aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported
diff options
context:
space:
mode:
authorGravatar Mehdi Goli <mehdi.goli@codeplay.com>2017-02-13 17:25:12 +0000
committerGravatar Mehdi Goli <mehdi.goli@codeplay.com>2017-02-13 17:25:12 +0000
commit0d153ded29022021c4f7ac24b73a0adb1e423013 (patch)
tree54089cf3904762064383e5c5dff5e035d24a9813 /unsupported
parentfad776492ff337b3bc0884715c5f80c980ed63a7 (diff)
Adding TensorChippingOP for sycl backend; fixing the index value in the verification operation for cxx11_tensorChipping.cpp test
Diffstat (limited to 'unsupported')
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h29
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSyclConvertToDeviceExpression.h12
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSyclExprConstructor.h17
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractAccessor.h17
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractFunctors.h16
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSyclLeafCount.h11
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorSyclPlaceHolderExpr.h12
-rw-r--r--unsupported/test/CMakeLists.txt1
-rw-r--r--unsupported/test/cxx11_tensor_chipping.cpp8
-rw-r--r--unsupported/test/cxx11_tensor_chipping_sycl.cpp622
10 files changed, 732 insertions, 13 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h b/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h
index 1ba7ef170..f335edf7d 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h
@@ -150,7 +150,7 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_impl(op.expression(), device), m_dim(op.dim()), m_device(device)
+ : m_impl(op.expression(), device), m_dim(op.dim()), m_device(device), m_offset(op.offset())
{
EIGEN_STATIC_ASSERT((NumInputDims >= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
eigen_assert(NumInputDims > m_dim.actualDim());
@@ -206,7 +206,7 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
eigen_assert(index+PacketSize-1 < dimensions().TotalSize());
if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) ||
- (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims-1)) {
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims-1)) {
// m_stride is equal to 1, so let's avoid the integer division.
eigen_assert(m_stride == 1);
Index inputIndex = index * m_inputStride + m_inputOffset;
@@ -218,7 +218,7 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
PacketReturnType rslt = internal::pload<PacketReturnType>(values);
return rslt;
} else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims - 1) ||
- (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) {
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) {
// m_stride is aways greater than index, so let's avoid the integer division.
eigen_assert(m_stride > index);
return m_impl.template packet<LoadMode>(index + m_inputOffset);
@@ -274,17 +274,29 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
}
}
+ /// used by sycl
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE DenseIndex dimId() const {
+ return m_dim.actualDim();
+ }
+
+ /// used by sycl
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const DenseIndex& offset() const {
+ return m_offset;
+ }
+ /// required by sycl in order to extract the accessor
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorEvaluator<ArgType, Device>& impl() const { return m_impl; }
+
protected:
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const
{
Index inputIndex;
if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == 0) ||
- (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims-1)) {
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == NumInputDims-1)) {
// m_stride is equal to 1, so let's avoid the integer division.
eigen_assert(m_stride == 1);
inputIndex = index * m_inputStride + m_inputOffset;
} else if ((static_cast<int>(Layout) == static_cast<int>(ColMajor) && m_dim.actualDim() == NumInputDims-1) ||
- (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) {
+ (static_cast<int>(Layout) == static_cast<int>(RowMajor) && m_dim.actualDim() == 0)) {
// m_stride is aways greater than index, so let's avoid the integer division.
eigen_assert(m_stride > index);
inputIndex = index + m_inputOffset;
@@ -304,6 +316,9 @@ struct TensorEvaluator<const TensorChippingOp<DimId, ArgType>, Device>
TensorEvaluator<ArgType, Device> m_impl;
const internal::DimensionId<DimId> m_dim;
const Device& m_device;
+// required by sycl
+ const DenseIndex m_offset;
+
};
@@ -344,7 +359,7 @@ struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE)
if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) && this->m_dim.actualDim() == 0) ||
- (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == NumInputDims-1)) {
+ (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == NumInputDims-1)) {
// m_stride is equal to 1, so let's avoid the integer division.
eigen_assert(this->m_stride == 1);
EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize];
@@ -355,7 +370,7 @@ struct TensorEvaluator<TensorChippingOp<DimId, ArgType>, Device>
inputIndex += this->m_inputStride;
}
} else if ((static_cast<int>(this->Layout) == static_cast<int>(ColMajor) && this->m_dim.actualDim() == NumInputDims-1) ||
- (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == 0)) {
+ (static_cast<int>(this->Layout) == static_cast<int>(RowMajor) && this->m_dim.actualDim() == 0)) {
// m_stride is aways greater than index, so let's avoid the integer division.
eigen_assert(this->m_stride > index);
this->m_impl.template writePacket<StoreMode>(index + this->m_inputOffset, x);
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclConvertToDeviceExpression.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclConvertToDeviceExpression.h
index c0bcf26cd..ee8f3c9c2 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclConvertToDeviceExpression.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclConvertToDeviceExpression.h
@@ -146,6 +146,18 @@ KERNELBROKERCONVERTERSLICESTRIDEOP()
#undef KERNELBROKERCONVERTERSLICESTRIDEOP
+/// specialisation of the \ref ConvertToDeviceExpression struct when the node type is TensorChippingOp
+#define KERNELBROKERCONVERTCHIPPINGOP(CVQual)\
+template <DenseIndex DimId, typename Expr>\
+struct ConvertToDeviceExpression<CVQual TensorChippingOp<DimId, Expr> > {\
+ typedef CVQual TensorChippingOp<DimId, typename ConvertToDeviceExpression<Expr>::Type> Type;\
+};
+KERNELBROKERCONVERTCHIPPINGOP(const)
+KERNELBROKERCONVERTCHIPPINGOP()
+#undef KERNELBROKERCONVERTCHIPPINGOP
+
+
+
} // namespace internal
} // namespace TensorSycl
} // namespace Eigen
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExprConstructor.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExprConstructor.h
index 56ba82805..3b83b1d2c 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExprConstructor.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExprConstructor.h
@@ -368,6 +368,23 @@ SYCLPADDINGOPEXPRCONST(TensorPaddingOp, )
#undef SYCLPADDINGOPEXPRCONST
+// TensorChippingOp
+#define SYCLTENSORCHIPPINGOPEXPR(CVQual)\
+template<DenseIndex DimId, typename OrigXprType, typename XprType, typename... Params>\
+struct ExprConstructor<CVQual TensorChippingOp <DimId, OrigXprType> , CVQual TensorChippingOp<DimId, XprType>, Params... >{\
+ typedef ExprConstructor<OrigXprType, XprType, Params...> my_xpr_type;\
+ typedef CVQual TensorChippingOp<DimId, typename my_xpr_type::Type> Type;\
+ my_xpr_type xprExpr;\
+ Type expr;\
+ template <typename FuncDetector>\
+ ExprConstructor(FuncDetector &funcD, const utility::tuple::Tuple<Params...> &t)\
+ : xprExpr(funcD.xprExpr, t), expr(xprExpr.expr, funcD.offset(), funcD.dimId()) {}\
+};
+
+SYCLTENSORCHIPPINGOPEXPR(const)
+SYCLTENSORCHIPPINGOPEXPR()
+#undef SYCLTENSORCHIPPINGOPEXPR
+
/// template deduction for \ref ExprConstructor struct
template <typename OrigExpr, typename IndexExpr, typename FuncD, typename... Params>
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractAccessor.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractAccessor.h
index 3fd607941..b512d43f6 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractAccessor.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractAccessor.h
@@ -188,7 +188,7 @@ SYCLCONTRACTIONCONVOLUTIONEXTACC(,TensorConvolutionOp)
/// specialisation of the \ref ExtractAccessor struct when the node type is
-/// const TensorSlicingOp.
+/// const TensorSlicingOp.
#define SYCLSLICEOPEXTACC(CVQual)\
template <typename StartIndices, typename Sizes, typename XprType, typename Dev>\
struct ExtractAccessor<TensorEvaluator<CVQual TensorSlicingOp<StartIndices, Sizes, XprType>, Dev> > {\
@@ -200,7 +200,7 @@ SYCLSLICEOPEXTACC(const)
SYCLSLICEOPEXTACC()
#undef SYCLSLICEOPEXTACC
// specialisation of the \ref ExtractAccessor struct when the node type is
-/// const TensorStridingSlicingOp.
+/// TensorStridingSlicingOp.
#define SYCLSLICESTRIDEOPEXTACC(CVQual)\
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType, typename Dev>\
struct ExtractAccessor<TensorEvaluator<CVQual TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType>, Dev> >{\
@@ -212,6 +212,19 @@ SYCLSLICESTRIDEOPEXTACC(const)
SYCLSLICESTRIDEOPEXTACC()
#undef SYCLSLICESTRIDEOPEXTACC
+// specialisation of the \ref ExtractAccessor struct when the node type is
+/// TensorChippingOp.
+#define SYCLTENSORCHIPPINGOPEXTACC(CVQual)\
+template<DenseIndex DimId, typename XprType, typename Dev>\
+struct ExtractAccessor<TensorEvaluator<CVQual TensorChippingOp<DimId, XprType>, Dev> >{\
+ static inline auto getTuple(cl::sycl::handler& cgh, const TensorEvaluator<CVQual TensorChippingOp<DimId, XprType>, Dev>& eval)\
+ RETURN_CPP11(AccessorConstructor::getTuple(cgh, eval.impl()))\
+};
+
+SYCLTENSORCHIPPINGOPEXTACC(const)
+SYCLTENSORCHIPPINGOPEXTACC()
+#undef SYCLTENSORCHIPPINGOPEXTACC
+
/// template deduction for \ref ExtractAccessor
template <typename Evaluator>
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractFunctors.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractFunctors.h
index e26cbdf6d..ee020184b 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractFunctors.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclExtractFunctors.h
@@ -290,6 +290,22 @@ SYCLEXTRFUNCCONTRACTCONCAT(TensorConcatenationOp, axis(), const)
SYCLEXTRFUNCCONTRACTCONCAT(TensorConcatenationOp, axis(),)
#undef SYCLEXTRFUNCCONTRACTCONCAT
+//TensorChippingOp
+#define SYCLEXTRFUNCCHIPPINGOP(CVQual)\
+template<DenseIndex DimId, typename XprType, typename Device>\
+struct FunctorExtractor<TensorEvaluator<CVQual TensorChippingOp<DimId, XprType>, Device>>{\
+ FunctorExtractor<Eigen::TensorEvaluator<XprType, Device> > xprExpr;\
+ const DenseIndex m_dim;\
+ const DenseIndex m_offset;\
+ EIGEN_STRONG_INLINE const DenseIndex& dimId() const { return m_dim; }\
+ EIGEN_STRONG_INLINE const DenseIndex& offset() const { return m_offset; }\
+ FunctorExtractor(const TensorEvaluator<CVQual TensorChippingOp<DimId, XprType>, Device>& expr)\
+ : xprExpr(expr.impl()), m_dim(expr.dimId()), m_offset(expr.offset()) {}\
+};
+
+SYCLEXTRFUNCCHIPPINGOP(const)
+SYCLEXTRFUNCCHIPPINGOP()
+#undef SYCLEXTRFUNCCHIPPINGOP
/// template deduction function for FunctorExtractor
template <typename Evaluator>
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclLeafCount.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclLeafCount.h
index 0ac51e7bf..a1c112f4d 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclLeafCount.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclLeafCount.h
@@ -139,6 +139,17 @@ SLICEOPLEAFCOUNT(const)
SLICEOPLEAFCOUNT()
#undef SLICEOPLEAFCOUNT
+
+/// specialisation of the \ref LeafCount struct when the node type is TensorChippingOp
+#define CHIPPINGOPLEAFCOUNT(CVQual)\
+template <DenseIndex DimId, typename XprType>\
+struct LeafCount<CVQual TensorChippingOp<DimId, XprType> >:CategoryCount<XprType>{};
+
+CHIPPINGOPLEAFCOUNT(const)
+CHIPPINGOPLEAFCOUNT()
+#undef CHIPPINGOPLEAFCOUNT
+
+
#define SLICESTRIDEOPLEAFCOUNT(CVQual)\
template<typename StartIndices, typename StopIndices, typename Strides, typename XprType>\
struct LeafCount<CVQual TensorStridingSlicingOp<StartIndices, StopIndices, Strides, XprType> >:CategoryCount<XprType>{};
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclPlaceHolderExpr.h b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclPlaceHolderExpr.h
index f6e3b4766..74566dcee 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorSyclPlaceHolderExpr.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorSyclPlaceHolderExpr.h
@@ -157,6 +157,18 @@ EVALTO()
/// specialisation of the \ref PlaceHolderExpression when the node is
+/// TensorChippingOp
+#define CHIPPINGOP(CVQual)\
+template <DenseIndex DimId, typename Expr, size_t N>\
+struct PlaceHolderExpression<CVQual TensorChippingOp<DimId, Expr>, N> {\
+ typedef CVQual TensorChippingOp< DimId, typename CalculateIndex <N, Expr>::ArgType> Type;\
+};
+
+CHIPPINGOP(const)
+CHIPPINGOP()
+#undef CHIPPINGOP
+
+/// specialisation of the \ref PlaceHolderExpression when the node is
/// TensorReductionOp
#define SYCLREDUCTION(CVQual)\
template <typename OP, typename Dims, typename Expr, size_t N>\
diff --git a/unsupported/test/CMakeLists.txt b/unsupported/test/CMakeLists.txt
index 9fa479f52..003c9de0b 100644
--- a/unsupported/test/CMakeLists.txt
+++ b/unsupported/test/CMakeLists.txt
@@ -166,6 +166,7 @@ if(EIGEN_TEST_CXX11)
ei_add_test_sycl(cxx11_tensor_reverse_sycl "-std=c++11")
ei_add_test_sycl(cxx11_tensor_convolution_sycl "-std=c++11")
ei_add_test_sycl(cxx11_tensor_striding_sycl "-std=c++11")
+ ei_add_test_sycl(cxx11_tensor_chipping_sycl "-std=c++11")
endif(EIGEN_TEST_SYCL)
# It should be safe to always run these tests as there is some fallback code for
# older compiler that don't support cxx11.
diff --git a/unsupported/test/cxx11_tensor_chipping.cpp b/unsupported/test/cxx11_tensor_chipping.cpp
index 1832dec8b..89cf5c7b7 100644
--- a/unsupported/test/cxx11_tensor_chipping.cpp
+++ b/unsupported/test/cxx11_tensor_chipping.cpp
@@ -43,7 +43,7 @@ static void test_simple_chip()
VERIFY_IS_EQUAL(chip2.dimension(2), 7);
VERIFY_IS_EQUAL(chip2.dimension(3), 11);
for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
+ for (int j = 0; j < 5; ++j) {
for (int k = 0; k < 7; ++k) {
for (int l = 0; l < 11; ++l) {
VERIFY_IS_EQUAL(chip2(i,j,k,l), tensor(i,1,j,k,l));
@@ -75,7 +75,7 @@ static void test_simple_chip()
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
- for (int l = 0; l < 7; ++l) {
+ for (int l = 0; l < 11; ++l) {
VERIFY_IS_EQUAL(chip4(i,j,k,l), tensor(i,j,k,5,l));
}
}
@@ -126,7 +126,7 @@ static void test_dynamic_chip()
VERIFY_IS_EQUAL(chip2.dimension(2), 7);
VERIFY_IS_EQUAL(chip2.dimension(3), 11);
for (int i = 0; i < 2; ++i) {
- for (int j = 0; j < 3; ++j) {
+ for (int j = 0; j < 5; ++j) {
for (int k = 0; k < 7; ++k) {
for (int l = 0; l < 11; ++l) {
VERIFY_IS_EQUAL(chip2(i,j,k,l), tensor(i,1,j,k,l));
@@ -158,7 +158,7 @@ static void test_dynamic_chip()
for (int i = 0; i < 2; ++i) {
for (int j = 0; j < 3; ++j) {
for (int k = 0; k < 5; ++k) {
- for (int l = 0; l < 7; ++l) {
+ for (int l = 0; l < 11; ++l) {
VERIFY_IS_EQUAL(chip4(i,j,k,l), tensor(i,j,k,5,l));
}
}
diff --git a/unsupported/test/cxx11_tensor_chipping_sycl.cpp b/unsupported/test/cxx11_tensor_chipping_sycl.cpp
new file mode 100644
index 000000000..39e4f0a7f
--- /dev/null
+++ b/unsupported/test/cxx11_tensor_chipping_sycl.cpp
@@ -0,0 +1,622 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+// Benoit Steiner <benoit.steiner.goog@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+
+#define EIGEN_TEST_NO_LONGDOUBLE
+#define EIGEN_TEST_NO_COMPLEX
+#define EIGEN_TEST_FUNC cxx11_tensor_chipping_sycl
+#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int64_t
+#define EIGEN_USE_SYCL
+
+#include "main.h"
+
+#include <Eigen/CXX11/Tensor>
+
+using Eigen::Tensor;
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_static_chip_sycl(const Eigen::SyclDevice& sycl_device)
+{
+ IndexType sizeDim1 = 2;
+ IndexType sizeDim2 = 3;
+ IndexType sizeDim3 = 5;
+ IndexType sizeDim4 = 7;
+ IndexType sizeDim5 = 11;
+
+ array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
+ array<IndexType, 4> chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
+
+ Tensor<DataType, 5, DataLayout,IndexType> tensor(tensorRange);
+ Tensor<DataType, 4, DataLayout,IndexType> chip1(chip1TensorRange);
+
+ tensor.setRandom();
+
+ const size_t tensorBuffSize =tensor.size()*sizeof(DataType);
+ const size_t chip1TensorBuffSize =chip1.size()*sizeof(DataType);
+ DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
+ DataType* gpu_data_chip1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize));
+
+ TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange);
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip1(gpu_data_chip1, chip1TensorRange);
+
+ sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize);
+ gpu_chip1.device(sycl_device)=gpu_tensor.template chip<0l>(1l);
+ sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize);
+
+ VERIFY_IS_EQUAL(chip1.dimension(0), sizeDim2);
+ VERIFY_IS_EQUAL(chip1.dimension(1), sizeDim3);
+ VERIFY_IS_EQUAL(chip1.dimension(2), sizeDim4);
+ VERIFY_IS_EQUAL(chip1.dimension(3), sizeDim5);
+
+ for (IndexType i = 0; i < sizeDim2; ++i) {
+ for (IndexType j = 0; j < sizeDim3; ++j) {
+ for (IndexType k = 0; k < sizeDim4; ++k) {
+ for (IndexType l = 0; l < sizeDim5; ++l) {
+ VERIFY_IS_EQUAL(chip1(i,j,k,l), tensor(1l,i,j,k,l));
+ }
+ }
+ }
+ }
+
+ array<IndexType, 4> chip2TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}};
+ Tensor<DataType, 4, DataLayout,IndexType> chip2(chip2TensorRange);
+ const size_t chip2TensorBuffSize =chip2.size()*sizeof(DataType);
+ DataType* gpu_data_chip2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize));
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip2(gpu_data_chip2, chip2TensorRange);
+
+ gpu_chip2.device(sycl_device)=gpu_tensor.template chip<1l>(1l);
+ sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize);
+
+ VERIFY_IS_EQUAL(chip2.dimension(0), sizeDim1);
+ VERIFY_IS_EQUAL(chip2.dimension(1), sizeDim3);
+ VERIFY_IS_EQUAL(chip2.dimension(2), sizeDim4);
+ VERIFY_IS_EQUAL(chip2.dimension(3), sizeDim5);
+
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim3; ++j) {
+ for (IndexType k = 0; k < sizeDim4; ++k) {
+ for (IndexType l = 0; l < sizeDim5; ++l) {
+ VERIFY_IS_EQUAL(chip2(i,j,k,l), tensor(i,1l,j,k,l));
+ }
+ }
+ }
+ }
+
+ array<IndexType, 4> chip3TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}};
+ Tensor<DataType, 4, DataLayout,IndexType> chip3(chip3TensorRange);
+ const size_t chip3TensorBuffSize =chip3.size()*sizeof(DataType);
+ DataType* gpu_data_chip3 = static_cast<DataType*>(sycl_device.allocate(chip3TensorBuffSize));
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip3(gpu_data_chip3, chip3TensorRange);
+
+ gpu_chip3.device(sycl_device)=gpu_tensor.template chip<2l>(2l);
+ sycl_device.memcpyDeviceToHost(chip3.data(), gpu_data_chip3, chip3TensorBuffSize);
+
+ VERIFY_IS_EQUAL(chip3.dimension(0), sizeDim1);
+ VERIFY_IS_EQUAL(chip3.dimension(1), sizeDim2);
+ VERIFY_IS_EQUAL(chip3.dimension(2), sizeDim4);
+ VERIFY_IS_EQUAL(chip3.dimension(3), sizeDim5);
+
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim4; ++k) {
+ for (IndexType l = 0; l < sizeDim5; ++l) {
+ VERIFY_IS_EQUAL(chip3(i,j,k,l), tensor(i,j,2l,k,l));
+ }
+ }
+ }
+ }
+
+ array<IndexType, 4> chip4TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}};
+ Tensor<DataType, 4, DataLayout,IndexType> chip4(chip4TensorRange);
+ const size_t chip4TensorBuffSize =chip4.size()*sizeof(DataType);
+ DataType* gpu_data_chip4 = static_cast<DataType*>(sycl_device.allocate(chip4TensorBuffSize));
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip4(gpu_data_chip4, chip4TensorRange);
+
+ gpu_chip4.device(sycl_device)=gpu_tensor.template chip<3l>(5l);
+ sycl_device.memcpyDeviceToHost(chip4.data(), gpu_data_chip4, chip4TensorBuffSize);
+
+ VERIFY_IS_EQUAL(chip4.dimension(0), sizeDim1);
+ VERIFY_IS_EQUAL(chip4.dimension(1), sizeDim2);
+ VERIFY_IS_EQUAL(chip4.dimension(2), sizeDim3);
+ VERIFY_IS_EQUAL(chip4.dimension(3), sizeDim5);
+
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim3; ++k) {
+ for (IndexType l = 0; l < sizeDim5; ++l) {
+ VERIFY_IS_EQUAL(chip4(i,j,k,l), tensor(i,j,k,5l,l));
+ }
+ }
+ }
+ }
+
+
+ array<IndexType, 4> chip5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
+ Tensor<DataType, 4, DataLayout,IndexType> chip5(chip5TensorRange);
+ const size_t chip5TensorBuffSize =chip5.size()*sizeof(DataType);
+ DataType* gpu_data_chip5 = static_cast<DataType*>(sycl_device.allocate(chip5TensorBuffSize));
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip5(gpu_data_chip5, chip5TensorRange);
+
+ gpu_chip5.device(sycl_device)=gpu_tensor.template chip<4l>(7l);
+ sycl_device.memcpyDeviceToHost(chip5.data(), gpu_data_chip5, chip5TensorBuffSize);
+
+ VERIFY_IS_EQUAL(chip5.dimension(0), sizeDim1);
+ VERIFY_IS_EQUAL(chip5.dimension(1), sizeDim2);
+ VERIFY_IS_EQUAL(chip5.dimension(2), sizeDim3);
+ VERIFY_IS_EQUAL(chip5.dimension(3), sizeDim4);
+
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim3; ++k) {
+ for (IndexType l = 0; l < sizeDim4; ++l) {
+ VERIFY_IS_EQUAL(chip5(i,j,k,l), tensor(i,j,k,l,7l));
+ }
+ }
+ }
+ }
+
+ sycl_device.deallocate(gpu_data_tensor);
+ sycl_device.deallocate(gpu_data_chip1);
+ sycl_device.deallocate(gpu_data_chip2);
+ sycl_device.deallocate(gpu_data_chip3);
+ sycl_device.deallocate(gpu_data_chip4);
+ sycl_device.deallocate(gpu_data_chip5);
+}
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_dynamic_chip_sycl(const Eigen::SyclDevice& sycl_device)
+{
+ IndexType sizeDim1 = 2;
+ IndexType sizeDim2 = 3;
+ IndexType sizeDim3 = 5;
+ IndexType sizeDim4 = 7;
+ IndexType sizeDim5 = 11;
+
+ array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
+ array<IndexType, 4> chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
+
+ Tensor<DataType, 5, DataLayout,IndexType> tensor(tensorRange);
+ Tensor<DataType, 4, DataLayout,IndexType> chip1(chip1TensorRange);
+
+ tensor.setRandom();
+
+ const size_t tensorBuffSize =tensor.size()*sizeof(DataType);
+ const size_t chip1TensorBuffSize =chip1.size()*sizeof(DataType);
+ DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
+ DataType* gpu_data_chip1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize));
+
+ TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange);
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip1(gpu_data_chip1, chip1TensorRange);
+
+ sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize);
+ gpu_chip1.device(sycl_device)=gpu_tensor.chip(1l,0l);
+ sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize);
+
+ VERIFY_IS_EQUAL(chip1.dimension(0), sizeDim2);
+ VERIFY_IS_EQUAL(chip1.dimension(1), sizeDim3);
+ VERIFY_IS_EQUAL(chip1.dimension(2), sizeDim4);
+ VERIFY_IS_EQUAL(chip1.dimension(3), sizeDim5);
+
+ for (IndexType i = 0; i < sizeDim2; ++i) {
+ for (IndexType j = 0; j < sizeDim3; ++j) {
+ for (IndexType k = 0; k < sizeDim4; ++k) {
+ for (IndexType l = 0; l < sizeDim5; ++l) {
+ VERIFY_IS_EQUAL(chip1(i,j,k,l), tensor(1l,i,j,k,l));
+ }
+ }
+ }
+ }
+
+ array<IndexType, 4> chip2TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}};
+ Tensor<DataType, 4, DataLayout,IndexType> chip2(chip2TensorRange);
+ const size_t chip2TensorBuffSize =chip2.size()*sizeof(DataType);
+ DataType* gpu_data_chip2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize));
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip2(gpu_data_chip2, chip2TensorRange);
+
+ gpu_chip2.device(sycl_device)=gpu_tensor.chip(1l,1l);
+ sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize);
+
+ VERIFY_IS_EQUAL(chip2.dimension(0), sizeDim1);
+ VERIFY_IS_EQUAL(chip2.dimension(1), sizeDim3);
+ VERIFY_IS_EQUAL(chip2.dimension(2), sizeDim4);
+ VERIFY_IS_EQUAL(chip2.dimension(3), sizeDim5);
+
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim3; ++j) {
+ for (IndexType k = 0; k < sizeDim4; ++k) {
+ for (IndexType l = 0; l < sizeDim5; ++l) {
+ VERIFY_IS_EQUAL(chip2(i,j,k,l), tensor(i,1l,j,k,l));
+ }
+ }
+ }
+ }
+
+ array<IndexType, 4> chip3TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}};
+ Tensor<DataType, 4, DataLayout,IndexType> chip3(chip3TensorRange);
+ const size_t chip3TensorBuffSize =chip3.size()*sizeof(DataType);
+ DataType* gpu_data_chip3 = static_cast<DataType*>(sycl_device.allocate(chip3TensorBuffSize));
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip3(gpu_data_chip3, chip3TensorRange);
+
+ gpu_chip3.device(sycl_device)=gpu_tensor.chip(2l,2l);
+ sycl_device.memcpyDeviceToHost(chip3.data(), gpu_data_chip3, chip3TensorBuffSize);
+
+ VERIFY_IS_EQUAL(chip3.dimension(0), sizeDim1);
+ VERIFY_IS_EQUAL(chip3.dimension(1), sizeDim2);
+ VERIFY_IS_EQUAL(chip3.dimension(2), sizeDim4);
+ VERIFY_IS_EQUAL(chip3.dimension(3), sizeDim5);
+
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim4; ++k) {
+ for (IndexType l = 0; l < sizeDim5; ++l) {
+ VERIFY_IS_EQUAL(chip3(i,j,k,l), tensor(i,j,2l,k,l));
+ }
+ }
+ }
+ }
+
+ array<IndexType, 4> chip4TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}};
+ Tensor<DataType, 4, DataLayout,IndexType> chip4(chip4TensorRange);
+ const size_t chip4TensorBuffSize =chip4.size()*sizeof(DataType);
+ DataType* gpu_data_chip4 = static_cast<DataType*>(sycl_device.allocate(chip4TensorBuffSize));
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip4(gpu_data_chip4, chip4TensorRange);
+
+ gpu_chip4.device(sycl_device)=gpu_tensor.chip(5l,3l);
+ sycl_device.memcpyDeviceToHost(chip4.data(), gpu_data_chip4, chip4TensorBuffSize);
+
+ VERIFY_IS_EQUAL(chip4.dimension(0), sizeDim1);
+ VERIFY_IS_EQUAL(chip4.dimension(1), sizeDim2);
+ VERIFY_IS_EQUAL(chip4.dimension(2), sizeDim3);
+ VERIFY_IS_EQUAL(chip4.dimension(3), sizeDim5);
+
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim3; ++k) {
+ for (IndexType l = 0; l < sizeDim5; ++l) {
+ VERIFY_IS_EQUAL(chip4(i,j,k,l), tensor(i,j,k,5l,l));
+ }
+ }
+ }
+ }
+
+
+ array<IndexType, 4> chip5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
+ Tensor<DataType, 4, DataLayout,IndexType> chip5(chip5TensorRange);
+ const size_t chip5TensorBuffSize =chip5.size()*sizeof(DataType);
+ DataType* gpu_data_chip5 = static_cast<DataType*>(sycl_device.allocate(chip5TensorBuffSize));
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip5(gpu_data_chip5, chip5TensorRange);
+
+ gpu_chip5.device(sycl_device)=gpu_tensor.chip(7l,4l);
+ sycl_device.memcpyDeviceToHost(chip5.data(), gpu_data_chip5, chip5TensorBuffSize);
+
+ VERIFY_IS_EQUAL(chip5.dimension(0), sizeDim1);
+ VERIFY_IS_EQUAL(chip5.dimension(1), sizeDim2);
+ VERIFY_IS_EQUAL(chip5.dimension(2), sizeDim3);
+ VERIFY_IS_EQUAL(chip5.dimension(3), sizeDim4);
+
+ for (IndexType i = 0; i < sizeDim1; ++i) {
+ for (IndexType j = 0; j < sizeDim2; ++j) {
+ for (IndexType k = 0; k < sizeDim3; ++k) {
+ for (IndexType l = 0; l < sizeDim4; ++l) {
+ VERIFY_IS_EQUAL(chip5(i,j,k,l), tensor(i,j,k,l,7l));
+ }
+ }
+ }
+ }
+ sycl_device.deallocate(gpu_data_tensor);
+ sycl_device.deallocate(gpu_data_chip1);
+ sycl_device.deallocate(gpu_data_chip2);
+ sycl_device.deallocate(gpu_data_chip3);
+ sycl_device.deallocate(gpu_data_chip4);
+ sycl_device.deallocate(gpu_data_chip5);
+}
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_chip_in_expr(const Eigen::SyclDevice& sycl_device) {
+
+ IndexType sizeDim1 = 2;
+ IndexType sizeDim2 = 3;
+ IndexType sizeDim3 = 5;
+ IndexType sizeDim4 = 7;
+ IndexType sizeDim5 = 11;
+
+ array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
+ array<IndexType, 4> chip1TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
+
+ Tensor<DataType, 5, DataLayout,IndexType> tensor(tensorRange);
+
+ Tensor<DataType, 4, DataLayout,IndexType> chip1(chip1TensorRange);
+ Tensor<DataType, 4, DataLayout,IndexType> tensor1(chip1TensorRange);
+ tensor.setRandom();
+ tensor1.setRandom();
+
+ const size_t tensorBuffSize =tensor.size()*sizeof(DataType);
+ const size_t chip1TensorBuffSize =chip1.size()*sizeof(DataType);
+ DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
+ DataType* gpu_data_chip1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize));
+ DataType* gpu_data_tensor1 = static_cast<DataType*>(sycl_device.allocate(chip1TensorBuffSize));
+
+ TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange);
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_chip1(gpu_data_chip1, chip1TensorRange);
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_tensor1(gpu_data_tensor1, chip1TensorRange);
+
+
+ sycl_device.memcpyHostToDevice(gpu_data_tensor, tensor.data(), tensorBuffSize);
+ sycl_device.memcpyHostToDevice(gpu_data_tensor1, tensor1.data(), chip1TensorBuffSize);
+ gpu_chip1.device(sycl_device)=gpu_tensor.template chip<0l>(0l) + gpu_tensor1;
+ sycl_device.memcpyDeviceToHost(chip1.data(), gpu_data_chip1, chip1TensorBuffSize);
+
+ for (int i = 0; i < sizeDim2; ++i) {
+ for (int j = 0; j < sizeDim3; ++j) {
+ for (int k = 0; k < sizeDim4; ++k) {
+ for (int l = 0; l < sizeDim5; ++l) {
+ float expected = tensor(0l,i,j,k,l) + tensor1(i,j,k,l);
+ VERIFY_IS_EQUAL(chip1(i,j,k,l), expected);
+ }
+ }
+ }
+ }
+
+ array<IndexType, 3> chip2TensorRange = {{sizeDim2, sizeDim4, sizeDim5}};
+ Tensor<DataType, 3, DataLayout,IndexType> tensor2(chip2TensorRange);
+ Tensor<DataType, 3, DataLayout,IndexType> chip2(chip2TensorRange);
+ tensor2.setRandom();
+ const size_t chip2TensorBuffSize =tensor2.size()*sizeof(DataType);
+ DataType* gpu_data_tensor2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize));
+ DataType* gpu_data_chip2 = static_cast<DataType*>(sycl_device.allocate(chip2TensorBuffSize));
+ TensorMap<Tensor<DataType, 3, DataLayout,IndexType>> gpu_tensor2(gpu_data_tensor2, chip2TensorRange);
+ TensorMap<Tensor<DataType, 3, DataLayout,IndexType>> gpu_chip2(gpu_data_chip2, chip2TensorRange);
+
+ sycl_device.memcpyHostToDevice(gpu_data_tensor2, tensor2.data(), chip2TensorBuffSize);
+ gpu_chip2.device(sycl_device)=gpu_tensor.template chip<0l>(0l).template chip<1l>(2l) + gpu_tensor2;
+ sycl_device.memcpyDeviceToHost(chip2.data(), gpu_data_chip2, chip2TensorBuffSize);
+
+ for (int i = 0; i < sizeDim2; ++i) {
+ for (int j = 0; j < sizeDim4; ++j) {
+ for (int k = 0; k < sizeDim5; ++k) {
+ float expected = tensor(0l,i,2l,j,k) + tensor2(i,j,k);
+ VERIFY_IS_EQUAL(chip2(i,j,k), expected);
+ }
+ }
+ }
+ sycl_device.deallocate(gpu_data_tensor);
+ sycl_device.deallocate(gpu_data_tensor1);
+ sycl_device.deallocate(gpu_data_chip1);
+ sycl_device.deallocate(gpu_data_tensor2);
+ sycl_device.deallocate(gpu_data_chip2);
+}
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_chip_as_lvalue_sycl(const Eigen::SyclDevice& sycl_device)
+{
+
+ IndexType sizeDim1 = 2;
+ IndexType sizeDim2 = 3;
+ IndexType sizeDim3 = 5;
+ IndexType sizeDim4 = 7;
+ IndexType sizeDim5 = 11;
+
+ array<IndexType, 5> tensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
+ array<IndexType, 4> input2TensorRange = {{sizeDim2, sizeDim3, sizeDim4, sizeDim5}};
+
+ Tensor<DataType, 5, DataLayout,IndexType> tensor(tensorRange);
+ Tensor<DataType, 5, DataLayout,IndexType> input1(tensorRange);
+ Tensor<DataType, 4, DataLayout,IndexType> input2(input2TensorRange);
+ input1.setRandom();
+ input2.setRandom();
+
+
+ const size_t tensorBuffSize =tensor.size()*sizeof(DataType);
+ const size_t input2TensorBuffSize =input2.size()*sizeof(DataType);
+ DataType* gpu_data_tensor = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
+ DataType* gpu_data_input1 = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
+ DataType* gpu_data_input2 = static_cast<DataType*>(sycl_device.allocate(input2TensorBuffSize));
+
+ TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_tensor(gpu_data_tensor, tensorRange);
+ TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_input1(gpu_data_input1, tensorRange);
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input2(gpu_data_input2, input2TensorRange);
+
+ sycl_device.memcpyHostToDevice(gpu_data_input1, input1.data(), tensorBuffSize);
+ gpu_tensor.device(sycl_device)=gpu_input1;
+ sycl_device.memcpyHostToDevice(gpu_data_input2, input2.data(), input2TensorBuffSize);
+ gpu_tensor.template chip<0l>(1l).device(sycl_device)=gpu_input2;
+ sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize);
+
+ for (int i = 0; i < sizeDim1; ++i) {
+ for (int j = 0; j < sizeDim2; ++j) {
+ for (int k = 0; k < sizeDim3; ++k) {
+ for (int l = 0; l < sizeDim4; ++l) {
+ for (int m = 0; m < sizeDim5; ++m) {
+ if (i != 1) {
+ VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m));
+ } else {
+ VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input2(j,k,l,m));
+ }
+ }
+ }
+ }
+ }
+ }
+
+ gpu_tensor.device(sycl_device)=gpu_input1;
+ array<IndexType, 4> input3TensorRange = {{sizeDim1, sizeDim3, sizeDim4, sizeDim5}};
+ Tensor<DataType, 4, DataLayout,IndexType> input3(input3TensorRange);
+ input3.setRandom();
+
+ const size_t input3TensorBuffSize =input3.size()*sizeof(DataType);
+ DataType* gpu_data_input3 = static_cast<DataType*>(sycl_device.allocate(input3TensorBuffSize));
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input3(gpu_data_input3, input3TensorRange);
+
+ sycl_device.memcpyHostToDevice(gpu_data_input3, input3.data(), input3TensorBuffSize);
+ gpu_tensor.template chip<1l>(1l).device(sycl_device)=gpu_input3;
+ sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize);
+
+ for (int i = 0; i < sizeDim1; ++i) {
+ for (int j = 0; j < sizeDim2; ++j) {
+ for (int k = 0; k <sizeDim3; ++k) {
+ for (int l = 0; l < sizeDim4; ++l) {
+ for (int m = 0; m < sizeDim5; ++m) {
+ if (j != 1) {
+ VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m));
+ } else {
+ VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input3(i,k,l,m));
+ }
+ }
+ }
+ }
+ }
+ }
+
+ gpu_tensor.device(sycl_device)=gpu_input1;
+ array<IndexType, 4> input4TensorRange = {{sizeDim1, sizeDim2, sizeDim4, sizeDim5}};
+ Tensor<DataType, 4, DataLayout,IndexType> input4(input4TensorRange);
+ input4.setRandom();
+
+ const size_t input4TensorBuffSize =input4.size()*sizeof(DataType);
+ DataType* gpu_data_input4 = static_cast<DataType*>(sycl_device.allocate(input4TensorBuffSize));
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input4(gpu_data_input4, input4TensorRange);
+
+ sycl_device.memcpyHostToDevice(gpu_data_input4, input4.data(), input4TensorBuffSize);
+ gpu_tensor.template chip<2l>(3l).device(sycl_device)=gpu_input4;
+ sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize);
+
+ for (int i = 0; i < sizeDim1; ++i) {
+ for (int j = 0; j < sizeDim2; ++j) {
+ for (int k = 0; k <sizeDim3; ++k) {
+ for (int l = 0; l < sizeDim4; ++l) {
+ for (int m = 0; m < sizeDim5; ++m) {
+ if (k != 3) {
+ VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m));
+ } else {
+ VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input4(i,j,l,m));
+ }
+ }
+ }
+ }
+ }
+ }
+
+ gpu_tensor.device(sycl_device)=gpu_input1;
+ array<IndexType, 4> input5TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim5}};
+ Tensor<DataType, 4, DataLayout,IndexType> input5(input5TensorRange);
+ input5.setRandom();
+
+ const size_t input5TensorBuffSize =input5.size()*sizeof(DataType);
+ DataType* gpu_data_input5 = static_cast<DataType*>(sycl_device.allocate(input5TensorBuffSize));
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input5(gpu_data_input5, input5TensorRange);
+
+ sycl_device.memcpyHostToDevice(gpu_data_input5, input5.data(), input5TensorBuffSize);
+ gpu_tensor.template chip<3l>(4l).device(sycl_device)=gpu_input5;
+ sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize);
+
+ for (int i = 0; i < sizeDim1; ++i) {
+ for (int j = 0; j < sizeDim2; ++j) {
+ for (int k = 0; k <sizeDim3; ++k) {
+ for (int l = 0; l < sizeDim4; ++l) {
+ for (int m = 0; m < sizeDim5; ++m) {
+ if (l != 4) {
+ VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m));
+ } else {
+ VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input5(i,j,k,m));
+ }
+ }
+ }
+ }
+ }
+ }
+ gpu_tensor.device(sycl_device)=gpu_input1;
+ array<IndexType, 4> input6TensorRange = {{sizeDim1, sizeDim2, sizeDim3, sizeDim4}};
+ Tensor<DataType, 4, DataLayout,IndexType> input6(input6TensorRange);
+ input6.setRandom();
+
+ const size_t input6TensorBuffSize =input6.size()*sizeof(DataType);
+ DataType* gpu_data_input6 = static_cast<DataType*>(sycl_device.allocate(input6TensorBuffSize));
+ TensorMap<Tensor<DataType, 4, DataLayout,IndexType>> gpu_input6(gpu_data_input6, input6TensorRange);
+
+ sycl_device.memcpyHostToDevice(gpu_data_input6, input6.data(), input6TensorBuffSize);
+ gpu_tensor.template chip<4l>(5l).device(sycl_device)=gpu_input6;
+ sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize);
+
+ for (int i = 0; i < sizeDim1; ++i) {
+ for (int j = 0; j < sizeDim2; ++j) {
+ for (int k = 0; k <sizeDim3; ++k) {
+ for (int l = 0; l < sizeDim4; ++l) {
+ for (int m = 0; m < sizeDim5; ++m) {
+ if (m != 5) {
+ VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m));
+ } else {
+ VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input6(i,j,k,l));
+ }
+ }
+ }
+ }
+ }
+ }
+
+
+ gpu_tensor.device(sycl_device)=gpu_input1;
+ Tensor<DataType, 5, DataLayout,IndexType> input7(tensorRange);
+ input7.setRandom();
+
+ DataType* gpu_data_input7 = static_cast<DataType*>(sycl_device.allocate(tensorBuffSize));
+ TensorMap<Tensor<DataType, 5, DataLayout,IndexType>> gpu_input7(gpu_data_input7, tensorRange);
+
+ sycl_device.memcpyHostToDevice(gpu_data_input7, input7.data(), tensorBuffSize);
+ gpu_tensor.chip(0l,0l).device(sycl_device)=gpu_input7.chip(0l,0l);
+ sycl_device.memcpyDeviceToHost(tensor.data(), gpu_data_tensor, tensorBuffSize);
+
+ for (int i = 0; i < sizeDim1; ++i) {
+ for (int j = 0; j < sizeDim2; ++j) {
+ for (int k = 0; k <sizeDim3; ++k) {
+ for (int l = 0; l < sizeDim4; ++l) {
+ for (int m = 0; m < sizeDim5; ++m) {
+ if (i != 0) {
+ VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input1(i,j,k,l,m));
+ } else {
+ VERIFY_IS_EQUAL(tensor(i,j,k,l,m), input7(i,j,k,l,m));
+ }
+ }
+ }
+ }
+ }
+ }
+ sycl_device.deallocate(gpu_data_tensor);
+ sycl_device.deallocate(gpu_data_input1);
+ sycl_device.deallocate(gpu_data_input2);
+ sycl_device.deallocate(gpu_data_input3);
+ sycl_device.deallocate(gpu_data_input4);
+ sycl_device.deallocate(gpu_data_input5);
+ sycl_device.deallocate(gpu_data_input6);
+ sycl_device.deallocate(gpu_data_input7);
+
+}
+
+template<typename DataType, typename dev_Selector> void sycl_chipping_test_per_device(dev_Selector s){
+ QueueInterface queueInterface(s);
+ auto sycl_device = Eigen::SyclDevice(&queueInterface);
+ test_static_chip_sycl<DataType, RowMajor, int64_t>(sycl_device);
+ test_static_chip_sycl<DataType, ColMajor, int64_t>(sycl_device);
+ test_dynamic_chip_sycl<DataType, RowMajor, int64_t>(sycl_device);
+ test_dynamic_chip_sycl<DataType, ColMajor, int64_t>(sycl_device);
+ test_chip_in_expr<DataType, RowMajor, int64_t>(sycl_device);
+ test_chip_in_expr<DataType, ColMajor, int64_t>(sycl_device);
+ test_chip_as_lvalue_sycl<DataType, RowMajor, int64_t>(sycl_device);
+ test_chip_as_lvalue_sycl<DataType, ColMajor, int64_t>(sycl_device);
+}
+void test_cxx11_tensor_chipping_sycl()
+{
+ for (const auto& device :Eigen::get_sycl_supported_devices()) {
+ CALL_SUBTEST(sycl_chipping_test_per_device<float>(device));
+ }
+}