aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported
diff options
context:
space:
mode:
authorGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-11-09 09:08:03 -0500
committerGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-11-09 09:08:03 -0500
commit92749eed11d000300cfa54654f1043cd52399ed8 (patch)
treeba227522582b2f9f4280ed1404e74c654e21ccb3 /unsupported
parent4b366b07be4e409239c61158a23d93e8ebf3811b (diff)
parent670651e2e0932c5edfe2a2da4b9f3c42af3b7dec (diff)
* merge
* remove a ctor in QuaternionBase as it gives a strange error with GCC 4.4.2.
Diffstat (limited to 'unsupported')
-rw-r--r--unsupported/Eigen/Complex75
-rw-r--r--unsupported/Eigen/FFT115
-rw-r--r--unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h2
-rw-r--r--unsupported/Eigen/src/AutoDiff/AutoDiffVector.h128
-rw-r--r--unsupported/Eigen/src/FFT/ei_fftw_impl.h17
-rw-r--r--unsupported/Eigen/src/FFT/ei_kissfft_impl.h702
-rw-r--r--unsupported/test/CMakeLists.txt1
-rw-r--r--unsupported/test/Complex.cpp77
-rw-r--r--unsupported/test/FFT.cpp35
9 files changed, 695 insertions, 457 deletions
diff --git a/unsupported/Eigen/Complex b/unsupported/Eigen/Complex
index e1c41ab38..04228c95a 100644
--- a/unsupported/Eigen/Complex
+++ b/unsupported/Eigen/Complex
@@ -33,14 +33,26 @@
namespace Eigen {
-template <typename _NativePtr,typename _PunnedPtr>
+template <typename _NativeData,typename _PunnedData>
struct castable_pointer
{
- castable_pointer(_NativePtr ptr) : _ptr(ptr) {}
- operator _NativePtr () {return _ptr;}
- operator _PunnedPtr () {return reinterpret_cast<_PunnedPtr>(_ptr);}
+ castable_pointer(_NativeData * ptr) : _ptr(ptr) { }
+ operator _NativeData * () {return _ptr;}
+ operator _PunnedData * () {return reinterpret_cast<_PunnedData*>(_ptr);}
+ operator const _NativeData * () const {return _ptr;}
+ operator const _PunnedData * () const {return reinterpret_cast<_PunnedData*>(_ptr);}
private:
- _NativePtr _ptr;
+ _NativeData * _ptr;
+};
+
+template <typename _NativeData,typename _PunnedData>
+struct const_castable_pointer
+{
+ const_castable_pointer(_NativeData * ptr) : _ptr(ptr) { }
+ operator const _NativeData * () const {return _ptr;}
+ operator const _PunnedData * () const {return reinterpret_cast<_PunnedData*>(_ptr);}
+ private:
+ _NativeData * _ptr;
};
template <typename T>
@@ -50,7 +62,8 @@ struct Complex
typedef T value_type;
// constructors
- Complex(const T& re = T(), const T& im = T()) : _re(re),_im(im) { }
+ Complex() {}
+ Complex(const T& re, const T& im = T()) : _re(re),_im(im) { }
Complex(const Complex&other ): _re(other.real()) ,_im(other.imag()) {}
template<class X>
@@ -58,40 +71,63 @@ struct Complex
template<class X>
Complex(const std::complex<X>&other): _re(other.real()) ,_im(other.imag()) {}
-
// allow binary access to the object as a std::complex
- typedef castable_pointer< Complex<T>*, StandardComplex* > pointer_type;
- typedef castable_pointer< const Complex<T>*, const StandardComplex* > const_pointer_type;
+ typedef castable_pointer< Complex<T>, StandardComplex > pointer_type;
+ typedef const_castable_pointer< Complex<T>, StandardComplex > const_pointer_type;
+
+ inline
pointer_type operator & () {return pointer_type(this);}
+
+ inline
const_pointer_type operator & () const {return const_pointer_type(this);}
+ inline
operator StandardComplex () const {return std_type();}
+ inline
operator StandardComplex & () {return std_type();}
- StandardComplex std_type() const {return StandardComplex(real(),imag());}
+ inline
+ const StandardComplex & std_type() const {return *reinterpret_cast<const StandardComplex*>(this);}
+
+ inline
StandardComplex & std_type() {return *reinterpret_cast<StandardComplex*>(this);}
// every sort of accessor and mutator that has ever been in fashion.
// For a brief history, search for "std::complex over-encapsulated"
// http://www.open-std.org/jtc1/sc22/wg21/docs/lwg-defects.html#387
+ inline
const T & real() const {return _re;}
+ inline
const T & imag() const {return _im;}
+ inline
T & real() {return _re;}
+ inline
T & imag() {return _im;}
+ inline
T & real(const T & x) {return _re=x;}
+ inline
T & imag(const T & x) {return _im=x;}
+ inline
void set_real(const T & x) {_re = x;}
+ inline
void set_imag(const T & x) {_im = x;}
// *** complex member functions: ***
+ inline
Complex<T>& operator= (const T& val) { _re=val;_im=0;return *this; }
+ inline
Complex<T>& operator+= (const T& val) {_re+=val;return *this;}
+ inline
Complex<T>& operator-= (const T& val) {_re-=val;return *this;}
+ inline
Complex<T>& operator*= (const T& val) {_re*=val;_im*=val;return *this; }
+ inline
Complex<T>& operator/= (const T& val) {_re/=val;_im/=val;return *this; }
+ inline
Complex& operator= (const Complex& rhs) {_re=rhs._re;_im=rhs._im;return *this;}
+ inline
Complex& operator= (const StandardComplex& rhs) {_re=rhs.real();_im=rhs.imag();return *this;}
template<class X> Complex<T>& operator= (const Complex<X>& rhs) { _re=rhs._re;_im=rhs._im;return *this;}
@@ -105,8 +141,7 @@ struct Complex
T _im;
};
-template <typename T>
-T ei_to_std( const T & x) {return x;}
+//template <typename T> T ei_to_std( const T & x) {return x;}
template <typename T>
std::complex<T> ei_to_std( const Complex<T> & x) {return x.std_type();}
@@ -165,7 +200,7 @@ operator<< (std::basic_ostream<charT,traits>& ostr, const Complex<T>& rhs)
template<class T> Complex<T> log (const Complex<T>&x){return log(ei_to_std(x));}
template<class T> Complex<T> log10 (const Complex<T>&x){return log10(ei_to_std(x));}
- template<class T> Complex<T> pow(const Complex<T>&x, int p) {return pow(ei_to_std(x),ei_to_std(p));}
+ template<class T> Complex<T> pow(const Complex<T>&x, int p) {return pow(ei_to_std(x),p);}
template<class T> Complex<T> pow(const Complex<T>&x, const T&p) {return pow(ei_to_std(x),ei_to_std(p));}
template<class T> Complex<T> pow(const Complex<T>&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
template<class T> Complex<T> pow(const T&x, const Complex<T>&p) {return pow(ei_to_std(x),ei_to_std(p));}
@@ -175,8 +210,20 @@ operator<< (std::basic_ostream<charT,traits>& ostr, const Complex<T>& rhs)
template<class T> Complex<T> sqrt (const Complex<T>&x){return sqrt(ei_to_std(x));}
template<class T> Complex<T> tan (const Complex<T>&x){return tan(ei_to_std(x));}
template<class T> Complex<T> tanh (const Complex<T>&x){return tanh(ei_to_std(x));}
-}
+ template<typename _Real> struct NumTraits<Complex<_Real> >
+ {
+ typedef _Real Real;
+ typedef Complex<_Real> FloatingPoint;
+ enum {
+ IsComplex = 1,
+ HasFloatingPoint = NumTraits<Real>::HasFloatingPoint,
+ ReadCost = 2,
+ AddCost = 2 * NumTraits<Real>::AddCost,
+ MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
+ };
+ };
+}
#endif
/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/unsupported/Eigen/FFT b/unsupported/Eigen/FFT
index 36afdde8d..8f7a2fcae 100644
--- a/unsupported/Eigen/FFT
+++ b/unsupported/Eigen/FFT
@@ -28,6 +28,7 @@
#include <complex>
#include <vector>
#include <map>
+#include <Eigen/Core>
#ifdef EIGEN_FFTW_DEFAULT
// FFTW: faster, GPL -- incompatible with Eigen in LGPL form, bigger code size
@@ -65,49 +66,87 @@ class FFT
typedef typename impl_type::Scalar Scalar;
typedef typename impl_type::Complex Complex;
- FFT(const impl_type & impl=impl_type() ) :m_impl(impl) { }
+ enum Flag {
+ Default=0, // goof proof
+ Unscaled=1,
+ HalfSpectrum=2,
+ // SomeOtherSpeedOptimization=4
+ Speedy=32767
+ };
- template <typename _Input>
- void fwd( Complex * dst, const _Input * src, int nfft)
+ FFT( const impl_type & impl=impl_type() , Flag flags=Default ) :m_impl(impl),m_flag(flags) { }
+
+ inline
+ bool HasFlag(Flag f) const { return (m_flag & (int)f) == f;}
+
+ inline
+ void SetFlag(Flag f) { m_flag |= (int)f;}
+
+ inline
+ void ClearFlag(Flag f) { m_flag &= (~(int)f);}
+
+ inline
+ void fwd( Complex * dst, const Scalar * src, int nfft)
+ {
+ m_impl.fwd(dst,src,nfft);
+ if ( HasFlag(HalfSpectrum) == false)
+ ReflectSpectrum(dst,nfft);
+ }
+
+ inline
+ void fwd( Complex * dst, const Complex * src, int nfft)
{
m_impl.fwd(dst,src,nfft);
}
template <typename _Input>
+ inline
void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
{
- dst.resize( src.size() );
- fwd( &dst[0],&src[0],src.size() );
+ if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
+ dst.resize( (src.size()>>1)+1);
+ else
+ dst.resize(src.size());
+ fwd(&dst[0],&src[0],src.size());
}
template<typename InputDerived, typename ComplexDerived>
+ inline
void fwd( MatrixBase<ComplexDerived> & dst, const MatrixBase<InputDerived> & src)
{
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
- EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
- EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
- EIGEN_STATIC_ASSERT((ei_is_same_type<typename ComplexDerived::Scalar, Complex>::ret),
- YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
- EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
- THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
- dst.derived().resize( src.size() );
- fwd( &dst[0],&src[0],src.size() );
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(InputDerived)
+ EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
+ EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ComplexDerived,InputDerived) // size at compile-time
+ EIGEN_STATIC_ASSERT((ei_is_same_type<typename ComplexDerived::Scalar, Complex>::ret),
+ YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
+ EIGEN_STATIC_ASSERT(int(InputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
+ THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
+
+ if ( NumTraits< typename InputDerived::Scalar >::IsComplex == 0 && HasFlag(HalfSpectrum) )
+ dst.derived().resize( (src.size()>>1)+1);
+ else
+ dst.derived().resize(src.size());
+ fwd( &dst[0],&src[0],src.size() );
}
- template <typename _Output>
- void inv( _Output * dst, const Complex * src, int nfft)
+ inline
+ void inv( Complex * dst, const Complex * src, int nfft)
{
m_impl.inv( dst,src,nfft );
+ if ( HasFlag( Unscaled ) == false)
+ scale(dst,1./nfft,nfft);
}
- template <typename _Output>
- void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
+ inline
+ void inv( Scalar * dst, const Complex * src, int nfft)
{
- dst.resize( src.size() );
- inv( &dst[0],&src[0],src.size() );
+ m_impl.inv( dst,src,nfft );
+ if ( HasFlag( Unscaled ) == false)
+ scale(dst,1./nfft,nfft);
}
template<typename OutputDerived, typename ComplexDerived>
+ inline
void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
@@ -117,18 +156,52 @@ class FFT
YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY)
EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
- dst.derived().resize( src.size() );
+
+ int nfft = src.size();
+ int nout = HasFlag(HalfSpectrum) ? ((nfft>>1)+1) : nfft;
+ dst.derived().resize( nout );
inv( &dst[0],&src[0],src.size() );
}
+ template <typename _Output>
+ inline
+ void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
+ {
+ if ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) )
+ dst.resize( 2*(src.size()-1) );
+ else
+ dst.resize( src.size() );
+ inv( &dst[0],&src[0],dst.size() );
+ }
+
// TODO: multi-dimensional FFTs
// TODO: handle Eigen MatrixBase
// ---> i added fwd and inv specializations above + unit test, is this enough? (bjacob)
+ inline
impl_type & impl() {return m_impl;}
private:
+
+ template <typename _It,typename _Val>
+ inline
+ void scale(_It x,_Val s,int nx)
+ {
+ for (int k=0;k<nx;++k)
+ *x++ *= s;
+ }
+
+ inline
+ void ReflectSpectrum(Complex * freq,int nfft)
+ {
+ // create the implicit right-half spectrum (conjugate-mirror of the left-half)
+ int nhbins=(nfft>>1)+1;
+ for (int k=nhbins;k < nfft; ++k )
+ freq[k] = conj(freq[nfft-k]);
+ }
+
impl_type m_impl;
+ int m_flag;
};
}
#endif
diff --git a/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h b/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
index 2fb733a99..c4607c2b8 100644
--- a/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
+++ b/unsupported/Eigen/src/AutoDiff/AutoDiffScalar.h
@@ -29,7 +29,7 @@ namespace Eigen {
template<typename A, typename B>
struct ei_make_coherent_impl {
- static void run(A& a, B& b) {}
+ static void run(A&, B&) {}
};
// resize a to match b is a.size()==0, and conversely.
diff --git a/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h b/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h
index 69ea9144e..03c82b7e8 100644
--- a/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h
+++ b/unsupported/Eigen/src/AutoDiff/AutoDiffVector.h
@@ -35,7 +35,7 @@ namespace Eigen {
* This class represents a scalar value while tracking its respective derivatives.
*
* It supports the following list of global math function:
- * - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
+ * - std::abs, std::sqrt, std::pow, std::exp, std::log, std::sin, std::cos,
* - ei_abs, ei_sqrt, ei_pow, ei_exp, ei_log, ei_sin, ei_cos,
* - ei_conj, ei_real, ei_imag, ei_abs2.
*
@@ -48,130 +48,150 @@ template<typename ValueType, typename JacobianType>
class AutoDiffVector
{
public:
- typedef typename ei_traits<ValueType>::Scalar Scalar;
-
+ //typedef typename ei_traits<ValueType>::Scalar Scalar;
+ typedef typename ei_traits<ValueType>::Scalar BaseScalar;
+ typedef AutoDiffScalar<Matrix<BaseScalar,JacobianType::RowsAtCompileTime,1> > ActiveScalar;
+ typedef ActiveScalar Scalar;
+ typedef AutoDiffScalar<typename JacobianType::ColXpr> CoeffType;
+
inline AutoDiffVector() {}
-
+
inline AutoDiffVector(const ValueType& values)
: m_values(values)
{
m_jacobian.setZero();
}
-
+
+
+ CoeffType operator[] (int i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
+ const CoeffType operator[] (int i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
+
+ CoeffType operator() (int i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
+ const CoeffType operator() (int i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
+
+ CoeffType coeffRef(int i) { return CoeffType(m_values[i], m_jacobian.col(i)); }
+ const CoeffType coeffRef(int i) const { return CoeffType(m_values[i], m_jacobian.col(i)); }
+
+ int size() const { return m_values.size(); }
+
+ // FIXME here we could return an expression of the sum
+ Scalar sum() const { /*std::cerr << "sum \n\n";*/ /*std::cerr << m_jacobian.rowwise().sum() << "\n\n";*/ return Scalar(m_values.sum(), m_jacobian.rowwise().sum()); }
+
+
inline AutoDiffVector(const ValueType& values, const JacobianType& jac)
: m_values(values), m_jacobian(jac)
{}
-
+
template<typename OtherValueType, typename OtherJacobianType>
inline AutoDiffVector(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
: m_values(other.values()), m_jacobian(other.jacobian())
{}
-
+
inline AutoDiffVector(const AutoDiffVector& other)
: m_values(other.values()), m_jacobian(other.jacobian())
{}
-
+
template<typename OtherValueType, typename OtherJacobianType>
- inline AutoDiffScalar& operator=(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
+ inline AutoDiffVector& operator=(const AutoDiffVector<OtherValueType, OtherJacobianType>& other)
{
m_values = other.values();
m_jacobian = other.jacobian();
return *this;
}
-
+
inline AutoDiffVector& operator=(const AutoDiffVector& other)
{
m_values = other.values();
m_jacobian = other.jacobian();
return *this;
}
-
+
inline const ValueType& values() const { return m_values; }
inline ValueType& values() { return m_values; }
-
+
inline const JacobianType& jacobian() const { return m_jacobian; }
inline JacobianType& jacobian() { return m_jacobian; }
-
+
template<typename OtherValueType,typename OtherJacobianType>
inline const AutoDiffVector<
- CwiseBinaryOp<ei_scalar_sum_op<Scalar>,ValueType,OtherValueType> >
- CwiseBinaryOp<ei_scalar_sum_op<Scalar>,JacobianType,OtherJacobianType> >
- operator+(const AutoDiffScalar<OtherDerType>& other) const
+ typename MakeCwiseBinaryOp<ei_scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
+ typename MakeCwiseBinaryOp<ei_scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >
+ operator+(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
{
return AutoDiffVector<
- CwiseBinaryOp<ei_scalar_sum_op<Scalar>,ValueType,OtherValueType> >
- CwiseBinaryOp<ei_scalar_sum_op<Scalar>,JacobianType,OtherJacobianType> >(
+ typename MakeCwiseBinaryOp<ei_scalar_sum_op<BaseScalar>,ValueType,OtherValueType>::Type,
+ typename MakeCwiseBinaryOp<ei_scalar_sum_op<BaseScalar>,JacobianType,OtherJacobianType>::Type >(
m_values + other.values(),
m_jacobian + other.jacobian());
}
-
+
template<typename OtherValueType, typename OtherJacobianType>
inline AutoDiffVector&
- operator+=(const AutoDiffVector<OtherValueType,OtherDerType>& other)
+ operator+=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
{
m_values += other.values();
m_jacobian += other.jacobian();
return *this;
}
-
+
template<typename OtherValueType,typename OtherJacobianType>
inline const AutoDiffVector<
- CwiseBinaryOp<ei_scalar_difference_op<Scalar>,ValueType,OtherValueType> >
- CwiseBinaryOp<ei_scalar_difference_op<Scalar>,JacobianType,OtherJacobianType> >
- operator-(const AutoDiffScalar<OtherDerType>& other) const
+ typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
+ typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >
+ operator-(const AutoDiffVector<OtherValueType,OtherJacobianType>& other) const
{
return AutoDiffVector<
- CwiseBinaryOp<ei_scalar_difference_op<Scalar>,ValueType,OtherValueType> >
- CwiseBinaryOp<ei_scalar_difference_op<Scalar>,JacobianType,OtherJacobianType> >(
- m_values - other.values(),
- m_jacobian - other.jacobian());
+ typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,ValueType,OtherValueType>::Type,
+ typename MakeCwiseBinaryOp<ei_scalar_difference_op<Scalar>,JacobianType,OtherJacobianType>::Type >(
+ m_values - other.values(),
+ m_jacobian - other.jacobian());
}
-
+
template<typename OtherValueType, typename OtherJacobianType>
inline AutoDiffVector&
- operator-=(const AutoDiffVector<OtherValueType,OtherDerType>& other)
+ operator-=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
{
m_values -= other.values();
m_jacobian -= other.jacobian();
return *this;
}
-
+
inline const AutoDiffVector<
- CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, ValueType>
- CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, JacobianType> >
+ typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, ValueType>::Type,
+ typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, JacobianType>::Type >
operator-() const
{
return AutoDiffVector<
- CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, ValueType>
- CwiseUnaryOp<ei_scalar_opposite_op<Scalar>, JacobianType> >(
- -m_values,
- -m_jacobian);
+ typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, ValueType>::Type,
+ typename MakeCwiseUnaryOp<ei_scalar_opposite_op<Scalar>, JacobianType>::Type >(
+ -m_values,
+ -m_jacobian);
}
-
+
inline const AutoDiffVector<
- CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>
- CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType> >
- operator*(const Scalar& other) const
+ typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>::Type,
+ typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType>::Type>
+ operator*(const BaseScalar& other) const
{
return AutoDiffVector<
- CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>
- CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType> >(
+ typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>::Type,
+ typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType>::Type >(
m_values * other,
- (m_jacobian * other));
+ m_jacobian * other);
}
-
+
friend inline const AutoDiffVector<
- CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>
- CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType> >
+ typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>::Type,
+ typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType>::Type >
operator*(const Scalar& other, const AutoDiffVector& v)
{
return AutoDiffVector<
- CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>
- CwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType> >(
+ typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, ValueType>::Type,
+ typename MakeCwiseUnaryOp<ei_scalar_multiple_op<Scalar>, JacobianType>::Type >(
v.values() * other,
v.jacobian() * other);
}
-
+
// template<typename OtherValueType,typename OtherJacobianType>
// inline const AutoDiffVector<
// CwiseBinaryOp<ei_scalar_multiple_op<Scalar>, ValueType, OtherValueType>
@@ -188,25 +208,25 @@ class AutoDiffVector
// m_values.cwise() * other.values(),
// (m_jacobian * other.values()).nestByValue() + (m_values * other.jacobian()).nestByValue());
// }
-
+
inline AutoDiffVector& operator*=(const Scalar& other)
{
m_values *= other;
m_jacobian *= other;
return *this;
}
-
+
template<typename OtherValueType,typename OtherJacobianType>
inline AutoDiffVector& operator*=(const AutoDiffVector<OtherValueType,OtherJacobianType>& other)
{
*this = *this * other;
return *this;
}
-
+
protected:
ValueType m_values;
JacobianType m_jacobian;
-
+
};
}
diff --git a/unsupported/Eigen/src/FFT/ei_fftw_impl.h b/unsupported/Eigen/src/FFT/ei_fftw_impl.h
index e1f67f334..a66b7398c 100644
--- a/unsupported/Eigen/src/FFT/ei_fftw_impl.h
+++ b/unsupported/Eigen/src/FFT/ei_fftw_impl.h
@@ -166,6 +166,7 @@
m_plans.clear();
}
+ // complex-to-complex forward FFT
inline
void fwd( Complex * dst,const Complex *src,int nfft)
{
@@ -177,9 +178,6 @@
void fwd( Complex * dst,const Scalar * src,int nfft)
{
get_plan(nfft,false,dst,src).fwd(ei_fftw_cast(dst), ei_fftw_cast(src) ,nfft);
- int nhbins=(nfft>>1)+1;
- for (int k=nhbins;k < nfft; ++k )
- dst[k] = conj(dst[nfft-k]);
}
// inverse complex-to-complex
@@ -187,12 +185,6 @@
void inv(Complex * dst,const Complex *src,int nfft)
{
get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
-
- //TODO move scaling to Eigen::FFT
- // scaling
- Scalar s = Scalar(1.)/nfft;
- for (int k=0;k<nfft;++k)
- dst[k] *= s;
}
// half-complex to scalar
@@ -200,11 +192,6 @@
void inv( Scalar * dst,const Complex * src,int nfft)
{
get_plan(nfft,true,dst,src).inv(ei_fftw_cast(dst), ei_fftw_cast(src),nfft );
-
- //TODO move scaling to Eigen::FFT
- Scalar s = Scalar(1.)/nfft;
- for (int k=0;k<nfft;++k)
- dst[k] *= s;
}
protected:
@@ -222,3 +209,5 @@
return m_plans[key];
}
};
+/* vim: set filetype=cpp et sw=2 ts=2 ai: */
+
diff --git a/unsupported/Eigen/src/FFT/ei_kissfft_impl.h b/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
index c068d8765..5c958d1ec 100644
--- a/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
+++ b/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
@@ -27,388 +27,384 @@
// This FFT implementation was derived from kissfft http:sourceforge.net/projects/kissfft
// Copyright 2003-2009 Mark Borgerding
- template <typename _Scalar>
- struct ei_kiss_cpx_fft
+template <typename _Scalar>
+struct ei_kiss_cpx_fft
+{
+ typedef _Scalar Scalar;
+ typedef std::complex<Scalar> Complex;
+ std::vector<Complex> m_twiddles;
+ std::vector<int> m_stageRadix;
+ std::vector<int> m_stageRemainder;
+ std::vector<Complex> m_scratchBuf;
+ bool m_inverse;
+
+ inline
+ void make_twiddles(int nfft,bool inverse)
{
- typedef _Scalar Scalar;
- typedef std::complex<Scalar> Complex;
- std::vector<Complex> m_twiddles;
- std::vector<int> m_stageRadix;
- std::vector<int> m_stageRemainder;
- std::vector<Complex> m_scratchBuf;
- bool m_inverse;
-
- void make_twiddles(int nfft,bool inverse)
- {
- m_inverse = inverse;
- m_twiddles.resize(nfft);
- Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
- for (int i=0;i<nfft;++i)
- m_twiddles[i] = exp( Complex(0,i*phinc) );
+ m_inverse = inverse;
+ m_twiddles.resize(nfft);
+ Scalar phinc = (inverse?2:-2)* acos( (Scalar) -1) / nfft;
+ for (int i=0;i<nfft;++i)
+ m_twiddles[i] = exp( Complex(0,i*phinc) );
+ }
+
+ void factorize(int nfft)
+ {
+ //start factoring out 4's, then 2's, then 3,5,7,9,...
+ int n= nfft;
+ int p=4;
+ do {
+ while (n % p) {
+ switch (p) {
+ case 4: p = 2; break;
+ case 2: p = 3; break;
+ default: p += 2; break;
+ }
+ if (p*p>n)
+ p=n;// impossible to have a factor > sqrt(n)
}
+ n /= p;
+ m_stageRadix.push_back(p);
+ m_stageRemainder.push_back(n);
+ if ( p > 5 )
+ m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
+ }while(n>1);
+ }
+
+ template <typename _Src>
+ inline
+ void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
+ {
+ int p = m_stageRadix[stage];
+ int m = m_stageRemainder[stage];
+ Complex * Fout_beg = xout;
+ Complex * Fout_end = xout + p*m;
- void factorize(int nfft)
- {
- //start factoring out 4's, then 2's, then 3,5,7,9,...
- int n= nfft;
- int p=4;
- do {
- while (n % p) {
- switch (p) {
- case 4: p = 2; break;
- case 2: p = 3; break;
- default: p += 2; break;
- }
- if (p*p>n)
- p=n;// impossible to have a factor > sqrt(n)
- }
- n /= p;
- m_stageRadix.push_back(p);
- m_stageRemainder.push_back(n);
- if ( p > 5 )
- m_scratchBuf.resize(p); // scratchbuf will be needed in bfly_generic
- }while(n>1);
+ if (m>1) {
+ do{
+ // recursive call:
+ // DFT of size m*p performed by doing
+ // p instances of smaller DFTs of size m,
+ // each one takes a decimated version of the input
+ work(stage+1, xout , xin, fstride*p,in_stride);
+ xin += fstride*in_stride;
+ }while( (xout += m) != Fout_end );
+ }else{
+ do{
+ *xout = *xin;
+ xin += fstride*in_stride;
+ }while(++xout != Fout_end );
}
-
- template <typename _Src>
- void work( int stage,Complex * xout, const _Src * xin, size_t fstride,size_t in_stride)
- {
- int p = m_stageRadix[stage];
- int m = m_stageRemainder[stage];
- Complex * Fout_beg = xout;
- Complex * Fout_end = xout + p*m;
-
- if (m>1) {
- do{
- // recursive call:
- // DFT of size m*p performed by doing
- // p instances of smaller DFTs of size m,
- // each one takes a decimated version of the input
- work(stage+1, xout , xin, fstride*p,in_stride);
- xin += fstride*in_stride;
- }while( (xout += m) != Fout_end );
- }else{
- do{
- *xout = *xin;
- xin += fstride*in_stride;
- }while(++xout != Fout_end );
- }
- xout=Fout_beg;
-
- // recombine the p smaller DFTs
- switch (p) {
- case 2: bfly2(xout,fstride,m); break;
- case 3: bfly3(xout,fstride,m); break;
- case 4: bfly4(xout,fstride,m); break;
- case 5: bfly5(xout,fstride,m); break;
- default: bfly_generic(xout,fstride,m,p); break;
- }
- }
-
- inline
- void bfly2( Complex * Fout, const size_t fstride, int m)
- {
- for (int k=0;k<m;++k) {
- Complex t = Fout[m+k] * m_twiddles[k*fstride];
- Fout[m+k] = Fout[k] - t;
- Fout[k] += t;
- }
+ xout=Fout_beg;
+
+ // recombine the p smaller DFTs
+ switch (p) {
+ case 2: bfly2(xout,fstride,m); break;
+ case 3: bfly3(xout,fstride,m); break;
+ case 4: bfly4(xout,fstride,m); break;
+ case 5: bfly5(xout,fstride,m); break;
+ default: bfly_generic(xout,fstride,m,p); break;
}
+ }
- inline
- void bfly4( Complex * Fout, const size_t fstride, const size_t m)
- {
- Complex scratch[6];
- int negative_if_inverse = m_inverse * -2 +1;
- for (size_t k=0;k<m;++k) {
- scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
- scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
- scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
- scratch[5] = Fout[k] - scratch[1];
-
- Fout[k] += scratch[1];
- scratch[3] = scratch[0] + scratch[2];
- scratch[4] = scratch[0] - scratch[2];
- scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
-
- Fout[k+2*m] = Fout[k] - scratch[3];
- Fout[k] += scratch[3];
- Fout[k+m] = scratch[5] + scratch[4];
- Fout[k+3*m] = scratch[5] - scratch[4];
- }
+ inline
+ void bfly2( Complex * Fout, const size_t fstride, int m)
+ {
+ for (int k=0;k<m;++k) {
+ Complex t = Fout[m+k] * m_twiddles[k*fstride];
+ Fout[m+k] = Fout[k] - t;
+ Fout[k] += t;
}
+ }
- inline
- void bfly3( Complex * Fout, const size_t fstride, const size_t m)
- {
- size_t k=m;
- const size_t m2 = 2*m;
- Complex *tw1,*tw2;
- Complex scratch[5];
- Complex epi3;
- epi3 = m_twiddles[fstride*m];
-
- tw1=tw2=&m_twiddles[0];
-
- do{
- scratch[1]=Fout[m] * *tw1;
- scratch[2]=Fout[m2] * *tw2;
-
- scratch[3]=scratch[1]+scratch[2];
- scratch[0]=scratch[1]-scratch[2];
- tw1 += fstride;
- tw2 += fstride*2;
- Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() );
- scratch[0] *= epi3.imag();
- *Fout += scratch[3];
- Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
- Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
- ++Fout;
- }while(--k);
+ inline
+ void bfly4( Complex * Fout, const size_t fstride, const size_t m)
+ {
+ Complex scratch[6];
+ int negative_if_inverse = m_inverse * -2 +1;
+ for (size_t k=0;k<m;++k) {
+ scratch[0] = Fout[k+m] * m_twiddles[k*fstride];
+ scratch[1] = Fout[k+2*m] * m_twiddles[k*fstride*2];
+ scratch[2] = Fout[k+3*m] * m_twiddles[k*fstride*3];
+ scratch[5] = Fout[k] - scratch[1];
+
+ Fout[k] += scratch[1];
+ scratch[3] = scratch[0] + scratch[2];
+ scratch[4] = scratch[0] - scratch[2];
+ scratch[4] = Complex( scratch[4].imag()*negative_if_inverse , -scratch[4].real()* negative_if_inverse );
+
+ Fout[k+2*m] = Fout[k] - scratch[3];
+ Fout[k] += scratch[3];
+ Fout[k+m] = scratch[5] + scratch[4];
+ Fout[k+3*m] = scratch[5] - scratch[4];
}
+ }
- inline
- void bfly5( Complex * Fout, const size_t fstride, const size_t m)
- {
- Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
- size_t u;
- Complex scratch[13];
- Complex * twiddles = &m_twiddles[0];
- Complex *tw;
- Complex ya,yb;
- ya = twiddles[fstride*m];
- yb = twiddles[fstride*2*m];
-
- Fout0=Fout;
- Fout1=Fout0+m;
- Fout2=Fout0+2*m;
- Fout3=Fout0+3*m;
- Fout4=Fout0+4*m;
-
- tw=twiddles;
- for ( u=0; u<m; ++u ) {
- scratch[0] = *Fout0;
-
- scratch[1] = *Fout1 * tw[u*fstride];
- scratch[2] = *Fout2 * tw[2*u*fstride];
- scratch[3] = *Fout3 * tw[3*u*fstride];
- scratch[4] = *Fout4 * tw[4*u*fstride];
-
- scratch[7] = scratch[1] + scratch[4];
- scratch[10] = scratch[1] - scratch[4];
- scratch[8] = scratch[2] + scratch[3];
- scratch[9] = scratch[2] - scratch[3];
-
- *Fout0 += scratch[7];
- *Fout0 += scratch[8];
-
- scratch[5] = scratch[0] + Complex(
- (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
- (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
- );
-
- scratch[6] = Complex(
- (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
- -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
+ inline
+ void bfly3( Complex * Fout, const size_t fstride, const size_t m)
+ {
+ size_t k=m;
+ const size_t m2 = 2*m;
+ Complex *tw1,*tw2;
+ Complex scratch[5];
+ Complex epi3;
+ epi3 = m_twiddles[fstride*m];
+
+ tw1=tw2=&m_twiddles[0];
+
+ do{
+ scratch[1]=Fout[m] * *tw1;
+ scratch[2]=Fout[m2] * *tw2;
+
+ scratch[3]=scratch[1]+scratch[2];
+ scratch[0]=scratch[1]-scratch[2];
+ tw1 += fstride;
+ tw2 += fstride*2;
+ Fout[m] = Complex( Fout->real() - .5*scratch[3].real() , Fout->imag() - .5*scratch[3].imag() );
+ scratch[0] *= epi3.imag();
+ *Fout += scratch[3];
+ Fout[m2] = Complex( Fout[m].real() + scratch[0].imag() , Fout[m].imag() - scratch[0].real() );
+ Fout[m] += Complex( -scratch[0].imag(),scratch[0].real() );
+ ++Fout;
+ }while(--k);
+ }
+
+ inline
+ void bfly5( Complex * Fout, const size_t fstride, const size_t m)
+ {
+ Complex *Fout0,*Fout1,*Fout2,*Fout3,*Fout4;
+ size_t u;
+ Complex scratch[13];
+ Complex * twiddles = &m_twiddles[0];
+ Complex *tw;
+ Complex ya,yb;
+ ya = twiddles[fstride*m];
+ yb = twiddles[fstride*2*m];
+
+ Fout0=Fout;
+ Fout1=Fout0+m;
+ Fout2=Fout0+2*m;
+ Fout3=Fout0+3*m;
+ Fout4=Fout0+4*m;
+
+ tw=twiddles;
+ for ( u=0; u<m; ++u ) {
+ scratch[0] = *Fout0;
+
+ scratch[1] = *Fout1 * tw[u*fstride];
+ scratch[2] = *Fout2 * tw[2*u*fstride];
+ scratch[3] = *Fout3 * tw[3*u*fstride];
+ scratch[4] = *Fout4 * tw[4*u*fstride];
+
+ scratch[7] = scratch[1] + scratch[4];
+ scratch[10] = scratch[1] - scratch[4];
+ scratch[8] = scratch[2] + scratch[3];
+ scratch[9] = scratch[2] - scratch[3];
+
+ *Fout0 += scratch[7];
+ *Fout0 += scratch[8];
+
+ scratch[5] = scratch[0] + Complex(
+ (scratch[7].real()*ya.real() ) + (scratch[8].real() *yb.real() ),
+ (scratch[7].imag()*ya.real()) + (scratch[8].imag()*yb.real())
+ );
+
+ scratch[6] = Complex(
+ (scratch[10].imag()*ya.imag()) + (scratch[9].imag()*yb.imag()),
+ -(scratch[10].real()*ya.imag()) - (scratch[9].real()*yb.imag())
+ );
+
+ *Fout1 = scratch[5] - scratch[6];
+ *Fout4 = scratch[5] + scratch[6];
+
+ scratch[11] = scratch[0] +
+ Complex(
+ (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
+ (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
);
- *Fout1 = scratch[5] - scratch[6];
- *Fout4 = scratch[5] + scratch[6];
-
- scratch[11] = scratch[0] +
- Complex(
- (scratch[7].real()*yb.real()) + (scratch[8].real()*ya.real()),
- (scratch[7].imag()*yb.real()) + (scratch[8].imag()*ya.real())
- );
+ scratch[12] = Complex(
+ -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
+ (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
+ );
- scratch[12] = Complex(
- -(scratch[10].imag()*yb.imag()) + (scratch[9].imag()*ya.imag()),
- (scratch[10].real()*yb.imag()) - (scratch[9].real()*ya.imag())
- );
-
- *Fout2=scratch[11]+scratch[12];
- *Fout3=scratch[11]-scratch[12];
+ *Fout2=scratch[11]+scratch[12];
+ *Fout3=scratch[11]-scratch[12];
- ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
- }
+ ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4;
}
+ }
+
+ /* perform the butterfly for one stage of a mixed radix FFT */
+ inline
+ void bfly_generic(
+ Complex * Fout,
+ const size_t fstride,
+ int m,
+ int p
+ )
+ {
+ int u,k,q1,q;
+ Complex * twiddles = &m_twiddles[0];
+ Complex t;
+ int Norig = m_twiddles.size();
+ Complex * scratchbuf = &m_scratchBuf[0];
+
+ for ( u=0; u<m; ++u ) {
+ k=u;
+ for ( q1=0 ; q1<p ; ++q1 ) {
+ scratchbuf[q1] = Fout[ k ];
+ k += m;
+ }
- /* perform the butterfly for one stage of a mixed radix FFT */
- inline
- void bfly_generic(
- Complex * Fout,
- const size_t fstride,
- int m,
- int p
- )
- {
- int u,k,q1,q;
- Complex * twiddles = &m_twiddles[0];
- Complex t;
- int Norig = m_twiddles.size();
- Complex * scratchbuf = &m_scratchBuf[0];
-
- for ( u=0; u<m; ++u ) {
- k=u;
- for ( q1=0 ; q1<p ; ++q1 ) {
- scratchbuf[q1] = Fout[ k ];
- k += m;
- }
-
- k=u;
- for ( q1=0 ; q1<p ; ++q1 ) {
- int twidx=0;
- Fout[ k ] = scratchbuf[0];
- for (q=1;q<p;++q ) {
- twidx += fstride * k;
- if (twidx>=Norig) twidx-=Norig;
- t=scratchbuf[q] * twiddles[twidx];
- Fout[ k ] += t;
- }
- k += m;
+ k=u;
+ for ( q1=0 ; q1<p ; ++q1 ) {
+ int twidx=0;
+ Fout[ k ] = scratchbuf[0];
+ for (q=1;q<p;++q ) {
+ twidx += fstride * k;
+ if (twidx>=Norig) twidx-=Norig;
+ t=scratchbuf[q] * twiddles[twidx];
+ Fout[ k ] += t;
}
+ k += m;
}
}
- };
-
- template <typename _Scalar>
- struct ei_kissfft_impl
+ }
+};
+
+template <typename _Scalar>
+struct ei_kissfft_impl
+{
+ typedef _Scalar Scalar;
+ typedef std::complex<Scalar> Complex;
+
+ void clear()
+ {
+ m_plans.clear();
+ m_realTwiddles.clear();
+ }
+
+ inline
+ void fwd( Complex * dst,const Complex *src,int nfft)
{
- typedef _Scalar Scalar;
- typedef std::complex<Scalar> Complex;
-
- void clear()
- {
- m_plans.clear();
- m_realTwiddles.clear();
- }
-
- template <typename _Src>
- inline
- void fwd( Complex * dst,const _Src *src,int nfft)
- {
- get_plan(nfft,false).work(0, dst, src, 1,1);
+ get_plan(nfft,false).work(0, dst, src, 1,1);
+ }
+
+ // real-to-complex forward FFT
+ // perform two FFTs of src even and src odd
+ // then twiddle to recombine them into the half-spectrum format
+ // then fill in the conjugate symmetric half
+ inline
+ void fwd( Complex * dst,const Scalar * src,int nfft)
+ {
+ if ( nfft&3 ) {
+ // use generic mode for odd
+ m_tmpBuf1.resize(nfft);
+ get_plan(nfft,false).work(0, &m_tmpBuf1[0], src, 1,1);
+ std::copy(m_tmpBuf1.begin(),m_tmpBuf1.begin()+(nfft>>1)+1,dst );
+ }else{
+ int ncfft = nfft>>1;
+ int ncfft2 = nfft>>2;
+ Complex * rtw = real_twiddles(ncfft2);
+
+ // use optimized mode for even real
+ fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
+ Complex dc = dst[0].real() + dst[0].imag();
+ Complex nyquist = dst[0].real() - dst[0].imag();
+ int k;
+ for ( k=1;k <= ncfft2 ; ++k ) {
+ Complex fpk = dst[k];
+ Complex fpnk = conj(dst[ncfft-k]);
+ Complex f1k = fpk + fpnk;
+ Complex f2k = fpk - fpnk;
+ Complex tw= f2k * rtw[k-1];
+ dst[k] = (f1k + tw) * Scalar(.5);
+ dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
}
+ dst[0] = dc;
+ dst[ncfft] = nyquist;
+ }
+ }
- // real-to-complex forward FFT
- // perform two FFTs of src even and src odd
- // then twiddle to recombine them into the half-spectrum format
- // then fill in the conjugate symmetric half
- inline
- void fwd( Complex * dst,const Scalar * src,int nfft)
- {
- if ( nfft&3 ) {
- // use generic mode for odd
- get_plan(nfft,false).work(0, dst, src, 1,1);
- }else{
- int ncfft = nfft>>1;
- int ncfft2 = nfft>>2;
- Complex * rtw = real_twiddles(ncfft2);
-
- // use optimized mode for even real
- fwd( dst, reinterpret_cast<const Complex*> (src), ncfft);
- Complex dc = dst[0].real() + dst[0].imag();
- Complex nyquist = dst[0].real() - dst[0].imag();
- int k;
- for ( k=1;k <= ncfft2 ; ++k ) {
- Complex fpk = dst[k];
- Complex fpnk = conj(dst[ncfft-k]);
- Complex f1k = fpk + fpnk;
- Complex f2k = fpk - fpnk;
- Complex tw= f2k * rtw[k-1];
- dst[k] = (f1k + tw) * Scalar(.5);
- dst[ncfft-k] = conj(f1k -tw)*Scalar(.5);
- }
+ // inverse complex-to-complex
+ inline
+ void inv(Complex * dst,const Complex *src,int nfft)
+ {
+ get_plan(nfft,true).work(0, dst, src, 1,1);
+ }
- // place conjugate-symmetric half at the end for completeness
- // TODO: make this configurable ( opt-out )
- for ( k=1;k < ncfft ; ++k )
- dst[nfft-k] = conj(dst[k]);
- dst[0] = dc;
- dst[ncfft] = nyquist;
+ // half-complex to scalar
+ inline
+ void inv( Scalar * dst,const Complex * src,int nfft)
+ {
+ if (nfft&3) {
+ m_tmpBuf1.resize(nfft);
+ m_tmpBuf2.resize(nfft);
+ std::copy(src,src+(nfft>>1)+1,m_tmpBuf1.begin() );
+ for (int k=1;k<(nfft>>1)+1;++k)
+ m_tmpBuf1[nfft-k] = conj(m_tmpBuf1[k]);
+ inv(&m_tmpBuf2[0],&m_tmpBuf1[0],nfft);
+ for (int k=0;k<nfft;++k)
+ dst[k] = m_tmpBuf2[k].real();
+ }else{
+ // optimized version for multiple of 4
+ int ncfft = nfft>>1;
+ int ncfft2 = nfft>>2;
+ Complex * rtw = real_twiddles(ncfft2);
+ m_tmpBuf1.resize(ncfft);
+ m_tmpBuf1[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
+ for (int k = 1; k <= ncfft / 2; ++k) {
+ Complex fk = src[k];
+ Complex fnkc = conj(src[ncfft-k]);
+ Complex fek = fk + fnkc;
+ Complex tmp = fk - fnkc;
+ Complex fok = tmp * conj(rtw[k-1]);
+ m_tmpBuf1[k] = fek + fok;
+ m_tmpBuf1[ncfft-k] = conj(fek - fok);
}
+ get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf1[0], 1,1);
}
+ }
- // inverse complex-to-complex
- inline
- void inv(Complex * dst,const Complex *src,int nfft)
- {
- get_plan(nfft,true).work(0, dst, src, 1,1);
- scale(dst, nfft, Scalar(1)/nfft );
- }
+ protected:
+ typedef ei_kiss_cpx_fft<Scalar> PlanData;
+ typedef std::map<int,PlanData> PlanMap;
- // half-complex to scalar
- inline
- void inv( Scalar * dst,const Complex * src,int nfft)
- {
- if (nfft&3) {
- m_tmpBuf.resize(nfft);
- inv(&m_tmpBuf[0],src,nfft);
- for (int k=0;k<nfft;++k)
- dst[k] = m_tmpBuf[k].real();
- }else{
- // optimized version for multiple of 4
- int ncfft = nfft>>1;
- int ncfft2 = nfft>>2;
- Complex * rtw = real_twiddles(ncfft2);
- m_tmpBuf.resize(ncfft);
- m_tmpBuf[0] = Complex( src[0].real() + src[ncfft].real(), src[0].real() - src[ncfft].real() );
- for (int k = 1; k <= ncfft / 2; ++k) {
- Complex fk = src[k];
- Complex fnkc = conj(src[ncfft-k]);
- Complex fek = fk + fnkc;
- Complex tmp = fk - fnkc;
- Complex fok = tmp * conj(rtw[k-1]);
- m_tmpBuf[k] = fek + fok;
- m_tmpBuf[ncfft-k] = conj(fek - fok);
- }
- scale(&m_tmpBuf[0], ncfft, Scalar(1)/nfft );
- get_plan(ncfft,true).work(0, reinterpret_cast<Complex*>(dst), &m_tmpBuf[0], 1,1);
- }
- }
+ PlanMap m_plans;
+ std::map<int, std::vector<Complex> > m_realTwiddles;
+ std::vector<Complex> m_tmpBuf1;
+ std::vector<Complex> m_tmpBuf2;
- protected:
- typedef ei_kiss_cpx_fft<Scalar> PlanData;
- typedef std::map<int,PlanData> PlanMap;
-
- PlanMap m_plans;
- std::map<int, std::vector<Complex> > m_realTwiddles;
- std::vector<Complex> m_tmpBuf;
-
- inline
- int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; }
-
- inline
- PlanData & get_plan(int nfft,bool inverse)
- {
- // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
- PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
- if ( pd.m_twiddles.size() == 0 ) {
- pd.make_twiddles(nfft,inverse);
- pd.factorize(nfft);
- }
- return pd;
- }
+ inline
+ int PlanKey(int nfft,bool isinverse) const { return (nfft<<1) | isinverse; }
- inline
- Complex * real_twiddles(int ncfft2)
- {
- std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
- if ( (int)twidref.size() != ncfft2 ) {
- twidref.resize(ncfft2);
- int ncfft= ncfft2<<1;
- Scalar pi = acos( Scalar(-1) );
- for (int k=1;k<=ncfft2;++k)
- twidref[k-1] = exp( Complex(0,-pi * ((double) (k) / ncfft + .5) ) );
- }
- return &twidref[0];
+ inline
+ PlanData & get_plan(int nfft,bool inverse)
+ {
+ // TODO look for PlanKey(nfft, ! inverse) and conjugate the twiddles
+ PlanData & pd = m_plans[ PlanKey(nfft,inverse) ];
+ if ( pd.m_twiddles.size() == 0 ) {
+ pd.make_twiddles(nfft,inverse);
+ pd.factorize(nfft);
}
+ return pd;
+ }
- // TODO move scaling up into Eigen::FFT
- inline
- void scale(Complex *dst,int n,Scalar s)
- {
- for (int k=0;k<n;++k)
- dst[k] *= s;
+ inline
+ Complex * real_twiddles(int ncfft2)
+ {
+ std::vector<Complex> & twidref = m_realTwiddles[ncfft2];// creates new if not there
+ if ( (int)twidref.size() != ncfft2 ) {
+ twidref.resize(ncfft2);
+ int ncfft= ncfft2<<1;
+ Scalar pi = acos( Scalar(-1) );
+ for (int k=1;k<=ncfft2;++k)
+ twidref[k-1] = exp( Complex(0,-pi * ((double) (k) / ncfft + .5) ) );
}
- };
+ return &twidref[0];
+ }
+};
+
+/* vim: set filetype=cpp et sw=2 ts=2 ai: */
+
diff --git a/unsupported/test/CMakeLists.txt b/unsupported/test/CMakeLists.txt
index d182c9abf..c75d5eb0b 100644
--- a/unsupported/test/CMakeLists.txt
+++ b/unsupported/test/CMakeLists.txt
@@ -26,3 +26,4 @@ if(FFTW_FOUND)
ei_add_test(FFTW "-DEIGEN_FFTW_DEFAULT " "-lfftw3 -lfftw3f -lfftw3l" )
endif(FFTW_FOUND)
+ei_add_test(Complex)
diff --git a/unsupported/test/Complex.cpp b/unsupported/test/Complex.cpp
new file mode 100644
index 000000000..bedeb9f27
--- /dev/null
+++ b/unsupported/test/Complex.cpp
@@ -0,0 +1,77 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2009 Mark Borgerding mark a borgerding net
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+#ifdef EIGEN_TEST_FUNC
+# include "main.h"
+#else
+# include <iostream>
+# define CALL_SUBTEST(x) x
+# define VERIFY(x) x
+# define test_Complex main
+#endif
+
+#include <unsupported/Eigen/Complex>
+#include <vector>
+
+using namespace std;
+using namespace Eigen;
+
+template <typename T>
+void take_std( std::complex<T> * dst, int n )
+{
+ cout << dst[n-1] << endl;
+}
+
+
+template <typename T>
+void syntax()
+{
+ // this works fine
+ Matrix< Complex<T>, 9, 1> a;
+ std::complex<T> * pa = &a[0];
+ Complex<T> * pa2 = &a[0];
+ take_std( pa,9);
+
+ // this does not work, but I wish it would
+ // take_std(&a[0];)
+ // this does
+ take_std( (std::complex<T> *)&a[0],9);
+
+ // this does not work, but it would be really nice
+ //vector< Complex<T> > a;
+ // (on my gcc 4.4.1 )
+ // std::vector assumes operator& returns a POD pointer
+
+ // this works fine
+ Complex<T> b[9];
+ std::complex<T> * pb = &b[0]; // this works fine
+
+ take_std( pb,9);
+}
+
+void test_Complex()
+{
+ CALL_SUBTEST( syntax<float>() );
+ CALL_SUBTEST( syntax<double>() );
+ CALL_SUBTEST( syntax<long double>() );
+}
diff --git a/unsupported/test/FFT.cpp b/unsupported/test/FFT.cpp
index cc68f3718..ad0d426e4 100644
--- a/unsupported/test/FFT.cpp
+++ b/unsupported/test/FFT.cpp
@@ -101,12 +101,34 @@ void test_scalar_generic(int nfft)
ComplexVector outbuf;
for (int k=0;k<nfft;++k)
inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
+
+ // make sure it DOESN'T give the right full spectrum answer
+ // if we've asked for half-spectrum
+ fft.SetFlag(fft.HalfSpectrum );
+ fft.fwd( outbuf,inbuf);
+ VERIFY(outbuf.size() == (nfft>>1)+1);
+ VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
+
+ fft.ClearFlag(fft.HalfSpectrum );
fft.fwd( outbuf,inbuf);
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
ScalarVector buf3;
fft.inv( buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
+
+ // verify that the Unscaled flag takes effect
+ ComplexVector buf4;
+ fft.SetFlag(fft.Unscaled);
+ fft.inv( buf4 , outbuf);
+ for (int k=0;k<nfft;++k)
+ buf4[k] *= T(1./nfft);
+ VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check
+
+ // verify that ClearFlag works
+ fft.ClearFlag(fft.Unscaled);
+ fft.inv( buf3 , outbuf);
+ VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
}
template <typename T>
@@ -136,6 +158,19 @@ void test_complex_generic(int nfft)
fft.inv( buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
+
+ // verify that the Unscaled flag takes effect
+ ComplexVector buf4;
+ fft.SetFlag(fft.Unscaled);
+ fft.inv( buf4 , outbuf);
+ for (int k=0;k<nfft;++k)
+ buf4[k] *= T(1./nfft);
+ VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check
+
+ // verify that ClearFlag works
+ fft.ClearFlag(fft.Unscaled);
+ fft.inv( buf3 , outbuf);
+ VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
}
template <typename T>