aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported
diff options
context:
space:
mode:
authorGravatar Mark Borgerding <mark@borgerding.net>2010-02-16 20:44:48 -0500
committerGravatar Mark Borgerding <mark@borgerding.net>2010-02-16 20:44:48 -0500
commit8f51a4ac9005c29fe99d3c1f70b99853be2a9f15 (patch)
treefba9f93f3e4760f6432989d47634c2f8d0c31fe9 /unsupported
parent1d342e135c0385572ec715b1209049355f817b9f (diff)
found out about little-documented FFTW_PRESERVE_INPUT which has effect on c2r transforms
Diffstat (limited to 'unsupported')
-rw-r--r--unsupported/Eigen/FFT52
-rw-r--r--unsupported/Eigen/src/FFT/ei_fftw_impl.h60
-rw-r--r--unsupported/Eigen/src/FFT/ei_kissfft_impl.h10
-rw-r--r--unsupported/test/FFT.cpp29
-rw-r--r--unsupported/test/FFTW.cpp151
5 files changed, 205 insertions, 97 deletions
diff --git a/unsupported/Eigen/FFT b/unsupported/Eigen/FFT
index 97b1b2cdf..454308fb7 100644
--- a/unsupported/Eigen/FFT
+++ b/unsupported/Eigen/FFT
@@ -152,18 +152,20 @@ class FFT
m_impl.fwd(dst,src,nfft);
}
+ /*
inline
- void fwd2(Complex * dst, const Complex * src, int nrows,int ncols)
+ void fwd2(Complex * dst, const Complex * src, int n0,int n1)
{
- m_impl.fwd2(dst,src,nrows,ncols);
+ m_impl.fwd2(dst,src,n0,n1);
}
+ */
template <typename _Input>
inline
void fwd( std::vector<Complex> & dst, const std::vector<_Input> & src)
{
if ( NumTraits<_Input>::IsComplex == 0 && HasFlag(HalfSpectrum) )
- dst.resize( (src.size()>>1)+1);
+ dst.resize( (src.size()>>1)+1); // half the bins + Nyquist bin
else
dst.resize(src.size());
fwd(&dst[0],&src[0],static_cast<int>(src.size()));
@@ -197,22 +199,22 @@ class FFT
inline
void inv( Complex * dst, const Complex * src, int nfft)
{
- m_impl.inv( dst,src,nfft );
- if ( HasFlag( Unscaled ) == false)
- scale(dst,1./nfft,nfft);
+ m_impl.inv( dst,src,nfft );
+ if ( HasFlag( Unscaled ) == false)
+ scale(dst,1./nfft,nfft); // scale the time series
}
inline
void inv( Scalar * dst, const Complex * src, int nfft)
{
- m_impl.inv( dst,src,nfft );
- if ( HasFlag( Unscaled ) == false)
- scale(dst,1./nfft,nfft);
+ m_impl.inv( dst,src,nfft );
+ if ( HasFlag( Unscaled ) == false)
+ scale(dst,1./nfft,nfft); // scale the time series
}
template<typename OutputDerived, typename ComplexDerived>
inline
- void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src)
+ void inv( MatrixBase<OutputDerived> & dst, const MatrixBase<ComplexDerived> & src, int nfft=-1)
{
EIGEN_STATIC_ASSERT_VECTOR_ONLY(OutputDerived)
EIGEN_STATIC_ASSERT_VECTOR_ONLY(ComplexDerived)
@@ -222,10 +224,12 @@ class FFT
EIGEN_STATIC_ASSERT(int(OutputDerived::Flags)&int(ComplexDerived::Flags)&DirectAccessBit,
THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_WITH_DIRECT_MEMORY_ACCESS_SUCH_AS_MAP_OR_PLAIN_MATRICES)
- int nfft = src.size();
- int nout = HasFlag(HalfSpectrum) ? ((nfft>>1)+1) : nfft;
- dst.derived().resize( nout );
+ if (nfft<1) {
+ nfft = ( NumTraits<typename OutputDerived::Scalar>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size();
+ }
+ dst.derived().resize( nfft );
if (src.stride() != 1) {
+ // if the vector is strided, then we need to copy it to a packed temporary
Matrix<typename ComplexDerived::Scalar,1,Dynamic> tmp = src;
inv( &dst[0],&tmp[0], nfft);
}else{
@@ -235,25 +239,25 @@ class FFT
template <typename _Output>
inline
- void inv( std::vector<_Output> & dst, const std::vector<Complex> & src)
+ void inv( std::vector<_Output> & dst, const std::vector<Complex> & src,int nfft=-1)
{
- if ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) )
- dst.resize( 2*(src.size()-1) );
- else
- dst.resize( src.size() );
- inv( &dst[0],&src[0],static_cast<int>(dst.size()) );
+ if (nfft<1)
+ nfft = ( NumTraits<_Output>::IsComplex == 0 && HasFlag(HalfSpectrum) ) ? 2*(src.size()-1) : src.size();
+ dst.resize( nfft );
+ inv( &dst[0],&src[0],nfft);
}
+ /*
+ // TODO: multi-dimensional FFTs
inline
- void inv2(Complex * dst, const Complex * src, int nrows,int ncols)
+ void inv2(Complex * dst, const Complex * src, int n0,int n1)
{
- m_impl.inv2(dst,src,nrows,ncols);
+ m_impl.inv2(dst,src,n0,n1);
if ( HasFlag( Unscaled ) == false)
- scale(dst,1./(nrows*ncols),nrows*ncols);
+ scale(dst,1./(n0*n1),n0*n1);
}
-
- // TODO: multi-dimensional FFTs
+ */
inline
impl_type & impl() {return m_impl;}
diff --git a/unsupported/Eigen/src/FFT/ei_fftw_impl.h b/unsupported/Eigen/src/FFT/ei_fftw_impl.h
index 411ff7425..c1f777e6d 100644
--- a/unsupported/Eigen/src/FFT/ei_fftw_impl.h
+++ b/unsupported/Eigen/src/FFT/ei_fftw_impl.h
@@ -71,34 +71,34 @@
inline
void fwd(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwf_execute_dft( m_plan, src,dst);
}
inline
void inv(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwf_execute_dft( m_plan, src,dst);
}
inline
void fwd(complex_type * dst,scalar_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwf_execute_dft_r2c( m_plan,src,dst);
}
inline
void inv(scalar_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL)
- m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
+ m_plan = fftwf_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwf_execute_dft_c2r( m_plan, src,dst);
}
inline
- void fwd2( complex_type * dst,complex_type * src,int nrows,int ncols) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(ncols,nrows,src,dst,FFTW_FORWARD,FFTW_ESTIMATE);
+ void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwf_execute_dft( m_plan, src,dst);
}
inline
- void inv2( complex_type * dst,complex_type * src,int nrows,int ncols) {
- if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(ncols,nrows,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE);
+ void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftwf_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwf_execute_dft( m_plan, src,dst);
}
@@ -114,33 +114,33 @@
inline
void fwd(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
+ if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftw_execute_dft( m_plan, src,dst);
}
inline
void inv(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
+ if (m_plan==NULL) m_plan = fftw_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftw_execute_dft( m_plan, src,dst);
}
inline
void fwd(complex_type * dst,scalar_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
+ if (m_plan==NULL) m_plan = fftw_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftw_execute_dft_r2c( m_plan,src,dst);
}
inline
void inv(scalar_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL)
- m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
+ m_plan = fftw_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftw_execute_dft_c2r( m_plan, src,dst);
}
inline
- void fwd2( complex_type * dst,complex_type * src,int nrows,int ncols) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_2d(ncols,nrows,src,dst,FFTW_FORWARD,FFTW_ESTIMATE);
+ void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftw_execute_dft( m_plan, src,dst);
}
inline
- void inv2( complex_type * dst,complex_type * src,int nrows,int ncols) {
- if (m_plan==NULL) m_plan = fftw_plan_dft_2d(ncols,nrows,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE);
+ void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftw_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftw_execute_dft( m_plan, src,dst);
}
};
@@ -155,33 +155,33 @@
inline
void fwd(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE);
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_FORWARD, FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwl_execute_dft( m_plan, src,dst);
}
inline
void inv(complex_type * dst,complex_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE);
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_1d(nfft,src,dst, FFTW_BACKWARD , FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwl_execute_dft( m_plan, src,dst);
}
inline
void fwd(complex_type * dst,scalar_type * src,int nfft) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE);
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_r2c_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwl_execute_dft_r2c( m_plan,src,dst);
}
inline
void inv(scalar_type * dst,complex_type * src,int nfft) {
if (m_plan==NULL)
- m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE);
+ m_plan = fftwl_plan_dft_c2r_1d(nfft,src,dst,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwl_execute_dft_c2r( m_plan, src,dst);
}
inline
- void fwd2( complex_type * dst,complex_type * src,int nrows,int ncols) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(ncols,nrows,src,dst,FFTW_FORWARD,FFTW_ESTIMATE);
+ void fwd2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_FORWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwl_execute_dft( m_plan, src,dst);
}
inline
- void inv2( complex_type * dst,complex_type * src,int nrows,int ncols) {
- if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(ncols,nrows,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE);
+ void inv2( complex_type * dst,complex_type * src,int n0,int n1) {
+ if (m_plan==NULL) m_plan = fftwl_plan_dft_2d(n0,n1,src,dst,FFTW_BACKWARD,FFTW_ESTIMATE|FFTW_PRESERVE_INPUT);
fftwl_execute_dft( m_plan, src,dst);
}
};
@@ -214,9 +214,9 @@
// 2-d complex-to-complex
inline
- void fwd2(Complex * dst, const Complex * src, int nrows,int ncols)
+ void fwd2(Complex * dst, const Complex * src, int n0,int n1)
{
- get_plan(nrows,ncols,false,dst,src).fwd2(ei_fftw_cast(dst), ei_fftw_cast(src) ,nrows,ncols);
+ get_plan(n0,n1,false,dst,src).fwd2(ei_fftw_cast(dst), ei_fftw_cast(src) ,n0,n1);
}
// inverse complex-to-complex
@@ -235,9 +235,9 @@
// 2-d complex-to-complex
inline
- void inv2(Complex * dst, const Complex * src, int nrows,int ncols)
+ void inv2(Complex * dst, const Complex * src, int n0,int n1)
{
- get_plan(nrows,ncols,true,dst,src).inv2(ei_fftw_cast(dst), ei_fftw_cast(src) ,nrows,ncols);
+ get_plan(n0,n1,true,dst,src).inv2(ei_fftw_cast(dst), ei_fftw_cast(src) ,n0,n1);
}
@@ -258,11 +258,11 @@
}
inline
- PlanData & get_plan(int nrows,int ncols,bool inverse,void * dst,const void * src)
+ PlanData & get_plan(int n0,int n1,bool inverse,void * dst,const void * src)
{
bool inplace = (dst==src);
bool aligned = ( (reinterpret_cast<size_t>(src)&15) | (reinterpret_cast<size_t>(dst)&15) ) == 0;
- int64_t key = ( ( (((int64_t)ncols) << 30)|(nrows<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1 ) + 1;
+ int64_t key = ( ( (((int64_t)n0) << 30)|(n1<<3 ) | (inverse<<2) | (inplace<<1) | aligned ) << 1 ) + 1;
return m_plans[key];
}
};
diff --git a/unsupported/Eigen/src/FFT/ei_kissfft_impl.h b/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
index dbd92132e..5db1bf37d 100644
--- a/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
+++ b/unsupported/Eigen/src/FFT/ei_kissfft_impl.h
@@ -291,6 +291,16 @@ struct ei_kissfft_impl
get_plan(nfft,false).work(0, dst, src, 1,1);
}
+ inline
+ void fwd2( Complex * dst,const Complex *src,int n0,int n1)
+ {
+ }
+
+ inline
+ void inv2( Complex * dst,const Complex *src,int n0,int n1)
+ {
+ }
+
// real-to-complex forward FFT
// perform two FFTs of src even and src odd
// then twiddle to recombine them into the half-spectrum format
diff --git a/unsupported/test/FFT.cpp b/unsupported/test/FFT.cpp
index 056be2ef3..02cd5a48f 100644
--- a/unsupported/test/FFT.cpp
+++ b/unsupported/test/FFT.cpp
@@ -1,3 +1,5 @@
+#if 0
+
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
@@ -25,7 +27,11 @@
#include "main.h"
#include <unsupported/Eigen/FFT>
+template <typename T>
+std::complex<T> RandomCpx() { return std::complex<T>( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); }
+
using namespace std;
+using namespace Eigen;
float norm(float x) {return x*x;}
double norm(double x) {return x*x;}
@@ -39,17 +45,16 @@ complex<long double> promote(double x) { return complex<long double>( x); }
complex<long double> promote(long double x) { return complex<long double>( x); }
- template <typename VectorType1,typename VectorType2>
- long double fft_rmse( const VectorType1 & fftbuf,const VectorType2 & timebuf)
+ template <typename T1,typename T2>
+ long double fft_rmse( const vector<T1> & fftbuf,const vector<T2> & timebuf)
{
long double totalpower=0;
long double difpower=0;
- cerr <<"idx\ttruth\t\tvalue\t|dif|=\n";
- long double pi = acos((long double)-1);
- for (int k0=0;k0<fftbuf.size();++k0) {
+ long double pi = acos((long double)-1 );
+ for (size_t k0=0;k0<fftbuf.size();++k0) {
complex<long double> acc = 0;
long double phinc = -2.*k0* pi / timebuf.size();
- for (int k1=0;k1<timebuf.size();++k1) {
+ for (size_t k1=0;k1<timebuf.size();++k1) {
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
}
totalpower += norm(acc);
@@ -62,13 +67,13 @@ complex<long double> promote(long double x) { return complex<long double>( x);
return sqrt(difpower/totalpower);
}
- template <typename VectorType1,typename VectorType2>
- long double dif_rmse( const VectorType1& buf1,const VectorType2& buf2)
+ template <typename T1,typename T2>
+ long double dif_rmse( const vector<T1> buf1,const vector<T2> buf2)
{
long double totalpower=0;
long double difpower=0;
- int n = min( buf1.size(),buf2.size() );
- for (int k=0;k<n;++k) {
+ size_t n = min( buf1.size(),buf2.size() );
+ for (size_t k=0;k<n;++k) {
totalpower += (norm( buf1[k] ) + norm(buf2[k]) )/2.;
difpower += norm(buf1[k] - buf2[k]);
}
@@ -234,3 +239,7 @@ void test_FFT()
CALL_SUBTEST( test_scalar<double>(2*3*4*5*7) );
CALL_SUBTEST( test_scalar<long double>(2*3*4*5*7) );
}
+#else
+#define test_FFTW test_FFT
+#include "FFTW.cpp"
+#endif
diff --git a/unsupported/test/FFTW.cpp b/unsupported/test/FFTW.cpp
index 6f1f2ec44..94de53e36 100644
--- a/unsupported/test/FFTW.cpp
+++ b/unsupported/test/FFTW.cpp
@@ -23,7 +23,7 @@
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "main.h"
-#include <fftw3.h>
+#include <iostream>
#include <unsupported/Eigen/FFT>
template <typename T>
@@ -44,31 +44,30 @@ complex<long double> promote(double x) { return complex<long double>( x); }
complex<long double> promote(long double x) { return complex<long double>( x); }
- template <typename T1,typename T2>
- long double fft_rmse( const vector<T1> & fftbuf,const vector<T2> & timebuf)
+ template <typename VT1,typename VT2>
+ long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf)
{
long double totalpower=0;
long double difpower=0;
long double pi = acos((long double)-1 );
- cerr <<"idx\ttruth\t\tvalue\t|dif|=\n";
- for (size_t k0=0;k0<fftbuf.size();++k0) {
+ for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) {
complex<long double> acc = 0;
long double phinc = -2.*k0* pi / timebuf.size();
- for (size_t k1=0;k1<timebuf.size();++k1) {
+ for (size_t k1=0;k1<(size_t)timebuf.size();++k1) {
acc += promote( timebuf[k1] ) * exp( complex<long double>(0,k1*phinc) );
}
totalpower += norm(acc);
complex<long double> x = promote(fftbuf[k0]);
complex<long double> dif = acc - x;
difpower += norm(dif);
- cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl;
+ //cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl;
}
cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
return sqrt(difpower/totalpower);
}
- template <typename T1,typename T2>
- long double dif_rmse( const vector<T1> buf1,const vector<T2> buf2)
+ template <typename VT1,typename VT2>
+ long double dif_rmse( const VT1 buf1,const VT2 buf2)
{
long double totalpower=0;
long double difpower=0;
@@ -80,46 +79,132 @@ complex<long double> promote(long double x) { return complex<long double>( x);
return sqrt(difpower/totalpower);
}
-template <class T>
-void test_scalar(int nfft)
+enum { StdVectorContainer, EigenVectorContainer };
+
+template<int Container, typename Scalar> struct VectorType;
+
+template<typename Scalar> struct VectorType<StdVectorContainer,Scalar>
{
- typedef typename Eigen::FFT<T>::Complex Complex;
- typedef typename Eigen::FFT<T>::Scalar Scalar;
+ typedef vector<Scalar> type;
+};
+
+template<typename Scalar> struct VectorType<EigenVectorContainer,Scalar>
+{
+ typedef Matrix<Scalar,Dynamic,1> type;
+};
+
+template <int Container, typename T>
+void test_scalar_generic(int nfft)
+{
+ typedef typename FFT<T>::Complex Complex;
+ typedef typename FFT<T>::Scalar Scalar;
+ typedef typename VectorType<Container,Scalar>::type ScalarVector;
+ typedef typename VectorType<Container,Complex>::type ComplexVector;
FFT<T> fft;
- vector<Scalar> inbuf(nfft);
- vector<Complex> outbuf;
+ ScalarVector tbuf(nfft);
+ ComplexVector freqBuf;
for (int k=0;k<nfft;++k)
- inbuf[k]= (T)(rand()/(double)RAND_MAX - .5);
- fft.fwd( outbuf,inbuf);
- VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
+ tbuf[k]= (T)( rand()/(double)RAND_MAX - .5);
- vector<Scalar> buf3;
- fft.inv( buf3 , outbuf);
- VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
+ cout << "tbuf=["; for (size_t i=0;i<(size_t) tbuf.size();++i) {cout << tbuf[i] << " ";} cout << "];\n";
+
+ // make sure it DOESN'T give the right full spectrum answer
+ // if we've asked for half-spectrum
+ fft.SetFlag(fft.HalfSpectrum );
+ fft.fwd( freqBuf,tbuf);
+ VERIFY((size_t)freqBuf.size() == (size_t)( (nfft>>1)+1) );
+ VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>() );// gross check
+
+ fft.ClearFlag(fft.HalfSpectrum );
+ fft.fwd( freqBuf,tbuf);
+ VERIFY( (size_t)freqBuf.size() == (size_t)nfft);
+ VERIFY( fft_rmse(freqBuf,tbuf) < test_precision<T>() );// gross check
+
+ if (nfft&1)
+ return; // odd FFTs get the wrong size inverse FFT
+
+ ScalarVector tbuf2;
+ cout << "freqBuf=["; for (size_t i=0;i<(size_t) freqBuf.size();++i) {cout << freqBuf[i] << " ";} cout << "];\n";
+ fft.inv( tbuf2 , freqBuf);
+ cout << "tbuf2=["; for (size_t i=0;i<(size_t) tbuf2.size();++i) {cout << tbuf2[i] << " ";} cout << "];\n";
+ VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>() );// gross check
+
+
+ // verify that the Unscaled flag takes effect
+ ScalarVector tbuf3;
+ fft.SetFlag(fft.Unscaled);
+
+ cout << "freqBuf=["; for (size_t i=0;i<(size_t) freqBuf.size();++i) {cout << freqBuf[i] << " ";} cout << "];\n";
+ fft.inv( tbuf3 , freqBuf);
+ cout << "tbuf3=["; for (size_t i=0;i<(size_t) tbuf3.size();++i) {cout << tbuf3[i] << " ";} cout << "];\n";
+
+ for (int k=0;k<nfft;++k)
+ tbuf3[k] *= T(1./nfft);
+
+
+ //for (size_t i=0;i<(size_t) tbuf.size();++i)
+ // cout << "freqBuf=" << freqBuf[i] << " in2=" << tbuf3[i] << " - in=" << tbuf[i] << " => " << (tbuf3[i] - tbuf[i] ) << endl;
+
+ cout << "dif_rmse = " << dif_rmse(tbuf,tbuf3) << endl;
+ cout << "test_precision = " << test_precision<T>() << endl;
+ VERIFY( dif_rmse(tbuf,tbuf3) < test_precision<T>() );// gross check
+
+ // verify that ClearFlag works
+ fft.ClearFlag(fft.Unscaled);
+ fft.inv( tbuf2 , freqBuf);
+ VERIFY( dif_rmse(tbuf,tbuf2) < test_precision<T>() );// gross check
}
-template <class T>
-void test_complex(int nfft)
+template <typename T>
+void test_scalar(int nfft)
{
- typedef typename Eigen::FFT<T>::Complex Complex;
+ test_scalar_generic<StdVectorContainer,T>(nfft);
+ //test_scalar_generic<EigenVectorContainer,T>(nfft);
+}
+
+
+template <int Container, typename T>
+void test_complex_generic(int nfft)
+{
+ typedef typename FFT<T>::Complex Complex;
+ typedef typename VectorType<Container,Complex>::type ComplexVector;
FFT<T> fft;
- vector<Complex> inbuf(nfft);
- vector<Complex> outbuf;
- vector<Complex> buf3;
+ ComplexVector inbuf(nfft);
+ ComplexVector outbuf;
+ ComplexVector buf3;
for (int k=0;k<nfft;++k)
- inbuf[k]= RandomCpx<T>();
+ inbuf[k]= Complex( (T)(rand()/(double)RAND_MAX - .5), (T)(rand()/(double)RAND_MAX - .5) );
fft.fwd( outbuf , inbuf);
VERIFY( fft_rmse(outbuf,inbuf) < test_precision<T>() );// gross check
-
fft.inv( buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
+
+ // verify that the Unscaled flag takes effect
+ ComplexVector buf4;
+ fft.SetFlag(fft.Unscaled);
+ fft.inv( buf4 , outbuf);
+ for (int k=0;k<nfft;++k)
+ buf4[k] *= T(1./nfft);
+ VERIFY( dif_rmse(inbuf,buf4) < test_precision<T>() );// gross check
+
+ // verify that ClearFlag works
+ fft.ClearFlag(fft.Unscaled);
+ fft.inv( buf3 , outbuf);
+ VERIFY( dif_rmse(inbuf,buf3) < test_precision<T>() );// gross check
}
+template <typename T>
+void test_complex(int nfft)
+{
+ test_complex_generic<StdVectorContainer,T>(nfft);
+ test_complex_generic<EigenVectorContainer,T>(nfft);
+}
+/*
template <typename T,int nrows,int ncols>
void test_complex2d()
{
@@ -142,16 +227,16 @@ void test_complex2d()
dst2.row(k) = tmpOut;
}
- fft.fwd2(dst.data(),src.data(),nrows,ncols);
- fft.inv2(src2.data(),dst.data(),nrows,ncols);
+ fft.fwd2(dst.data(),src.data(),ncols,nrows);
+ fft.inv2(src2.data(),dst.data(),ncols,nrows);
VERIFY( (src-src2).norm() < test_precision<T>() );
VERIFY( (dst-dst2).norm() < test_precision<T>() );
}
+*/
void test_FFTW()
{
- CALL_SUBTEST( ( test_complex2d<float,4,8> () ) );
- CALL_SUBTEST( ( test_complex2d<double,4,8> () ) );
+ //CALL_SUBTEST( ( test_complex2d<float,4,8> () ) ); CALL_SUBTEST( ( test_complex2d<double,4,8> () ) );
//CALL_SUBTEST( ( test_complex2d<long double,4,8> () ) );
CALL_SUBTEST( test_complex<float>(32) ); CALL_SUBTEST( test_complex<double>(32) ); CALL_SUBTEST( test_complex<long double>(32) );
CALL_SUBTEST( test_complex<float>(256) ); CALL_SUBTEST( test_complex<double>(256) ); CALL_SUBTEST( test_complex<long double>(256) );