + RhsFlags = Rhs::Flags, + + RowsAtCompileTime = EIGEN_SIZE_PRODUCT(traits<Lhs>::RowsAtCompileTime, traits<Rhs>::RowsAtCompileTime), + ColsAtCompileTime = EIGEN_SIZE_PRODUCT(traits<Lhs>::ColsAtCompileTime, traits<Rhs>::ColsAtCompileTime), + MaxRowsAtCompileTime = EIGEN_SIZE_PRODUCT(traits<Lhs>::MaxRowsAtCompileTime, traits<Rhs>::MaxRowsAtCompileTime), + MaxColsAtCompileTime = EIGEN_SIZE_PRODUCT(traits<Lhs>::MaxColsAtCompileTime, traits<Rhs>::MaxColsAtCompileTime), + + EvalToRowMajor = (LhsFlags & RhsFlags & RowMajorBit), + RemovedBits = ~(EvalToRowMajor ? 0 : RowMajorBit), + + Flags = ((LhsFlags | RhsFlags) & HereditaryBits & RemovedBits) + | EvalBeforeNestingBit | EvalBeforeAssigningBit, + CoeffReadCost = Dynamic + }; +}; +} // end namespace internal /*! - * Kronecker tensor product helper function for matrices, where at least one is sparse + * \brief Kronecker tensor product helper class for dense matrices * - * \param A Matrix A - * \param B Matrix B - * \param AB_ Kronecker tensor product of A and B + * This class is the return value of kroneckerProduct(MatrixBase, + * MatrixBase). Use the function rather than construct this class + * directly to avoid specifying template prarameters. + * + * \tparam Lhs Type of the left-hand side, a matrix expression. + * \tparam Rhs Type of the rignt-hand side, a matrix expression. */ -template<typename Derived_A, typename Derived_B, typename Derived_AB> -void kroneckerProduct_sparse(const Derived_A &A, const Derived_B &B, Derived_AB &AB) +template<typename Lhs, typename Rhs> +class KroneckerProduct : public MatrixBase<KroneckerProduct<Lhs,Rhs> > +{ + public: + typedef MatrixBase<KroneckerProduct> Base; + EIGEN_DENSE_PUBLIC_INTERFACE(KroneckerProduct) + + /*! \brief Constructor. */ + KroneckerProduct(const Lhs& A, const Rhs& B) + : m_A(A), m_B(B) + {} + + /*! \brief Evaluate the Kronecker tensor product. */ + template<typename Dest> void evalTo(Dest& dst) const; + + inline Index rows() const { return m_A.rows() * m_B.rows(); } + inline Index cols() const { return m_A.cols() * m_B.cols(); } + + typename Base::CoeffReturnType coeff(Index row, Index col) const + { + return m_A.coeff(row / m_A.cols(), col / m_A.rows()) * + m_B.coeff(row % m_A.cols(), col % m_A.rows()); + } + + typename Base::CoeffReturnType coeff(Index i) const + { + EIGEN_STATIC_ASSERT_VECTOR_ONLY(KroneckerProduct); + return m_A.coeff(i / m_A.size()) * m_B.coeff(i % m_A.size()); + } + +#ifndef EIGEN_PARSED_BY_DOXYGEN + struct Unusable {}; + Unusable& coeffRef(Index) { return *reinterpret_cast<Unusable*>(this); } + Unusable& coeffRef(Index,Index) { return *reinterpret_cast<Unusable*>(this); } +#endif + + private: + typename Lhs::Nested m_A; + typename Rhs::Nested m_B; +}; + +template<typename Lhs, typename Rhs> +class KroneckerProductSparse : public SparseMatrixBase<KroneckerProductSparse<Lhs,Rhs> > { - const unsigned int Ar = A.rows(), - Ac = A.cols(), - Br = B.rows(), - Bc = B.cols(); - AB.resize(Ar*Br,Ac*Bc); - AB.resizeNonZeros(0); - AB.reserve(A.nonZeros()*B.nonZeros()); - - for (int kA=0; kA<A.outerSize(); ++kA) + public: + typedef SparseMatrixBase<KroneckerProductSparse> Base; + EIGEN_DENSE_PUBLIC_INTERFACE(KroneckerProductSparse) + + /*! \brief Constructor. */ + KroneckerProductSparse(const Lhs& A, const Rhs& B) + : m_A(A), m_B(B) + {} + + /*! \brief Evaluate the Kronecker tensor product. */ + template<typename Dest> void evalTo(Dest& dst) const; + + inline Index rows() const { return m_A.rows() * m_B.rows(); } + inline Index cols() const { return m_A.cols() * m_B.cols(); } + + private: + typename Lhs::Nested m_A; + typename Rhs::Nested m_B; +}; + +template<typename Lhs, typename Rhs> +template<typename Dest> +void KroneckerProduct<Lhs,Rhs>::evalTo(Dest& dst) const +{ + const int BlockRows = Rhs::RowsAtCompileTime, + BlockCols = Rhs::ColsAtCompileTime; + const Index Br = m_B.rows(), + Bc = m_B.cols(); + for (Index i=0; i < m_A.rows(); ++i) + for (Index j=0; j < m_A.cols(); ++j) + Block<Dest,BlockRows,BlockCols>(dst,i*Br,j*Bc,Br,Bc) = m_A.coeff(i,j) * m_B; +} + +template<typename Lhs, typename Rhs> +template<typename Dest> +void KroneckerProductSparse<Lhs,Rhs>::evalTo(Dest& dst) const +{ + const Index Br = m_B.rows(), + Bc = m_B.cols(); + dst.resize(rows(),cols()); + dst.resizeNonZeros(0); + dst.reserve(m_A.nonZeros() * m_B.nonZeros()); + + for (Index kA=0; kA < m_A.outerSize(); ++kA) { - for (int kB=0; kB<B.outerSize(); ++kB) + for (Index kB=0; kB < m_B.outerSize(); ++kB) { - for (typename Derived_A::InnerIterator itA(A,kA); itA; ++itA) + for (typename Lhs::InnerIterator itA(m_A,kA); itA; ++itA) { - for (typename Derived_B::InnerIterator itB(B,kB); itB; ++itB) + for (typename Rhs::InnerIterator itB(m_B,kB); itB; ++itB) { - const unsigned int iA = itA.row(), - jA = itA.col(), - iB = itB.row(), - jB = itB.col(), - i = iA*Br + iB, - j = jA*Bc + jB; - AB.insert(i,j) = itA.value() * itB.value(); + const Index i = itA.row() * Br + itB.row(), + j = itA.col() * Bc + itB.col(); + dst.insert(i,j) = itA.value() * itB.value(); } } } } } -} // end namespace internal - /*! * Computes Kronecker tensor product of two dense matrices * - * Remark: this function uses the const cast hack and has been - * implemented to make the function call possible, where the - * output matrix is a submatrix, e.g. - * kroneckerProduct(A,B,AB.block(2,5,6,6)); - * * \param a Dense matrix a * \param b Dense matrix b - * \param c Kronecker tensor product of a and b + * \return Kronecker tensor product of a and b */ -template<typename A,typename B,typename C> -void kroneckerProduct(const MatrixBase<A>& a, const MatrixBase<B>& b, const MatrixBase<C>& c) +template<typename A, typename B> +KroneckerProduct<A,B> kroneckerProduct(const MatrixBase<A>& a, const MatrixBase<B>& b) { - internal::kroneckerProduct_full(a.derived(), b.derived(), c.const_cast_derived()); + return KroneckerProduct<A, B>(a.derived(), b.derived()); } /*! - * Computes Kronecker tensor product of a dense and a sparse matrix + * Computes Kronecker tensor product of two matrices, at least one of + * which is sparse. * - * \param a Dense matrix a - * \param b Sparse matrix b - * \param c Kronecker tensor product of a and b + * \param a Dense/sparse matrix a + * \param b Dense/sparse matrix b + * \return Kronecker tensor product of a and b, stored in a sparse + * matrix */ -template<typename A,typename B,typename C> -void kroneckerProduct(const MatrixBase<A>& a, const SparseMatrixBase<B>& b, SparseMatrixBase<C>& c) +template<typename A, typename B> +KroneckerProductSparse<A,B> kroneckerProduct(const EigenBase<A>& a, const EigenBase<B>& b) { - internal::kroneckerProduct_sparse(a.derived(), b.derived(), c.derived()); + return KroneckerProductSparse<A,B>(a.derived(), b.derived()); } -/*! - * Computes Kronecker tensor product of a sparse and a dense matrix - * - * \param a Sparse matrix a - * \param b Dense matrix b - * \param c Kronecker tensor product of a and b - */ -template<typename A,typename B,typename C> -void kroneckerProduct(const SparseMatrixBase<A>& a, const MatrixBase<B>& b, SparseMatrixBase<C>& c) +template<typename Derived> +template<typename Lhs, typename Rhs> +Derived& MatrixBase<Derived>::lazyAssign(const KroneckerProduct<Lhs,Rhs>& other) { - internal::kroneckerProduct_sparse(a.derived(), b.derived(), c.derived()); + other.evalTo(derived()); + return derived(); } -/*! - * Computes Kronecker tensor product of two sparse matrices - * - * \param a Sparse matrix a - * \param b Sparse matrix b - * \param c Kronecker tensor product of a and b - */ -template<typename A,typename B,typename C> -void kroneckerProduct(const SparseMatrixBase<A>& a, const SparseMatrixBase<B>& b, SparseMatrixBase<C>& c) +template<typename Derived> +template<typename Lhs, typename Rhs> +Derived& SparseMatrixBase<Derived>::operator=(const KroneckerProductSparse<Lhs,Rhs>& product) { - internal::kroneckerProduct_sparse(a.derived(), b.derived(), c.derived()); + product.evalTo(derived()); + return derived(); } } // end namespace Eigen diff --git a/unsupported/test/kronecker_product.cpp b/unsupported/test/kronecker_product.cpp index a60bd3022..68fde8aa5 100644 --- a/unsupported/test/kronecker_product.cpp +++ b/unsupported/test/kronecker_product.cpp @@ -3,6 +3,7 @@ // // Copyright (C) 2011 Kolja Brix <brix@igpm.rwth-aachen.de> // Copyright (C) 2011 Andreas Platen <andiplaten@gmx.de> +// Copyright (C) 2012 Chen-Pang He <jdh8@ms63.hinet.net> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed @@ -89,64 +90,55 @@ void test_kronecker_product() MatrixXd DM_b(3,2); SparseMatrix<double> SM_a(2,3); SparseMatrix<double> SM_b(3,2); - SM_a.insert(0,0) = DM_a(0,0) = -0.4461540300782201; - SM_a.insert(0,1) = DM_a(0,1) = -0.8057364375283049; - SM_a.insert(0,2) = DM_a(0,2) = 0.3896572459516341; - SM_a.insert(1,0) = DM_a(1,0) = -0.9076572187376921; - SM_a.insert(1,1) = DM_a(1,1) = 0.6469156566545853; - SM_a.insert(1,2) = DM_a(1,2) = -0.3658010398782789; - SM_b.insert(0,0) = DM_b(0,0) = 0.9004440976767099; - SM_b.insert(0,1) = DM_b(0,1) = -0.2368830858139832; - SM_b.insert(1,0) = DM_b(1,0) = -0.9311078389941825; - SM_b.insert(1,1) = DM_b(1,1) = 0.5310335762980047; - SM_b.insert(2,0) = DM_b(2,0) = -0.1225112806872035; - SM_b.insert(2,1) = DM_b(2,1) = 0.5903998022741264; + SM_a.insert(0,0) = DM_a.coeffRef(0,0) = -0.4461540300782201; + SM_a.insert(0,1) = DM_a.coeffRef(0,1) = -0.8057364375283049; + SM_a.insert(0,2) = DM_a.coeffRef(0,2) = 0.3896572459516341; + SM_a.insert(1,0) = DM_a.coeffRef(1,0) = -0.9076572187376921; + SM_a.insert(1,1) = DM_a.coeffRef(1,1) = 0.6469156566545853; + SM_a.insert(1,2) = DM_a.coeffRef(1,2) = -0.3658010398782789; + SM_b.insert(0,0) = DM_b.coeffRef(0,0) = 0.9004440976767099; + SM_b.insert(0,1) = DM_b.coeffRef(0,1) = -0.2368830858139832; + SM_b.insert(1,0) = DM_b.coeffRef(1,0) = -0.9311078389941825; + SM_b.insert(1,1) = DM_b.coeffRef(1,1) = 0.5310335762980047; + SM_b.insert(2,0) = DM_b.coeffRef(2,0) = -0.1225112806872035; + SM_b.insert(2,1) = DM_b.coeffRef(2,1) = 0.5903998022741264; SparseMatrix<double,RowMajor> SM_row_a(SM_a), SM_row_b(SM_b); // test kroneckerProduct(DM_block,DM,DM_fixedSize) - Matrix<double, 6, 6> DM_fix_ab; - DM_fix_ab(0,0)=37.0; - kroneckerProduct(DM_a.block(0,0,2,3),DM_b,DM_fix_ab); + Matrix<double, 6, 6> DM_fix_ab = kroneckerProduct(DM_a.topLeftCorner<2,3>(),DM_b); CALL_SUBTEST(check_kronecker_product(DM_fix_ab)); // test kroneckerProduct(DM,DM,DM_block) MatrixXd DM_block_ab(10,15); - DM_block_ab(0,0)=37.0; - kroneckerProduct(DM_a,DM_b,DM_block_ab.block(2,5,6,6)); - CALL_SUBTEST(check_kronecker_product(DM_block_ab.block(2,5,6,6))); + DM_block_ab.block<6,6>(2,5) = kroneckerProduct(DM_a,DM_b); + CALL_SUBTEST(check_kronecker_product(DM_block_ab.block<6,6>(2,5))); // test kroneckerProduct(DM,DM,DM) - MatrixXd DM_ab(1,5); - DM_ab(0,0)=37.0; - kroneckerProduct(DM_a,DM_b,DM_ab); + MatrixXd DM_ab = kroneckerProduct(DM_a,DM_b); CALL_SUBTEST(check_kronecker_product(DM_ab)); // test kroneckerProduct(SM,DM,SM) - SparseMatrix<double> SM_ab(1,20); - SM_ab.insert(0,0)=37.0; - kroneckerProduct(SM_a,DM_b,SM_ab); + SparseMatrix<double> SM_ab = kroneckerProduct(SM_a,DM_b); CALL_SUBTEST(check_kronecker_product(SM_ab)); - SparseMatrix<double,RowMajor> SM_ab2(10,3); - SM_ab2.insert(0,0)=37.0; - kroneckerProduct(SM_a,DM_b,SM_ab2); + SparseMatrix<double,RowMajor> SM_ab2 = kroneckerProduct(SM_a,DM_b); CALL_SUBTEST(check_kronecker_product(SM_ab2)); // test kroneckerProduct(DM,SM,SM) SM_ab.insert(0,0)=37.0; - kroneckerProduct(DM_a,SM_b,SM_ab); + SM_ab = kroneckerProduct(DM_a,SM_b); CALL_SUBTEST(check_kronecker_product(SM_ab)); SM_ab2.insert(0,0)=37.0; - kroneckerProduct(DM_a,SM_b,SM_ab2); + SM_ab2 = kroneckerProduct(DM_a,SM_b); CALL_SUBTEST(check_kronecker_product(SM_ab2)); // test kroneckerProduct(SM,SM,SM) SM_ab.resize(2,33); SM_ab.insert(0,0)=37.0; - kroneckerProduct(SM_a,SM_b,SM_ab); + SM_ab = kroneckerProduct(SM_a,SM_b); CALL_SUBTEST(check_kronecker_product(SM_ab)); SM_ab2.resize(5,11); SM_ab2.insert(0,0)=37.0; - kroneckerProduct(SM_a,SM_b,SM_ab2); + SM_ab2 = kroneckerProduct(SM_a,SM_b); CALL_SUBTEST(check_kronecker_product(SM_ab2)); // test kroneckerProduct(SM,SM,SM) with sparse pattern @@ -163,17 +155,16 @@ void test_kronecker_product() SM_b.finalize(); SM_ab.resize(1,1); SM_ab.insert(0,0)=37.0; - kroneckerProduct(SM_a,SM_b,SM_ab); + SM_ab = kroneckerProduct(SM_a,SM_b); CALL_SUBTEST(check_sparse_kronecker_product(SM_ab)); // test dimension of result of kroneckerProduct(DM,DM,DM) MatrixXd DM_a2(2,1); MatrixXd DM_b2(5,4); - MatrixXd DM_ab2; - kroneckerProduct(DM_a2,DM_b2,DM_ab2); + MatrixXd DM_ab2 = kroneckerProduct(DM_a2,DM_b2); CALL_SUBTEST(check_dimension(DM_ab2,2*5,1*4)); DM_a2.resize(10,9); DM_b2.resize(4,8); - kroneckerProduct(DM_a2,DM_b2,DM_ab2); + DM_ab2 = kroneckerProduct(DM_a2,DM_b2); CALL_SUBTEST(check_dimension(DM_ab2,10*4,9*8)); } |