aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported
diff options
context:
space:
mode:
authorGravatar Jens Wehner <jenswehner@gmail.com>2021-02-27 12:09:33 +0000
committerGravatar David Tellenbach <david.tellenbach@me.com>2021-02-27 12:09:33 +0000
commit4bfcee47b92eec06cf099fd0beaffa72897d104b (patch)
treeaa6c098c19f20891cf906189fe170f249c8a5cf0 /unsupported
parent29ebd84cb779eae01302a9f1e40cf06ca5eeeceb (diff)
Idrs iterative linear solver
Diffstat (limited to 'unsupported')
-rw-r--r--unsupported/Eigen/IterativeSolvers6
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h4
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/DGMRES.h2
-rwxr-xr-xunsupported/Eigen/src/IterativeSolvers/IDRS.h436
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/IterationController.h2
-rw-r--r--unsupported/test/CMakeLists.txt1
-rw-r--r--unsupported/test/idrs.cpp27
7 files changed, 473 insertions, 5 deletions
diff --git a/unsupported/Eigen/IterativeSolvers b/unsupported/Eigen/IterativeSolvers
index 0fa129a7b..08db3f163 100644
--- a/unsupported/Eigen/IterativeSolvers
+++ b/unsupported/Eigen/IterativeSolvers
@@ -15,11 +15,14 @@
#include "../../Eigen/Householder"
/**
- * \defgroup IterativeSolvers_Module Iterative solvers module
+ * \defgroup IterativeLinearSolvers_Module Iterative solvers module
* This module aims to provide various iterative linear and non linear solver algorithms.
* It currently provides:
* - a constrained conjugate gradient
* - a Householder GMRES implementation
+ * - an IDR(s) implementation
+ * - a DGMRES implementation
+ * - a MINRES implementation
* \code
* #include <unsupported/Eigen/IterativeSolvers>
* \endcode
@@ -38,6 +41,7 @@
#include "src/IterativeSolvers/DGMRES.h"
//#include "src/IterativeSolvers/SSORPreconditioner.h"
#include "src/IterativeSolvers/MINRES.h"
+#include "src/IterativeSolvers/IDRS.h"
#include "../../Eigen/src/Core/util/ReenableStupidWarnings.h"
diff --git a/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h b/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h
index 21031a706..e7d70f39d 100644
--- a/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h
+++ b/unsupported/Eigen/src/IterativeSolvers/ConstrainedConjGrad.h
@@ -37,7 +37,7 @@ namespace Eigen {
namespace internal {
-/** \ingroup IterativeSolvers_Module
+/** \ingroup IterativeLinearSolvers_Module
* Compute the pseudo inverse of the non-square matrix C such that
* \f$ CINV = (C * C^T)^{-1} * C \f$ based on a conjugate gradient method.
*
@@ -96,7 +96,7 @@ void pseudo_inverse(const CMatrix &C, CINVMatrix &CINV)
-/** \ingroup IterativeSolvers_Module
+/** \ingroup IterativeLinearSolvers_Module
* Constrained conjugate gradient
*
* Computes the minimum of \f$ 1/2((Ax).x) - bx \f$ under the constraint \f$ Cx \le f \f$
diff --git a/unsupported/Eigen/src/IterativeSolvers/DGMRES.h b/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
index 2ab56b5e7..5ae011b75 100644
--- a/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
+++ b/unsupported/Eigen/src/IterativeSolvers/DGMRES.h
@@ -57,7 +57,7 @@ void sortWithPermutation (VectorType& vec, IndexType& perm, typename IndexType::
}
/**
- * \ingroup IterativeLInearSolvers_Module
+ * \ingroup IterativeLinearSolvers_Module
* \brief A Restarted GMRES with deflation.
* This class implements a modification of the GMRES solver for
* sparse linear systems. The basis is built with modified
diff --git a/unsupported/Eigen/src/IterativeSolvers/IDRS.h b/unsupported/Eigen/src/IterativeSolvers/IDRS.h
new file mode 100755
index 000000000..90d20fad4
--- /dev/null
+++ b/unsupported/Eigen/src/IterativeSolvers/IDRS.h
@@ -0,0 +1,436 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2020 Chris Schoutrop <c.e.m.schoutrop@tue.nl>
+// Copyright (C) 2020 Jens Wehner <j.wehner@esciencecenter.nl>
+// Copyright (C) 2020 Jan van Dijk <j.v.dijk@tue.nl>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+
+#ifndef EIGEN_IDRS_H
+#define EIGEN_IDRS_H
+
+namespace Eigen
+{
+
+ namespace internal
+ {
+ /** \internal Low-level Induced Dimension Reduction algoritm
+ \param A The matrix A
+ \param b The right hand side vector b
+ \param x On input and initial solution, on output the computed solution.
+ \param precond A preconditioner being able to efficiently solve for an
+ approximation of Ax=b (regardless of b)
+ \param iter On input the max number of iteration, on output the number of performed iterations.
+ \param relres On input the tolerance error, on output an estimation of the relative error.
+ \param S On input Number of the dimension of the shadow space.
+ \param smoothing switches residual smoothing on.
+ \param angle small omega lead to faster convergence at the expense of numerical stability
+ \param replacement switches on a residual replacement strategy to increase accuracy of residual at the expense of more Mat*vec products
+ \return false in the case of numerical issue, for example a break down of IDRS.
+ */
+ template<typename Vector, typename RealScalar>
+ typename Vector::Scalar omega(const Vector& t, const Vector& s, RealScalar angle)
+ {
+ using numext::abs;
+ typedef typename Vector::Scalar Scalar;
+ const RealScalar ns = s.norm();
+ const RealScalar nt = t.norm();
+ const Scalar ts = t.dot(s);
+ const RealScalar rho = abs(ts / (nt * ns));
+
+ if (rho < angle) {
+ if (ts == Scalar(0)) {
+ return Scalar(0);
+ }
+ // Original relation for om is given by
+ // om = om * angle / rho;
+ // To alleviate potential (near) division by zero this can be rewritten as
+ // om = angle * (ns / nt) * (ts / abs(ts)) = angle * (ns / nt) * sgn(ts)
+ return angle * (ns / nt) * (ts / abs(ts));
+ }
+ return ts / (nt * nt);
+ }
+
+ template <typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
+ bool idrs(const MatrixType& A, const Rhs& b, Dest& x, const Preconditioner& precond,
+ Index& iter,
+ typename Dest::RealScalar& relres, Index S, bool smoothing, typename Dest::RealScalar angle, bool replacement)
+ {
+ typedef typename Dest::RealScalar RealScalar;
+ typedef typename Dest::Scalar Scalar;
+ typedef Matrix<Scalar, Dynamic, 1> VectorType;
+ typedef Matrix<Scalar, Dynamic, Dynamic, ColMajor> DenseMatrixType;
+ const Index N = b.size();
+ S = S < x.rows() ? S : x.rows();
+ const RealScalar tol = relres;
+ const Index maxit = iter;
+
+ Index replacements = 0;
+ bool trueres = false;
+
+ FullPivLU<DenseMatrixType> lu_solver;
+
+ DenseMatrixType P;
+ {
+ HouseholderQR<DenseMatrixType> qr(DenseMatrixType::Random(N, S));
+ P = (qr.householderQ() * DenseMatrixType::Identity(N, S));
+ }
+
+ const RealScalar normb = b.norm();
+
+ if (internal::isApprox(normb, RealScalar(0)))
+ {
+ //Solution is the zero vector
+ x.setZero();
+ iter = 0;
+ relres = 0;
+ return true;
+ }
+ // from http://homepage.tudelft.nl/1w5b5/IDRS/manual.pdf
+ // A peak in the residual is considered dangerously high if‖ri‖/‖b‖> C(tol/epsilon).
+ // With epsilon the
+ // relative machine precision. The factor tol/epsilon corresponds to the size of a
+ // finite precision number that is so large that the absolute round-off error in
+ // this number, when propagated through the process, makes it impossible to
+ // achieve the required accuracy.The factor C accounts for the accumulation of
+ // round-off errors. This parameter has beenset to 10−3.
+ // mp is epsilon/C
+ // 10^3 * eps is very conservative, so normally no residual replacements will take place.
+ // It only happens if things go very wrong. Too many restarts may ruin the convergence.
+ const RealScalar mp = RealScalar(1e3) * NumTraits<Scalar>::epsilon();
+
+
+
+ //Compute initial residual
+ const RealScalar tolb = tol * normb; //Relative tolerance
+ VectorType r = b - A * x;
+
+ VectorType x_s, r_s;
+
+ if (smoothing)
+ {
+ x_s = x;
+ r_s = r;
+ }
+
+ RealScalar normr = r.norm();
+
+ if (normr <= tolb)
+ {
+ //Initial guess is a good enough solution
+ iter = 0;
+ relres = normr / normb;
+ return true;
+ }
+
+ DenseMatrixType G = DenseMatrixType::Zero(N, S);
+ DenseMatrixType U = DenseMatrixType::Zero(N, S);
+ DenseMatrixType M = DenseMatrixType::Identity(S, S);
+ VectorType t(N), v(N);
+ Scalar om = 1.;
+
+ //Main iteration loop, guild G-spaces:
+ iter = 0;
+
+ while (normr > tolb && iter < maxit)
+ {
+ //New right hand size for small system:
+ VectorType f = (r.adjoint() * P).adjoint();
+
+ for (Index k = 0; k < S; ++k)
+ {
+ //Solve small system and make v orthogonal to P:
+ //c = M(k:s,k:s)\f(k:s);
+ lu_solver.compute(M.block(k , k , S -k, S - k ));
+ VectorType c = lu_solver.solve(f.segment(k , S - k ));
+ //v = r - G(:,k:s)*c;
+ v = r - G.rightCols(S - k ) * c;
+ //Preconditioning
+ v = precond.solve(v);
+
+ //Compute new U(:,k) and G(:,k), G(:,k) is in space G_j
+ U.col(k) = U.rightCols(S - k ) * c + om * v;
+ G.col(k) = A * U.col(k );
+
+ //Bi-Orthogonalise the new basis vectors:
+ for (Index i = 0; i < k-1 ; ++i)
+ {
+ //alpha = ( P(:,i)'*G(:,k) )/M(i,i);
+ Scalar alpha = P.col(i ).dot(G.col(k )) / M(i, i );
+ G.col(k ) = G.col(k ) - alpha * G.col(i );
+ U.col(k ) = U.col(k ) - alpha * U.col(i );
+ }
+
+ //New column of M = P'*G (first k-1 entries are zero)
+ //M(k:s,k) = (G(:,k)'*P(:,k:s))';
+ M.block(k , k , S - k , 1) = (G.col(k ).adjoint() * P.rightCols(S - k )).adjoint();
+
+ if (internal::isApprox(M(k,k), Scalar(0)))
+ {
+ return false;
+ }
+
+ //Make r orthogonal to q_i, i = 0..k-1
+ Scalar beta = f(k ) / M(k , k );
+ r = r - beta * G.col(k );
+ x = x + beta * U.col(k );
+ normr = r.norm();
+
+ if (replacement && normr > tolb / mp)
+ {
+ trueres = true;
+ }
+
+ //Smoothing:
+ if (smoothing)
+ {
+ t = r_s - r;
+ //gamma is a Scalar, but the conversion is not allowed
+ Scalar gamma = t.dot(r_s) / t.norm();
+ r_s = r_s - gamma * t;
+ x_s = x_s - gamma * (x_s - x);
+ normr = r_s.norm();
+ }
+
+ if (normr < tolb || iter == maxit)
+ {
+ break;
+ }
+
+ //New f = P'*r (first k components are zero)
+ if (k < S-1)
+ {
+ f.segment(k + 1, S - (k + 1) ) = f.segment(k + 1 , S - (k + 1)) - beta * M.block(k + 1 , k , S - (k + 1), 1);
+ }
+ }//end for
+
+ if (normr < tolb || iter == maxit)
+ {
+ break;
+ }
+
+ //Now we have sufficient vectors in G_j to compute residual in G_j+1
+ //Note: r is already perpendicular to P so v = r
+ //Preconditioning
+ v = r;
+ v = precond.solve(v);
+
+ //Matrix-vector multiplication:
+ t = A * v;
+
+ //Computation of a new omega
+ om = internal::omega(t, r, angle);
+
+ if (om == RealScalar(0.0))
+ {
+ return false;
+ }
+
+ r = r - om * t;
+ x = x + om * v;
+ normr = r.norm();
+
+ if (replacement && normr > tolb / mp)
+ {
+ trueres = true;
+ }
+
+ //Residual replacement?
+ if (trueres && normr < normb)
+ {
+ r = b - A * x;
+ trueres = false;
+ replacements++;
+ }
+
+ //Smoothing:
+ if (smoothing)
+ {
+ t = r_s - r;
+ Scalar gamma = t.dot(r_s) /t.norm();
+ r_s = r_s - gamma * t;
+ x_s = x_s - gamma * (x_s - x);
+ normr = r_s.norm();
+ }
+
+ iter++;
+
+ }//end while
+
+ if (smoothing)
+ {
+ x = x_s;
+ }
+ relres=normr/normb;
+ return true;
+ }
+
+ } // namespace internal
+
+ template <typename _MatrixType, typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
+ class IDRS;
+
+ namespace internal
+ {
+
+ template <typename _MatrixType, typename _Preconditioner>
+ struct traits<Eigen::IDRS<_MatrixType, _Preconditioner> >
+ {
+ typedef _MatrixType MatrixType;
+ typedef _Preconditioner Preconditioner;
+ };
+
+ } // namespace internal
+
+
+/** \ingroup IterativeLinearSolvers_Module
+ * \brief The Induced Dimension Reduction method (IDR(s)) is a short-recurrences Krylov method for sparse square problems.
+ *
+ * This class allows to solve for A.x = b sparse linear problems. The vectors x and b can be either dense or sparse.
+ * he Induced Dimension Reduction method, IDR(), is a robust and efficient short-recurrence Krylov subspace method for
+ * solving large nonsymmetric systems of linear equations.
+ *
+ * For indefinite systems IDR(S) outperforms both BiCGStab and BiCGStab(L). Additionally, IDR(S) can handle matrices
+ * with complex eigenvalues more efficiently than BiCGStab.
+ *
+ * Many problems that do not converge for BiCGSTAB converge for IDR(s) (for larger values of s). And if both methods
+ * converge the convergence for IDR(s) is typically much faster for difficult systems (for example indefinite problems).
+ *
+ * IDR(s) is a limited memory finite termination method. In exact arithmetic it converges in at most N+N/s iterations,
+ * with N the system size. It uses a fixed number of 4+3s vector. In comparison, BiCGSTAB terminates in 2N iterations
+ * and uses 7 vectors. GMRES terminates in at most N iterations, and uses I+3 vectors, with I the number of iterations.
+ * Restarting GMRES limits the memory consumption, but destroys the finite termination property.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
+ * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
+ *
+ * \implsparsesolverconcept
+ *
+ * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
+ * and setTolerance() methods. The defaults are the size of the problem for the maximal number of iterations
+ * and NumTraits<Scalar>::epsilon() for the tolerance.
+ *
+ * The tolerance corresponds to the relative residual error: |Ax-b|/|b|
+ *
+ * \b Performance: when using sparse matrices, best performance is achied for a row-major sparse matrix format.
+ * Moreover, in this case multi-threading can be exploited if the user code is compiled with OpenMP enabled.
+ * See \ref TopicMultiThreading for details.
+ *
+ * By default the iterations start with x=0 as an initial guess of the solution.
+ * One can control the start using the solveWithGuess() method.
+ *
+ * IDR(s) can also be used in a matrix-free context, see the following \link MatrixfreeSolverExample example \endlink.
+ *
+ * \sa class SimplicialCholesky, DiagonalPreconditioner, IdentityPreconditioner
+ */
+ template <typename _MatrixType, typename _Preconditioner>
+ class IDRS : public IterativeSolverBase<IDRS<_MatrixType, _Preconditioner> >
+ {
+
+ public:
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef _Preconditioner Preconditioner;
+
+ private:
+ typedef IterativeSolverBase<IDRS> Base;
+ using Base::m_error;
+ using Base::m_info;
+ using Base::m_isInitialized;
+ using Base::m_iterations;
+ using Base::matrix;
+ Index m_S;
+ bool m_smoothing;
+ RealScalar m_angle;
+ bool m_residual;
+
+ public:
+ /** Default constructor. */
+ IDRS(): m_S(4), m_smoothing(false), m_angle(RealScalar(0.7)), m_residual(false) {}
+
+ /** Initialize the solver with matrix \a A for further \c Ax=b solving.
+
+ This constructor is a shortcut for the default constructor followed
+ by a call to compute().
+
+ \warning this class stores a reference to the matrix A as well as some
+ precomputed values that depend on it. Therefore, if \a A is changed
+ this class becomes invalid. Call compute() to update it with the new
+ matrix A, or modify a copy of A.
+ */
+ template <typename MatrixDerived>
+ explicit IDRS(const EigenBase<MatrixDerived>& A) : Base(A.derived()), m_S(4), m_smoothing(false),
+ m_angle(RealScalar(0.7)), m_residual(false) {}
+
+
+ /** \internal */
+ /** Loops over the number of columns of b and does the following:
+ 1. sets the tolerence and maxIterations
+ 2. Calls the function that has the core solver routine
+ */
+ template <typename Rhs, typename Dest>
+ void _solve_vector_with_guess_impl(const Rhs& b, Dest& x) const
+ {
+ m_iterations = Base::maxIterations();
+ m_error = Base::m_tolerance;
+
+ bool ret = internal::idrs(matrix(), b, x, Base::m_preconditioner, m_iterations, m_error, m_S,m_smoothing,m_angle,m_residual);
+
+ m_info = (!ret) ? NumericalIssue : m_error <= Base::m_tolerance ? Success : NoConvergence;
+ }
+
+ /** Sets the parameter S, indicating the dimension of the shadow space. Default is 4*/
+ void setS(Index S)
+ {
+ if (S < 1)
+ {
+ S = 4;
+ }
+
+ m_S = S;
+ }
+
+ /** Switches off and on smoothing.
+ Residual smoothing results in monotonically decreasing residual norms at
+ the expense of two extra vectors of storage and a few extra vector
+ operations. Although monotonic decrease of the residual norms is a
+ desirable property, the rate of convergence of the unsmoothed process and
+ the smoothed process is basically the same. Default is off */
+ void setSmoothing(bool smoothing)
+ {
+ m_smoothing=smoothing;
+ }
+
+ /** The angle must be a real scalar. In IDR(s), a value for the
+ iteration parameter omega must be chosen in every s+1th step. The most
+ natural choice is to select a value to minimize the norm of the next residual.
+ This corresponds to the parameter omega = 0. In practice, this may lead to
+ values of omega that are so small that the other iteration parameters
+ cannot be computed with sufficient accuracy. In such cases it is better to
+ increase the value of omega sufficiently such that a compromise is reached
+ between accurate computations and reduction of the residual norm. The
+ parameter angle =0.7 (”maintaining the convergence strategy”)
+ results in such a compromise. */
+ void setAngle(RealScalar angle)
+ {
+ m_angle=angle;
+ }
+
+ /** The parameter replace is a logical that determines whether a
+ residual replacement strategy is employed to increase the accuracy of the
+ solution. */
+ void setResidualUpdate(bool update)
+ {
+ m_residual=update;
+ }
+
+ };
+
+} // namespace Eigen
+
+#endif /* EIGEN_IDRS_H */
diff --git a/unsupported/Eigen/src/IterativeSolvers/IterationController.h b/unsupported/Eigen/src/IterativeSolvers/IterationController.h
index c9c1a4be2..a116e09e2 100644
--- a/unsupported/Eigen/src/IterativeSolvers/IterationController.h
+++ b/unsupported/Eigen/src/IterativeSolvers/IterationController.h
@@ -60,7 +60,7 @@
namespace Eigen {
-/** \ingroup IterativeSolvers_Module
+/** \ingroup IterativeLinearSolvers_Module
* \class IterationController
*
* \brief Controls the iterations of the iterative solvers
diff --git a/unsupported/test/CMakeLists.txt b/unsupported/test/CMakeLists.txt
index 15c21098a..181919361 100644
--- a/unsupported/test/CMakeLists.txt
+++ b/unsupported/test/CMakeLists.txt
@@ -104,6 +104,7 @@ ei_add_test(splines)
ei_add_test(gmres)
ei_add_test(dgmres)
ei_add_test(minres)
+ei_add_test(idrs)
ei_add_test(levenberg_marquardt)
ei_add_test(kronecker_product)
ei_add_test(bessel_functions)
diff --git a/unsupported/test/idrs.cpp b/unsupported/test/idrs.cpp
new file mode 100644
index 000000000..f88c01632
--- /dev/null
+++ b/unsupported/test/idrs.cpp
@@ -0,0 +1,27 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Gael Guennebaud <g.gael@free.fr>
+// Copyright (C) 2012 Kolja Brix <brix@igpm.rwth-aaachen.de>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "../../test/sparse_solver.h"
+#include <Eigen/IterativeSolvers>
+
+template<typename T> void test_idrs_T()
+{
+ IDRS<SparseMatrix<T>, DiagonalPreconditioner<T> > idrs_colmajor_diag;
+ IDRS<SparseMatrix<T>, IncompleteLUT<T> > idrs_colmajor_ilut;
+
+ CALL_SUBTEST( check_sparse_square_solving(idrs_colmajor_diag) );
+ CALL_SUBTEST( check_sparse_square_solving(idrs_colmajor_ilut) );
+}
+
+EIGEN_DECLARE_TEST(idrs)
+{
+ CALL_SUBTEST_1(test_idrs_T<double>());
+ CALL_SUBTEST_2(test_idrs_T<std::complex<double> >());
+}