aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported
diff options
context:
space:
mode:
authorGravatar Rasmus Munk Larsen <rmlarsen@google.com>2018-09-26 16:47:13 -0700
committerGravatar Rasmus Munk Larsen <rmlarsen@google.com>2018-09-26 16:47:13 -0700
commit3815aeed7a0304ea7703adf96124bd7f2d0530c1 (patch)
tree6c75c53471ff3c600952f775e8988dfd693afa47 /unsupported
parent0a3356f4ece30cd486b616eb1da9128aa4f245be (diff)
Parallelize tensor contraction over the inner dimension in cases where where one or both of the outer dimensions (m and n) are small but k is large. This speeds up individual matmul microbenchmarks by up to 85%.
Naming below is BM_Matmul_M_K_N_THREADS, measured on a 2-socket Intel Broadwell-based server. Benchmark Base (ns) New (ns) Improvement ------------------------------------------------------------------ BM_Matmul_1_80_13522_1 387457 396013 -2.2% BM_Matmul_1_80_13522_2 406487 230789 +43.2% BM_Matmul_1_80_13522_4 395821 123211 +68.9% BM_Matmul_1_80_13522_6 391625 97002 +75.2% BM_Matmul_1_80_13522_8 408986 113828 +72.2% BM_Matmul_1_80_13522_16 399988 67600 +83.1% BM_Matmul_1_80_13522_22 411546 60044 +85.4% BM_Matmul_1_80_13522_32 393528 57312 +85.4% BM_Matmul_1_80_13522_44 390047 63525 +83.7% BM_Matmul_1_80_13522_88 387876 63592 +83.6% BM_Matmul_1_1500_500_1 245359 248119 -1.1% BM_Matmul_1_1500_500_2 401833 143271 +64.3% BM_Matmul_1_1500_500_4 210519 100231 +52.4% BM_Matmul_1_1500_500_6 251582 86575 +65.6% BM_Matmul_1_1500_500_8 211499 80444 +62.0% BM_Matmul_3_250_512_1 70297 68551 +2.5% BM_Matmul_3_250_512_2 70141 52450 +25.2% BM_Matmul_3_250_512_4 67872 58204 +14.2% BM_Matmul_3_250_512_6 71378 63340 +11.3% BM_Matmul_3_250_512_8 69595 41652 +40.2% BM_Matmul_3_250_512_16 72055 42549 +40.9% BM_Matmul_3_250_512_22 70158 54023 +23.0% BM_Matmul_3_250_512_32 71541 56042 +21.7% BM_Matmul_3_250_512_44 71843 57019 +20.6% BM_Matmul_3_250_512_88 69951 54045 +22.7% BM_Matmul_3_1500_512_1 369328 374284 -1.4% BM_Matmul_3_1500_512_2 428656 223603 +47.8% BM_Matmul_3_1500_512_4 205599 139508 +32.1% BM_Matmul_3_1500_512_6 214278 139071 +35.1% BM_Matmul_3_1500_512_8 184149 142338 +22.7% BM_Matmul_3_1500_512_16 156462 156983 -0.3% BM_Matmul_3_1500_512_22 163905 158259 +3.4% BM_Matmul_3_1500_512_32 155314 157662 -1.5% BM_Matmul_3_1500_512_44 235434 158657 +32.6% BM_Matmul_3_1500_512_88 156779 160275 -2.2% BM_Matmul_1500_4_512_1 363358 349528 +3.8% BM_Matmul_1500_4_512_2 303134 263319 +13.1% BM_Matmul_1500_4_512_4 176208 130086 +26.2% BM_Matmul_1500_4_512_6 148026 115449 +22.0% BM_Matmul_1500_4_512_8 131656 98421 +25.2% BM_Matmul_1500_4_512_16 134011 82861 +38.2% BM_Matmul_1500_4_512_22 134950 85685 +36.5% BM_Matmul_1500_4_512_32 133165 90081 +32.4% BM_Matmul_1500_4_512_44 133203 90644 +32.0% BM_Matmul_1500_4_512_88 134106 100566 +25.0% BM_Matmul_4_1500_512_1 439243 435058 +1.0% BM_Matmul_4_1500_512_2 451830 257032 +43.1% BM_Matmul_4_1500_512_4 276434 164513 +40.5% BM_Matmul_4_1500_512_6 182542 144827 +20.7% BM_Matmul_4_1500_512_8 179411 166256 +7.3% BM_Matmul_4_1500_512_16 158101 155560 +1.6% BM_Matmul_4_1500_512_22 152435 155448 -1.9% BM_Matmul_4_1500_512_32 155150 149538 +3.6% BM_Matmul_4_1500_512_44 193842 149777 +22.7% BM_Matmul_4_1500_512_88 149544 154468 -3.3%
Diffstat (limited to 'unsupported')
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h25
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h185
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h1
3 files changed, 191 insertions, 20 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h b/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
index 3b22e43e7..ea17a897d 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
@@ -590,6 +590,25 @@ struct TensorContractionEvaluatorBase
// zero out the result buffer (which must be of size at least m * n * sizeof(Scalar)
this->m_device.memset(buffer, 0, m * n * sizeof(Scalar));
+ this->template evalGemmPartial<lhs_inner_dim_contiguous,
+ rhs_inner_dim_contiguous,
+ rhs_inner_dim_reordered, Alignment>(buffer,
+ 0, k, 1);
+ }
+
+ template <bool lhs_inner_dim_contiguous, bool rhs_inner_dim_contiguous, bool rhs_inner_dim_reordered, int Alignment>
+ EIGEN_DEVICE_FUNC void evalGemmPartial(Scalar* buffer, Index k_start, Index k_end, int num_threads) const {
+ // columns in left side, rows in right side
+ const Index k = this->m_k_size;
+
+ eigen_assert(k_end >= k_start && k_start >= 0 && k_end <= k);
+ const Index k_slice = k_end - k_start;
+
+ // rows in left side
+ const Index m = this->m_i_size;
+
+ // columns in right side
+ const Index n = this->m_j_size;
// define mr, nr, and all of my data mapper types
typedef typename internal::remove_const<typename EvalLeftArgType::Scalar>::type LhsScalar;
@@ -620,7 +639,7 @@ struct TensorContractionEvaluatorBase
typedef internal::blas_data_mapper<Scalar, Index, ColMajor> OutputMapper;
// Declare GEBP packing and kernel structs
- internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, mr, Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor> pack_lhs;
+ internal::gemm_pack_lhs<LhsScalar, Index, typename LhsMapper::SubMapper, mr, Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor> pack_lhs;
internal::gemm_pack_rhs<RhsScalar, Index, typename RhsMapper::SubMapper, nr, ColMajor> pack_rhs;
internal::gebp_kernel<LhsScalar, RhsScalar, Index, OutputMapper, mr, nr, false, false> gebp;
@@ -635,7 +654,7 @@ struct TensorContractionEvaluatorBase
OutputMapper output(buffer, m);
// Sizes of the blocks to load in cache. See the Goto paper for details.
- internal::TensorContractionBlocking<LhsScalar, RhsScalar, Index, internal::ShardByCol> blocking(k, m, n, 1);
+ internal::TensorContractionBlocking<LhsScalar, RhsScalar, Index, internal::ShardByCol> blocking(k_slice, m, n, num_threads);
const Index kc = blocking.kc();
const Index mc = numext::mini(m, blocking.mc());
const Index nc = numext::mini(n, blocking.nc());
@@ -648,7 +667,7 @@ struct TensorContractionEvaluatorBase
for(Index i2=0; i2<m; i2+=mc)
{
const Index actual_mc = numext::mini(i2+mc,m)-i2;
- for (Index k2 = 0; k2 < k; k2 += kc) {
+ for (Index k2 = k_start; k2 < k_end; k2 += kc) {
// make sure we don't overshoot right edge of left matrix, then pack vertical panel
const Index actual_kc = numext::mini(k2 + kc, k) - k2;
pack_lhs(blockA, lhs.getSubMapper(i2, k2), actual_kc, actual_mc, 0, 0);
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h b/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
index 0980854b4..57fe7cf99 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorContractionThreadPool.h
@@ -147,6 +147,14 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
contractionCost(m, n, bm, bn, bk, shard_by_col, false);
int num_threads = TensorCostModel<ThreadPoolDevice>::numThreads(
static_cast<double>(n) * m, cost, this->m_device.numThreads());
+ int num_threads_by_k = numThreadsInnerDim(m, n, k);
+ if (false && shardByInnerDim(m, n, k, num_threads, num_threads_by_k)) {
+ // We are in the scenario where it is more effective to shard by the
+ // inner dimension.
+ this->template evalShardedByInnerDim<Alignment>(num_threads_by_k,
+ buffer);
+ return;
+ }
// TODO(dvyukov): this is a stop-gap to prevent regressions while the cost
// model is not tuned. Remove this when the cost model is tuned.
@@ -242,9 +250,9 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
contract_t, internal::packet_traits<RhsScalar>::size,
rhs_inner_dim_contiguous, rhs_inner_dim_reordered, Unaligned>
RhsMapper;
- typedef internal::gemm_pack_lhs<LhsScalar, Index,
- typename LhsMapper::SubMapper, Traits::mr,
- Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor>
+ typedef internal::gemm_pack_lhs<
+ LhsScalar, Index, typename LhsMapper::SubMapper, Traits::mr,
+ Traits::LhsProgress, typename Traits::LhsPacket4Packing, ColMajor>
LhsPacker;
typedef internal::gemm_pack_rhs<
RhsScalar, Index, typename RhsMapper::SubMapper, Traits::nr, ColMajor>
@@ -709,20 +717,9 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
PacketType<RhsScalar, Device>::size);
const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
const double kd = static_cast<double>(bk);
- // Peak VFMA bandwidth is 0.5. However if we have not enough data for
- // vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined
- // experimentally.
- double computeBandwidth = bk == 1 ? 4.0 :
- (shard_by_col ? bn : bm) < Traits::nr ||
- (shard_by_col ? bm : bn) < Traits::mr ? 2.0 : 0.5;
-#ifndef EIGEN_VECTORIZE_FMA
- // Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors.
- // However for MULPS/ADDPS we have dependent sequence of 2 such instructions,
- // so overall bandwidth is 1.0.
- if (computeBandwidth == 0.5) computeBandwidth = 1.0;
-#endif
+ double compute_bandwidth = computeBandwidth(false, bm, bn, bk);
// Computations.
- TensorOpCost cost = TensorOpCost(0, 0, kd * computeBandwidth, true, packed_size);
+ TensorOpCost cost = TensorOpCost(0, 0, kd * compute_bandwidth, true, packed_size);
// Output stores.
cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
if (prepacked) {
@@ -743,6 +740,162 @@ struct TensorEvaluator<const TensorContractionOp<Indices, LeftArgType, RightArgT
return cost + lhsCost + rhsCost;
}
+ template <int Alignment>
+ EIGEN_STRONG_INLINE void addToBuffer(size_t n, const Scalar* src_buf,
+ Scalar* tgt_buf) const {
+ const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
+ size_t i = 0;
+ const size_t num_packets = n / output_packet_size;
+ for (; i < output_packet_size * num_packets; i += output_packet_size) {
+ const PacketReturnType src_val =
+ internal::pload<PacketReturnType>(src_buf + i);
+ const PacketReturnType tgt_val =
+ internal::ploadt<PacketReturnType, Alignment>(tgt_buf + i);
+ const PacketReturnType sum = internal::padd(src_val, tgt_val);
+ internal::pstoret<Scalar, PacketReturnType, Alignment>(tgt_buf + i, sum);
+ }
+ for (; i < n; ++i) {
+ tgt_buf[i] += src_buf[i];
+ }
+ }
+
+ // Decide whether we want to shard m x k x n contraction over the inner
+ // (contraction) dimension (k).
+ static bool shardByInnerDim(Index m, Index n, Index k, int num_threads,
+ int num_threads_by_k) {
+ size_t bufsize = m * n * sizeof(Scalar);
+ bool shard_by_k = false;
+ if (n == 1 || // If mat*vec or...
+ num_threads_by_k < 2 || // running single threaded or...
+ num_threads_by_k <
+ num_threads || // sharding by k gives less parallelism or...
+ bufsize > l3CacheSize() / num_threads_by_k || // need more buffer space
+ // than L3 cache or...
+ k / num_threads_by_k < 2 * Traits::nr) { // k per thread is tiny.
+ shard_by_k = false;
+ } else if (numext::maxi(m, n) / num_threads <
+ Traits::nr || // both other dimensions are tiny or...
+ // k per thread is not small and...
+ (k / num_threads_by_k > 8 * Traits::nr &&
+ // one of the outer dimensions is tiny or sharding by k offers
+ // more parallelism.
+ (numext::mini(m, n) < 2 * Traits::nr ||
+ num_threads_by_k > num_threads))) {
+ shard_by_k = true;
+ }
+ return shard_by_k;
+ }
+
+ template <int Alignment>
+ void evalShardedByInnerDim(int num_threads, Scalar* result) const {
+ const Index m = this->m_i_size;
+ const Index n = this->m_j_size;
+ const Index k = this->m_k_size;
+ // The underlying GEMM kernel assumes that k is a multiple of 8 and
+ // subtle breakage occurs if this is violated.
+ Index block_size = 8 * divup<Index>(k, 8 * num_threads);
+ int num_blocks = divup<Index>(k, block_size);
+ // we use 'result' for the first block's partial result.
+ MaxSizeVector<Scalar*> block_buffers(num_blocks - 1);
+ Barrier barrier(num_blocks);
+ auto process_block = [=, &barrier](Scalar* buf, Index first, Index last) {
+ ::memset(buf, 0, m * n * sizeof(Scalar));
+ TENSOR_CONTRACTION_DISPATCH(
+ this->template evalGemmPartial, Alignment,
+ (buf, first, last, this->m_device.numThreads()));
+ barrier.Notify();
+ };
+ Index start = 0;
+ for (int blocks_left = num_blocks; blocks_left > 0; --blocks_left) {
+ // The underlying GEMM kernel assumes that k is a multiple of 8 and
+ // subtle breakage occurs if this is violated.
+ block_size = 8 * divup<Index>(k - start, 8 * blocks_left);
+ Scalar* buf;
+ if (start == 0) {
+ buf = result;
+ } else {
+ buf = static_cast<Scalar*>(
+ this->m_device.allocate(m * n * sizeof(Scalar)));
+ block_buffers.push_back(buf);
+ }
+ Index end = start + block_size;
+ if (end > k) {
+ end = k;
+ }
+ this->m_device.enqueueNoNotification(
+ [=, &process_block]() { process_block(buf, start, end); });
+ start = end;
+ }
+ barrier.Wait();
+
+ // Add other partial results into first partial result.
+ for (const auto& buf : block_buffers) {
+ addToBuffer<Alignment>(m * n, buf, result);
+ this->m_device.deallocate(buf);
+ }
+ }
+
+ TensorOpCost contractionCostPerInnerDim(Index m, Index n, Index k) const {
+ // Compute cost.
+ const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
+ TensorOpCost cost(0, 0, (computeBandwidth(true, m, n, k) * m) * n);
+ // Output stores.
+ cost += TensorOpCost(0, sizeof(CoeffReturnType), 0, true, output_packet_size);
+ TensorOpCost lhsCost = this->m_leftImpl.costPerCoeff(true) * m;
+ TensorOpCost rhsCost = this->m_rightImpl.costPerCoeff(true) * n;
+ // Since the inner gemm kernel is always sharded by column, the lhs
+ // load cost is negligible.
+ lhsCost.dropMemoryCost();
+ return cost + lhsCost + rhsCost;
+ }
+
+ int numThreadsInnerDim(Index m, Index n, Index k) const {
+ const int output_packet_size = internal::unpacket_traits<PacketReturnType>::size;
+ TensorOpCost cost = contractionCostPerInnerDim(m, n, k);
+ double total_parallel_cost =
+ TensorCostModel<ThreadPoolDevice>::totalCost(k, cost);
+ // Cost of reduction step accumulating the m*n per-thread buffers into the
+ // result.
+ double reduction_cost = TensorCostModel<ThreadPoolDevice>::totalCost(
+ m * n, TensorOpCost(2, 1, 1, true, output_packet_size));
+ Index num_threads = 1;
+ double min_cost = total_parallel_cost;
+ double kPerThreadOverHead = 4000;
+ double kFixedOverHead = 100000;
+ for (int nt = 2; nt <= this->m_device.numThreads(); nt++) {
+ double sequential_cost =
+ kFixedOverHead + nt * (reduction_cost + kPerThreadOverHead);
+ double parallel_cost = total_parallel_cost / nt + sequential_cost;
+ if (parallel_cost < min_cost) {
+ num_threads = nt;
+ min_cost = parallel_cost;
+ }
+ }
+ return num_threads;
+ }
+
+
+ double computeBandwidth(bool shard_by_col, Index bm, Index bn,
+ Index bk) const {
+ // Peak VFMA bandwidth is 0.5. However if we have not enough data for
+ // vectorization bandwidth drops. The 4.0 and 2.0 bandwidth is determined
+ // experimentally.
+ double computeBandwidth =
+ bk == 1 ? 4.0
+ : (shard_by_col ? bn : bm) < Traits::nr ||
+ (shard_by_col ? bm : bn) < Traits::mr
+ ? 2.0
+ : 0.5;
+#ifndef EIGEN_VECTORIZE_FMA
+ // Bandwidth of all of VFMA/MULPS/ADDPS is 0.5 on latest Intel processors.
+ // However for MULPS/ADDPS we have dependent sequence of 2 such
+ // instructions,
+ // so overall bandwidth is 1.0.
+ if (computeBandwidth == 0.5) computeBandwidth = 1.0;
+#endif
+ return computeBandwidth;
+ }
+
#if defined(EIGEN_VECTORIZE_AVX) && defined(EIGEN_USE_LIBXSMM)
// TODO(ezhulenev): Add support for output kernels and LIBXSMM.
static_assert(std::is_same<OutputKernelType, const NoOpOutputKernel>::value,
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h b/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h
index bb63baee2..7f79ac30d 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorCostModel.h
@@ -188,7 +188,6 @@ class TensorCostModel {
return totalCost(output_size, cost_per_coeff) / kTaskSize;
}
- private:
static EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE double totalCost(
double output_size, const TensorOpCost& cost_per_coeff) {
// Cost of memory fetches from L2 cache. 64 is typical cache line size.