aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported
diff options
context:
space:
mode:
authorGravatar Desire NUENTSA <desire.nuentsa_wakam@inria.fr>2012-12-07 15:33:26 +0100
committerGravatar Desire NUENTSA <desire.nuentsa_wakam@inria.fr>2012-12-07 15:33:26 +0100
commit71cb78e1ba95e73021d8a99ef8f6ff6ae503ec05 (patch)
tree23f9b41bf5045bc0c2d4aa66a48bfbecab8560fa /unsupported
parent5afaacedc6129ae6c9488c8c6a0ec9179dda6abc (diff)
Fix Incomplete Cholesky factorization. Stable but need iterative robust shift
Diffstat (limited to 'unsupported')
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h167
1 files changed, 97 insertions, 70 deletions
diff --git a/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h b/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
index 712ec3b6c..b4a67ded0 100644
--- a/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
+++ b/unsupported/Eigen/src/IterativeSolvers/IncompleteCholesky.h
@@ -38,10 +38,10 @@ class IncompleteCholesky : internal::noncopyable
typedef Matrix<Scalar,Dynamic,1> ScalarType;
typedef Matrix<Index,Dynamic, 1> IndexType;
typedef std::vector<std::list<Index> > VectorList;
-
+ enum { UpLo = _UpLo };
public:
- IncompleteCholesky() {}
- IncompleteCholesky(const MatrixType& matrix)
+ IncompleteCholesky() : m_shift(1),m_factorizationIsOk(false) {}
+ IncompleteCholesky(const MatrixType& matrix) : m_shift(1),m_factorizationIsOk(false)
{
compute(matrix);
}
@@ -61,6 +61,12 @@ class IncompleteCholesky : internal::noncopyable
eigen_assert(m_isInitialized && "IncompleteLLT is not initialized.");
return m_info;
}
+
+ /**
+ * \brief Set the initial shift parameter
+ */
+ void setShift( Scalar shift) { m_shift = shift; }
+
/**
* \brief Computes the fill reducing permutation vector.
*/
@@ -68,7 +74,7 @@ class IncompleteCholesky : internal::noncopyable
void analyzePattern(const MatrixType& mat)
{
OrderingType ord;
- ord(mat, m_perm);
+ ord(mat.template selfadjointView<UpLo>(), m_perm);
m_analysisIsOk = true;
}
@@ -90,10 +96,12 @@ class IncompleteCholesky : internal::noncopyable
x = m_perm.inverse() * b;
else
x = b;
+ x = m_scal.asDiagonal() * x;
x = m_L.template triangularView<UnitLower>().solve(x);
x = m_L.adjoint().template triangularView<Upper>().solve(x);
if (m_perm.rows() == b.rows())
x = m_perm * x;
+ x = m_scal.asDiagonal() * x;
}
template<typename Rhs> inline const internal::solve_retval<IncompleteCholesky, Rhs>
solve(const MatrixBase<Rhs>& b) const
@@ -106,6 +114,8 @@ class IncompleteCholesky : internal::noncopyable
}
protected:
SparseMatrix<Scalar,ColMajor> m_L; // The lower part stored in CSC
+ ScalarType m_scal; // The vector for scaling the matrix
+ Scalar m_shift; //The initial shift parameter
bool m_analysisIsOk;
bool m_factorizationIsOk;
bool m_isInitialized;
@@ -123,13 +133,11 @@ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType
{
using std::sqrt;
eigen_assert(m_analysisIsOk && "analyzePattern() should be called first");
-
- // FIXME Stability: We should probably compute the scaling factors and the shifts that are needed to ensure a succesful LLT factorization and an efficient preconditioner.
-
+
// Dropping strategies : Keep only the p largest elements per column, where p is the number of elements in the column of the original matrix. Other strategies will be added
// Apply the fill-reducing permutation computed in analyzePattern()
- if (m_perm.rows() == mat.rows() )
+ if (m_perm.rows() == mat.rows() ) // To detect the null permutation
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>().twistedBy(m_perm);
else
m_L.template selfadjointView<Lower>() = mat.template selfadjointView<_UpLo>();
@@ -143,65 +151,84 @@ void IncompleteCholesky<Scalar,_UpLo, OrderingType>::factorize(const _MatrixType
VectorList listCol(n); // listCol(j) is a linked list of columns to update column j
ScalarType curCol(n); // Store a nonzero values in each column
IndexType irow(n); // Row indices of nonzero elements in each column
+
+
+ // Computes the scaling factors
+ m_scal.resize(n);
+ for (int j = 0; j < n; j++)
+ {
+ m_scal(j) = m_L.col(j).norm();
+ m_scal(j) = sqrt(m_scal(j));
+ }
+ // Scale and compute the shift for the matrix
+ Scalar mindiag = vals[0];
+ for (int j = 0; j < n; j++){
+ for (int k = colPtr[j]; k < colPtr[j+1]; k++)
+ vals[k] /= (m_scal(j) * m_scal(rowIdx[k]));
+ mindiag = std::min(vals[colPtr[j]], mindiag);
+ }
+
+ if(mindiag < Scalar(0.)) m_shift = m_shift - mindiag;
+ // Apply the shift to the diagonal elements of the matrix
+ for (int j = 0; j < n; j++)
+ vals[colPtr[j]] += m_shift;
// jki version of the Cholesky factorization
for (int j=0; j < n; ++j)
- {
- //Debug
- bool update_j = false; //This column has received updates
- //Left-looking factorize the column j
- // First, load the jth column into curCol
- Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
- curCol.setZero();
- irow.setLinSpaced(n,0,n-1);
- for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
- {
- curCol(rowIdx[i]) = vals[i];
- irow(rowIdx[i]) = rowIdx[i];
- }
-
- std::list<int>::iterator k;
- // Browse all previous columns that will update column j
- for(k = listCol[j].begin(); k != listCol[j].end(); k++)
- {
- update_j = true;
- int jk = firstElt(*k); // First element to use in the column
- Scalar a_jk = vals[jk];
- diag -= a_jk * a_jk;
- jk += 1;
- for (int i = jk; i < colPtr[*k+1]; i++)
- {
- curCol(rowIdx[i]) -= vals[i] * a_jk ;
- }
- updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
- }
-
- if(update_j)
- {
- // Select the largest p elements
- // p is the original number of elements in the column (without the diagonal)
- int p = colPtr[j+1] - colPtr[j] - 1 ;
- internal::QuickSplit(curCol, irow, p);
- if(RealScalar(diag) <= 0)
- { //FIXME We can use heuristics (Kershaw, 1978 or above reference ) to get a dynamic shift
- std::cerr << "\nNegative diagonal during Incomplete factorization...abort...\n";
- m_info = NumericalIssue;
- return;
- }
- RealScalar rdiag = sqrt(RealScalar(diag));
- vals[colPtr[j]] = rdiag;
- Scalar scal = Scalar(1)/rdiag;
- // Insert the largest p elements in the matrix and scale them meanwhile
- int cpt = 0;
- for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
- {
- vals[i] = curCol(cpt) * scal;
- rowIdx[i] = irow(cpt);
- cpt ++;
- }
- }
- // Get the first smallest row index and put it after the diagonal element
- Index jk = colPtr(j)+1;
- updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
+ {
+ //Left-looking factorize the column j
+ // First, load the jth column into curCol
+ Scalar diag = vals[colPtr[j]]; // It is assumed that only the lower part is stored
+ curCol.setZero();
+ irow.setLinSpaced(n,0,n-1);
+ for (int i = colPtr[j] + 1; i < colPtr[j+1]; i++)
+ {
+ curCol(rowIdx[i]) = vals[i];
+ irow(rowIdx[i]) = rowIdx[i];
+ }
+ std::list<int>::iterator k;
+ // Browse all previous columns that will update column j
+ for(k = listCol[j].begin(); k != listCol[j].end(); k++)
+ {
+ int jk = firstElt(*k); // First element to use in the column
+ jk += 1;
+ for (int i = jk; i < colPtr[*k+1]; i++)
+ {
+ curCol(rowIdx[i]) -= vals[i] * vals[jk] ;
+ }
+ updateList(colPtr,rowIdx,vals, *k, jk, firstElt, listCol);
+ }
+
+ // Scale the current column
+ if(RealScalar(diag) <= 0)
+ {
+ std::cerr << "\nNegative diagonal during Incomplete factorization... "<< j << "\n";
+ m_info = NumericalIssue;
+ return;
+ }
+ RealScalar rdiag = sqrt(RealScalar(diag));
+ vals[colPtr[j]] = rdiag;
+ for (int i = j+1; i < n; i++)
+ {
+ //Scale
+ curCol(i) /= rdiag;
+ //Update the remaining diagonals with curCol
+ vals[colPtr[i]] -= curCol(i) * curCol(i);
+ }
+ // Select the largest p elements
+ // p is the original number of elements in the column (without the diagonal)
+ int p = colPtr[j+1] - colPtr[j] - 1 ;
+ internal::QuickSplit(curCol, irow, p);
+ // Insert the largest p elements in the matrix
+ int cpt = 0;
+ for (int i = colPtr[j]+1; i < colPtr[j+1]; i++)
+ {
+ vals[i] = curCol(cpt);
+ rowIdx[i] = irow(cpt);
+ cpt ++;
+ }
+ // Get the first smallest row index and put it after the diagonal element
+ Index jk = colPtr(j)+1;
+ updateList(colPtr,rowIdx,vals,j,jk,firstElt,listCol);
}
m_factorizationIsOk = true;
m_isInitialized = true;
@@ -218,7 +245,7 @@ inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const Idx
Index minpos;
rowIdx.segment(jk,p).minCoeff(&minpos);
minpos += jk;
- if (minpos != rowIdx(jk))
+ if (rowIdx(minpos) != rowIdx(jk))
{
//Swap
std::swap(rowIdx(jk),rowIdx(minpos));
@@ -230,11 +257,11 @@ inline void IncompleteCholesky<Scalar,_UpLo, OrderingType>::updateList(const Idx
}
namespace internal {
-template<typename _MatrixType, typename Rhs>
-struct solve_retval<IncompleteCholesky<_MatrixType>, Rhs>
- : solve_retval_base<IncompleteCholesky<_MatrixType>, Rhs>
+template<typename _Scalar, int _UpLo, typename OrderingType, typename Rhs>
+struct solve_retval<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
+ : solve_retval_base<IncompleteCholesky<_Scalar, _UpLo, OrderingType>, Rhs>
{
- typedef IncompleteCholesky<_MatrixType> Dec;
+ typedef IncompleteCholesky<_Scalar, _UpLo, OrderingType> Dec;
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
template<typename Dest> void evalTo(Dest& dst) const