aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported
diff options
context:
space:
mode:
authorGravatar Igor Babuschkin <igor@babuschk.in>2016-06-29 11:54:35 +0100
committerGravatar Igor Babuschkin <igor@babuschk.in>2016-06-29 11:54:35 +0100
commit85699850d98a64abbf8e1fac7736b57ca0d883ad (patch)
treef270871269b9dd579bcebda44a999343d8296501 /unsupported
parent328c5d876a582a8d5c292141c6ad2784fad2a950 (diff)
Add missing CUDA kernel to tensor scan op
The TensorScanOp implementation was missing a CUDA kernel launch. This adds a simple placeholder implementation.
Diffstat (limited to 'unsupported')
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorScan.h134
-rw-r--r--unsupported/test/CMakeLists.txt2
-rw-r--r--unsupported/test/cxx11_tensor_scan.cpp118
3 files changed, 160 insertions, 94 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h b/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h
index ba165ad4d..a61b14ded 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorScan.h
@@ -9,9 +9,11 @@
#ifndef EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
#define EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
+
namespace Eigen {
namespace internal {
+
template <typename Op, typename XprType>
struct traits<TensorScanOp<Op, XprType> >
: public traits<XprType> {
@@ -42,9 +44,7 @@ struct nested<TensorScanOp<Op, XprType>, 1,
* \ingroup CXX11_Tensor_Module
*
* \brief Tensor scan class.
- *
*/
-
template <typename Op, typename XprType>
class TensorScanOp
: public TensorBase<TensorScanOp<Op, XprType>, ReadOnlyAccessors> {
@@ -76,6 +76,9 @@ protected:
const bool m_exclusive;
};
+template <typename Self, typename Reducer, typename Device>
+struct ScanLauncher;
+
// Eval as rvalue
template <typename Op, typename ArgType, typename Device>
struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> {
@@ -87,6 +90,7 @@ struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> {
typedef typename internal::remove_const<typename XprType::Scalar>::type Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
+ typedef TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> Self;
enum {
IsAligned = false,
@@ -128,17 +132,42 @@ struct TensorEvaluator<const TensorScanOp<Op, ArgType>, Device> {
return m_impl.dimensions();
}
- EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& stride() const {
+ return m_stride;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Index& size() const {
+ return m_size;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Op& accumulator() const {
+ return m_accumulator;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool exclusive() const {
+ return m_exclusive;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& inner() const {
+ return m_impl;
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Device& device() const {
+ return m_device;
+ }
+
+ EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
m_impl.evalSubExprsIfNeeded(NULL);
+ ScanLauncher<Self, Op, Device> launcher;
if (data) {
- accumulateTo(data);
+ launcher(*this, data);
return false;
- } else {
- const Index total_size = internal::array_prod(dimensions());
- m_output = static_cast<CoeffReturnType*>(m_device.allocate(total_size * sizeof(Scalar)));
- accumulateTo(m_output);
- return true;
}
+
+ const Index total_size = internal::array_prod(dimensions());
+ m_output = static_cast<CoeffReturnType*>(m_device.allocate(total_size * sizeof(Scalar)));
+ launcher(*this, m_output);
+ return true;
}
template<int LoadMode>
@@ -176,34 +205,83 @@ protected:
const Index m_size;
Index m_stride;
CoeffReturnType* m_output;
+};
+
+// CPU implementation of scan
+// TODO(ibab) This single-threaded implementation should be parallelized,
+// at least by running multiple scans at the same time.
+template <typename Self, typename Reducer, typename Device>
+struct ScanLauncher {
+ void operator()(Self& self, typename Self::CoeffReturnType *data) {
+ Index total_size = internal::array_prod(self.dimensions());
- // TODO(ibab) Parallelize this single-threaded implementation if desired
- EIGEN_DEVICE_FUNC void accumulateTo(Scalar* data) {
// We fix the index along the scan axis to 0 and perform a
// scan per remaining entry. The iteration is split into two nested
// loops to avoid an integer division by keeping track of each idx1 and idx2.
- for (Index idx1 = 0; idx1 < dimensions().TotalSize() / m_size; idx1 += m_stride) {
- for (Index idx2 = 0; idx2 < m_stride; idx2++) {
- // Calculate the starting offset for the scan
- Index offset = idx1 * m_size + idx2;
-
- // Compute the scan along the axis, starting at the calculated offset
- CoeffReturnType accum = m_accumulator.initialize();
- for (Index idx3 = 0; idx3 < m_size; idx3++) {
- Index curr = offset + idx3 * m_stride;
- if (m_exclusive) {
- data[curr] = m_accumulator.finalize(accum);
- m_accumulator.reduce(m_impl.coeff(curr), &accum);
- } else {
- m_accumulator.reduce(m_impl.coeff(curr), &accum);
- data[curr] = m_accumulator.finalize(accum);
- }
+ for (Index idx1 = 0; idx1 < total_size; idx1 += self.stride() * self.size()) {
+ for (Index idx2 = 0; idx2 < self.stride(); idx2++) {
+ // Calculate the starting offset for the scan
+ Index offset = idx1 + idx2;
+
+ // Compute the scan along the axis, starting at the calculated offset
+ typename Self::CoeffReturnType accum = self.accumulator().initialize();
+ for (Index idx3 = 0; idx3 < self.size(); idx3++) {
+ Index curr = offset + idx3 * self.stride();
+
+ if (self.exclusive()) {
+ data[curr] = self.accumulator().finalize(accum);
+ self.accumulator().reduce(self.inner().coeff(curr), &accum);
+ } else {
+ self.accumulator().reduce(self.inner().coeff(curr), &accum);
+ data[curr] = self.accumulator().finalize(accum);
}
- }
+ }
+ }
}
}
};
+#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
+
+// GPU implementation of scan
+// TODO(ibab) This placeholder implementation performs multiple scans in
+// parallel, but it would be better to use a parallel scan algorithm and
+// optimize memory access.
+template <typename Self, typename Reducer>
+__global__ void ScanKernel(Self self, Index total_size, typename Self::CoeffReturnType* data) {
+ // Compute offset as in the CPU version
+ Index val = threadIdx.x + blockIdx.x * blockDim.x;
+ Index offset = (val / self.stride()) * self.stride() * self.size() + val % self.stride();
+
+ if (offset + (self.size() - 1) * self.stride() < total_size) {
+ // Compute the scan along the axis, starting at the calculated offset
+ typename Self::CoeffReturnType accum = self.accumulator().initialize();
+ for (Index idx = 0; idx < self.size(); idx++) {
+ Index curr = offset + idx * self.stride();
+ if (self.exclusive()) {
+ data[curr] = self.accumulator().finalize(accum);
+ self.accumulator().reduce(self.inner().coeff(curr), &accum);
+ } else {
+ self.accumulator().reduce(self.inner().coeff(curr), &accum);
+ data[curr] = self.accumulator().finalize(accum);
+ }
+ }
+ }
+ __syncthreads();
+
+}
+
+template <typename Self, typename Reducer>
+struct ScanLauncher<Self, Reducer, GpuDevice> {
+ void operator()(const Self& self, typename Self::CoeffReturnType* data) {
+ Index total_size = internal::array_prod(self.dimensions());
+ Index num_blocks = (total_size / self.size() + 63) / 64;
+ Index block_size = 64;
+ LAUNCH_CUDA_KERNEL((ScanKernel<Self, Reducer>), num_blocks, block_size, 0, self.device(), self, total_size, data);
+ }
+};
+#endif // EIGEN_USE_GPU && __CUDACC__
+
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_SCAN_H
diff --git a/unsupported/test/CMakeLists.txt b/unsupported/test/CMakeLists.txt
index b1138cd12..c9a70d7a7 100644
--- a/unsupported/test/CMakeLists.txt
+++ b/unsupported/test/CMakeLists.txt
@@ -220,7 +220,7 @@ if(CUDA_FOUND AND EIGEN_TEST_CUDA)
ei_add_test(cxx11_tensor_reduction_cuda)
ei_add_test(cxx11_tensor_argmax_cuda)
ei_add_test(cxx11_tensor_cast_float16_cuda)
-# ei_add_test(cxx11_tensor_scan_cuda)
+ ei_add_test(cxx11_tensor_scan_cuda)
# The random number generation code requires arch 3.5 or greater.
if (${EIGEN_CUDA_COMPUTE_ARCH} GREATER 34)
diff --git a/unsupported/test/cxx11_tensor_scan.cpp b/unsupported/test/cxx11_tensor_scan.cpp
index bafa6c96e..af59aa3ef 100644
--- a/unsupported/test/cxx11_tensor_scan.cpp
+++ b/unsupported/test/cxx11_tensor_scan.cpp
@@ -14,87 +14,73 @@
using Eigen::Tensor;
-template <int DataLayout, typename Type=float>
+template <int DataLayout, typename Type=float, bool Exclusive = false>
static void test_1d_scan()
{
- int size = 50;
- Tensor<Type, 1, DataLayout> tensor(size);
- tensor.setRandom();
- Tensor<Type, 1, DataLayout> result = tensor.cumsum(0);
-
- VERIFY_IS_EQUAL(tensor.dimension(0), result.dimension(0));
-
- float accum = 0;
- for (int i = 0; i < size; i++) {
- accum += tensor(i);
- VERIFY_IS_EQUAL(result(i), accum);
- }
-
- accum = 1;
- result = tensor.cumprod(0);
- for (int i = 0; i < size; i++) {
- accum *= tensor(i);
- VERIFY_IS_EQUAL(result(i), accum);
- }
-}
-
-template <int DataLayout, typename Type=float>
-static void test_1d_inclusive_scan()
-{
- int size = 50;
- Tensor<Type, 1, DataLayout> tensor(size);
- tensor.setRandom();
- Tensor<Type, 1, DataLayout> result = tensor.cumsum(0, true);
+ int size = 50;
+ Tensor<Type, 1, DataLayout> tensor(size);
+ tensor.setRandom();
+ Tensor<Type, 1, DataLayout> result = tensor.cumsum(0, Exclusive);
- VERIFY_IS_EQUAL(tensor.dimension(0), result.dimension(0));
+ VERIFY_IS_EQUAL(tensor.dimension(0), result.dimension(0));
- float accum = 0;
- for (int i = 0; i < size; i++) {
+ float accum = 0;
+ for (int i = 0; i < size; i++) {
+ if (Exclusive) {
VERIFY_IS_EQUAL(result(i), accum);
accum += tensor(i);
+ } else {
+ accum += tensor(i);
+ VERIFY_IS_EQUAL(result(i), accum);
}
+ }
- accum = 1;
- result = tensor.cumprod(0, true);
- for (int i = 0; i < size; i++) {
+ accum = 1;
+ result = tensor.cumprod(0, Exclusive);
+ for (int i = 0; i < size; i++) {
+ if (Exclusive) {
VERIFY_IS_EQUAL(result(i), accum);
accum *= tensor(i);
+ } else {
+ accum *= tensor(i);
+ VERIFY_IS_EQUAL(result(i), accum);
}
+ }
}
template <int DataLayout, typename Type=float>
static void test_4d_scan()
{
- int size = 5;
- Tensor<Type, 4, DataLayout> tensor(size, size, size, size);
- tensor.setRandom();
+ int size = 5;
+ Tensor<Type, 4, DataLayout> tensor(size, size, size, size);
+ tensor.setRandom();
- Tensor<Type, 4, DataLayout> result(size, size, size, size);
+ Tensor<Type, 4, DataLayout> result(size, size, size, size);
- result = tensor.cumsum(0);
- float accum = 0;
- for (int i = 0; i < size; i++) {
- accum += tensor(i, 0, 0, 0);
- VERIFY_IS_EQUAL(result(i, 0, 0, 0), accum);
- }
- result = tensor.cumsum(1);
- accum = 0;
- for (int i = 0; i < size; i++) {
- accum += tensor(0, i, 0, 0);
- VERIFY_IS_EQUAL(result(0, i, 0, 0), accum);
- }
- result = tensor.cumsum(2);
- accum = 0;
- for (int i = 0; i < size; i++) {
- accum += tensor(0, 0, i, 0);
- VERIFY_IS_EQUAL(result(0, 0, i, 0), accum);
- }
- result = tensor.cumsum(3);
- accum = 0;
- for (int i = 0; i < size; i++) {
- accum += tensor(0, 0, 0, i);
- VERIFY_IS_EQUAL(result(0, 0, 0, i), accum);
- }
+ result = tensor.cumsum(0);
+ float accum = 0;
+ for (int i = 0; i < size; i++) {
+ accum += tensor(i, 1, 2, 3);
+ VERIFY_IS_EQUAL(result(i, 1, 2, 3), accum);
+ }
+ result = tensor.cumsum(1);
+ accum = 0;
+ for (int i = 0; i < size; i++) {
+ accum += tensor(1, i, 2, 3);
+ VERIFY_IS_EQUAL(result(1, i, 2, 3), accum);
+ }
+ result = tensor.cumsum(2);
+ accum = 0;
+ for (int i = 0; i < size; i++) {
+ accum += tensor(1, 2, i, 3);
+ VERIFY_IS_EQUAL(result(1, 2, i, 3), accum);
+ }
+ result = tensor.cumsum(3);
+ accum = 0;
+ for (int i = 0; i < size; i++) {
+ accum += tensor(1, 2, 3, i);
+ VERIFY_IS_EQUAL(result(1, 2, 3, i), accum);
+ }
}
template <int DataLayout>
@@ -113,8 +99,10 @@ static void test_tensor_maps() {
}
void test_cxx11_tensor_scan() {
- CALL_SUBTEST(test_1d_scan<ColMajor>());
- CALL_SUBTEST(test_1d_scan<RowMajor>());
+ CALL_SUBTEST((test_1d_scan<ColMajor, float, true>()));
+ CALL_SUBTEST((test_1d_scan<ColMajor, float, false>()));
+ CALL_SUBTEST((test_1d_scan<RowMajor, float, true>()));
+ CALL_SUBTEST((test_1d_scan<RowMajor, float, false>()));
CALL_SUBTEST(test_4d_scan<ColMajor>());
CALL_SUBTEST(test_4d_scan<RowMajor>());
CALL_SUBTEST(test_tensor_maps<ColMajor>());