aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported
diff options
context:
space:
mode:
authorGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2013-07-22 13:56:15 +0100
committerGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2013-07-22 13:56:15 +0100
commit084dc63b4ccfcc9a83a12973505af74a8bc32839 (patch)
tree75b3adbabc05897ff38f446e1c6177e273d8b767 /unsupported
parent463343fb37cbd76e2527c560557a4d27a3d29c80 (diff)
Clean-up of MatrixSquareRoot.
Diffstat (limited to 'unsupported')
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h2
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixPower.h2
-rw-r--r--unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h413
-rw-r--r--unsupported/test/matrix_power.cpp8
4 files changed, 163 insertions, 262 deletions
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h b/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
index 33cfadfb4..4b1eb5a34 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixLogarithm.h
@@ -141,7 +141,7 @@ void MatrixLogarithmAtomic<MatrixType>::computeBig(const MatrixType& A, MatrixTy
break;
++numberOfExtraSquareRoots;
}
- MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
+ matrix_sqrt_triangular(T, sqrtT);
T = sqrtT.template triangularView<Upper>();
++numberOfSquareRoots;
}
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h b/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
index 5548bd95c..ee665c18e 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixPower.h
@@ -219,7 +219,7 @@ void MatrixPowerAtomic<MatrixType>::computeBig(ResultType& res) const
break;
hasExtraSquareRoot = true;
}
- MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
+ matrix_sqrt_triangular(T, sqrtT);
T = sqrtT.template triangularView<Upper>();
++numberOfSquareRoots;
}
diff --git a/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h b/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
index 0cd39ebe4..0261d4aa9 100644
--- a/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
+++ b/unsupported/Eigen/src/MatrixFunctions/MatrixSquareRoot.h
@@ -12,133 +12,16 @@
namespace Eigen {
-/** \ingroup MatrixFunctions_Module
- * \brief Class for computing matrix square roots of upper quasi-triangular matrices.
- * \tparam MatrixType type of the argument of the matrix square root,
- * expected to be an instantiation of the Matrix class template.
- *
- * This class computes the square root of the upper quasi-triangular
- * matrix stored in the upper Hessenberg part of the matrix passed to
- * the constructor.
- *
- * \sa MatrixSquareRoot, MatrixSquareRootTriangular
- */
-template <typename MatrixType>
-class MatrixSquareRootQuasiTriangular : internal::noncopyable
-{
- public:
-
- /** \brief Constructor.
- *
- * \param[in] A upper quasi-triangular matrix whose square root
- * is to be computed.
- *
- * The class stores a reference to \p A, so it should not be
- * changed (or destroyed) before compute() is called.
- */
- explicit MatrixSquareRootQuasiTriangular(const MatrixType& A)
- : m_A(A)
- {
- eigen_assert(A.rows() == A.cols());
- }
-
- /** \brief Compute the matrix square root
- *
- * \param[out] result square root of \p A, as specified in the constructor.
- *
- * Only the upper Hessenberg part of \p result is updated, the
- * rest is not touched. See MatrixBase::sqrt() for details on
- * how this computation is implemented.
- */
- template <typename ResultType> void compute(ResultType &result);
-
- private:
- typedef typename MatrixType::Index Index;
- typedef typename MatrixType::Scalar Scalar;
-
- void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
- void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T);
- void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i);
- void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j);
- void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j);
- void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j);
- void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j);
-
- template <typename SmallMatrixType>
- static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
- const SmallMatrixType& B, const SmallMatrixType& C);
-
- const MatrixType& m_A;
-};
-
-template <typename MatrixType>
-template <typename ResultType>
-void MatrixSquareRootQuasiTriangular<MatrixType>::compute(ResultType &result)
-{
- result.resize(m_A.rows(), m_A.cols());
- computeDiagonalPartOfSqrt(result, m_A);
- computeOffDiagonalPartOfSqrt(result, m_A);
-}
-
-// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
-// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
-template <typename MatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>::computeDiagonalPartOfSqrt(MatrixType& sqrtT,
- const MatrixType& T)
-{
- using std::sqrt;
- const Index size = m_A.rows();
- for (Index i = 0; i < size; i++) {
- if (i == size - 1 || T.coeff(i+1, i) == 0) {
- eigen_assert(T(i,i) >= 0);
- sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
- }
- else {
- compute2x2diagonalBlock(sqrtT, T, i);
- ++i;
- }
- }
-}
-
-// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
-// post: sqrtT is the square root of T.
-template <typename MatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT,
- const MatrixType& T)
-{
- const Index size = m_A.rows();
- for (Index j = 1; j < size; j++) {
- if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
- continue;
- for (Index i = j-1; i >= 0; i--) {
- if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
- continue;
- bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
- bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
- if (iBlockIs2x2 && jBlockIs2x2)
- compute2x2offDiagonalBlock(sqrtT, T, i, j);
- else if (iBlockIs2x2 && !jBlockIs2x2)
- compute2x1offDiagonalBlock(sqrtT, T, i, j);
- else if (!iBlockIs2x2 && jBlockIs2x2)
- compute1x2offDiagonalBlock(sqrtT, T, i, j);
- else if (!iBlockIs2x2 && !jBlockIs2x2)
- compute1x1offDiagonalBlock(sqrtT, T, i, j);
- }
- }
-}
+namespace internal {
// pre: T.block(i,i,2,2) has complex conjugate eigenvalues
// post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2)
-template <typename MatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>
- ::compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i)
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular_2x2_diagonal_block(const MatrixType& T, typename MatrixType::Index i, ResultType& sqrtT)
{
// TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere
// in EigenSolver. If we expose it, we could call it directly from here.
+ typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,2,2> block = T.template block<2,2>(i,i);
EigenSolver<Matrix<Scalar,2,2> > es(block);
sqrtT.template block<2,2>(i,i)
@@ -148,21 +31,19 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
// pre: block structure of T is such that (i,j) is a 1x1 block,
// all blocks of sqrtT to left of and below (i,j) are correct
// post: sqrtT(i,j) has the correct value
-template <typename MatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>
- ::compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j)
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
+ typedef typename traits<MatrixType>::Scalar Scalar;
Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value();
sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j));
}
// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>
- ::compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j)
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
+ typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j);
if (j-i > 1)
rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2);
@@ -172,11 +53,10 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
}
// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>
- ::compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j)
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
+ typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j);
if (j-i > 2)
rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1);
@@ -186,31 +66,25 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
}
// similar to compute1x1offDiagonalBlock()
-template <typename MatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>
- ::compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T,
- typename MatrixType::Index i, typename MatrixType::Index j)
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j, ResultType& sqrtT)
{
+ typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i);
Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j);
Matrix<Scalar,2,2> C = T.template block<2,2>(i,j);
if (j-i > 2)
C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2);
Matrix<Scalar,2,2> X;
- solveAuxiliaryEquation(X, A, B, C);
+ matrix_sqrt_quasi_triangular_solve_auxiliary_equation(X, A, B, C);
sqrtT.template block<2,2>(i,j) = X;
}
// solves the equation A X + X B = C where all matrices are 2-by-2
template <typename MatrixType>
-template <typename SmallMatrixType>
-void MatrixSquareRootQuasiTriangular<MatrixType>
- ::solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A,
- const SmallMatrixType& B, const SmallMatrixType& C)
+void matrix_sqrt_quasi_triangular_solve_auxiliary_equation(MatrixType& X, const MatrixType& A, const MatrixType& B, const MatrixType& C)
{
- EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value),
- EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT);
-
+ typedef typename traits<MatrixType>::Scalar Scalar;
Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero();
coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0);
coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1);
@@ -241,164 +115,193 @@ void MatrixSquareRootQuasiTriangular<MatrixType>
}
+// pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size
+// post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular_diagonal(const MatrixType& T, ResultType& sqrtT)
+{
+ using std::sqrt;
+ typedef typename MatrixType::Index Index;
+ const Index size = T.rows();
+ for (Index i = 0; i < size; i++) {
+ if (i == size - 1 || T.coeff(i+1, i) == 0) {
+ eigen_assert(T(i,i) >= 0);
+ sqrtT.coeffRef(i,i) = sqrt(T.coeff(i,i));
+ }
+ else {
+ matrix_sqrt_quasi_triangular_2x2_diagonal_block(T, i, sqrtT);
+ ++i;
+ }
+ }
+}
+
+// pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T.
+// post: sqrtT is the square root of T.
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular_off_diagonal(const MatrixType& T, ResultType& sqrtT)
+{
+ typedef typename MatrixType::Index Index;
+ const Index size = T.rows();
+ for (Index j = 1; j < size; j++) {
+ if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block
+ continue;
+ for (Index i = j-1; i >= 0; i--) {
+ if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block
+ continue;
+ bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0);
+ bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0);
+ if (iBlockIs2x2 && jBlockIs2x2)
+ matrix_sqrt_quasi_triangular_2x2_off_diagonal_block(T, i, j, sqrtT);
+ else if (iBlockIs2x2 && !jBlockIs2x2)
+ matrix_sqrt_quasi_triangular_2x1_off_diagonal_block(T, i, j, sqrtT);
+ else if (!iBlockIs2x2 && jBlockIs2x2)
+ matrix_sqrt_quasi_triangular_1x2_off_diagonal_block(T, i, j, sqrtT);
+ else if (!iBlockIs2x2 && !jBlockIs2x2)
+ matrix_sqrt_quasi_triangular_1x1_off_diagonal_block(T, i, j, sqrtT);
+ }
+ }
+}
+
+} // end of namespace internal
+
/** \ingroup MatrixFunctions_Module
- * \brief Class for computing matrix square roots of upper triangular matrices.
- * \tparam MatrixType type of the argument of the matrix square root,
+ * \brief Compute matrix square root of quasi-triangular matrix.
+ *
+ * \tparam MatrixType type of \p arg, the argument of matrix square root,
* expected to be an instantiation of the Matrix class template.
+ * \tparam ResultType type of \p result, where result is to be stored.
+ * \param[in] arg argument of matrix square root.
+ * \param[out] result matrix square root of upper Hessenberg part of \p arg.
*
- * This class computes the square root of the upper triangular matrix
- * stored in the upper triangular part (including the diagonal) of
- * the matrix passed to the constructor.
+ * This function computes the square root of the upper quasi-triangular matrix stored in the upper
+ * Hessenberg part of \p arg. Only the upper Hessenberg part of \p result is updated, the rest is
+ * not touched. See MatrixBase::sqrt() for details on how this computation is implemented.
*
* \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
*/
-template <typename MatrixType>
-class MatrixSquareRootTriangular : internal::noncopyable
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_quasi_triangular(const MatrixType &arg, ResultType &result)
{
- public:
- explicit MatrixSquareRootTriangular(const MatrixType& A)
- : m_A(A)
- {
- eigen_assert(A.rows() == A.cols());
- }
-
- /** \brief Compute the matrix square root
- *
- * \param[out] result square root of \p A, as specified in the constructor.
- *
- * Only the upper triangular part (including the diagonal) of
- * \p result is updated, the rest is not touched. See
- * MatrixBase::sqrt() for details on how this computation is
- * implemented.
- */
- template <typename ResultType> void compute(ResultType &result);
+ eigen_assert(arg.rows() == arg.cols());
+ result.resize(arg.rows(), arg.cols());
+ internal::matrix_sqrt_quasi_triangular_diagonal(arg, result);
+ internal::matrix_sqrt_quasi_triangular_off_diagonal(arg, result);
+}
- private:
- const MatrixType& m_A;
-};
-template <typename MatrixType>
-template <typename ResultType>
-void MatrixSquareRootTriangular<MatrixType>::compute(ResultType &result)
+/** \ingroup MatrixFunctions_Module
+ * \brief Compute matrix square root of triangular matrix.
+ *
+ * \tparam MatrixType type of \p arg, the argument of matrix square root,
+ * expected to be an instantiation of the Matrix class template.
+ * \tparam ResultType type of \p result, where result is to be stored.
+ * \param[in] arg argument of matrix square root.
+ * \param[out] result matrix square root of upper triangular part of \p arg.
+ *
+ * Only the upper triangular part (including the diagonal) of \p result is updated, the rest is not
+ * touched. See MatrixBase::sqrt() for details on how this computation is implemented.
+ *
+ * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular
+ */
+template <typename MatrixType, typename ResultType>
+void matrix_sqrt_triangular(const MatrixType &arg, ResultType &result)
{
using std::sqrt;
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
- // Compute square root of m_A and store it in upper triangular part of result
+ eigen_assert(arg.rows() == arg.cols());
+
+ // Compute square root of arg and store it in upper triangular part of result
// This uses that the square root of triangular matrices can be computed directly.
- result.resize(m_A.rows(), m_A.cols());
- typedef typename MatrixType::Index Index;
- for (Index i = 0; i < m_A.rows(); i++) {
- result.coeffRef(i,i) = sqrt(m_A.coeff(i,i));
+ result.resize(arg.rows(), arg.cols());
+ for (Index i = 0; i < arg.rows(); i++) {
+ result.coeffRef(i,i) = sqrt(arg.coeff(i,i));
}
- for (Index j = 1; j < m_A.cols(); j++) {
+ for (Index j = 1; j < arg.cols(); j++) {
for (Index i = j-1; i >= 0; i--) {
- typedef typename MatrixType::Scalar Scalar;
// if i = j-1, then segment has length 0 so tmp = 0
Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value();
// denominator may be zero if original matrix is singular
- result.coeffRef(i,j) = (m_A.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
+ result.coeffRef(i,j) = (arg.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j));
}
}
}
+namespace internal {
+
/** \ingroup MatrixFunctions_Module
- * \brief Class for computing matrix square roots of general matrices.
+ * \brief Helper struct for computing matrix square roots of general matrices.
* \tparam MatrixType type of the argument of the matrix square root,
* expected to be an instantiation of the Matrix class template.
*
* \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt()
*/
template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex>
-class MatrixSquareRoot
+struct matrix_sqrt_compute
{
- public:
-
- /** \brief Constructor.
- *
- * \param[in] A matrix whose square root is to be computed.
- *
- * The class stores a reference to \p A, so it should not be
- * changed (or destroyed) before compute() is called.
- */
- explicit MatrixSquareRoot(const MatrixType& A);
-
- /** \brief Compute the matrix square root
- *
- * \param[out] result square root of \p A, as specified in the constructor.
- *
- * See MatrixBase::sqrt() for details on how this computation is
- * implemented.
- */
- template <typename ResultType> void compute(ResultType &result);
+ /** \brief Compute the matrix square root
+ *
+ * \param[in] arg matrix whose square root is to be computed.
+ * \param[out] result square root of \p arg.
+ *
+ * See MatrixBase::sqrt() for details on how this computation is implemented.
+ */
+ template <typename ResultType> static void run(const MatrixType &arg, ResultType &result);
};
// ********** Partial specialization for real matrices **********
template <typename MatrixType>
-class MatrixSquareRoot<MatrixType, 0>
+struct matrix_sqrt_compute<MatrixType, 0>
{
- public:
-
- explicit MatrixSquareRoot(const MatrixType& A)
- : m_A(A)
- {
- eigen_assert(A.rows() == A.cols());
- }
-
- template <typename ResultType> void compute(ResultType &result)
- {
- // Compute Schur decomposition of m_A
- const RealSchur<MatrixType> schurOfA(m_A);
- const MatrixType& T = schurOfA.matrixT();
- const MatrixType& U = schurOfA.matrixU();
-
- // Compute square root of T
- MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.cols());
- MatrixSquareRootQuasiTriangular<MatrixType>(T).compute(sqrtT);
+ template <typename ResultType>
+ static void run(const MatrixType &arg, ResultType &result)
+ {
+ eigen_assert(arg.rows() == arg.cols());
+
+ // Compute Schur decomposition of arg
+ const RealSchur<MatrixType> schurOfA(arg);
+ const MatrixType& T = schurOfA.matrixT();
+ const MatrixType& U = schurOfA.matrixU();
- // Compute square root of m_A
- result = U * sqrtT * U.adjoint();
- }
+ // Compute square root of T
+ MatrixType sqrtT = MatrixType::Zero(arg.rows(), arg.cols());
+ matrix_sqrt_quasi_triangular(T, sqrtT);
- private:
- const MatrixType& m_A;
+ // Compute square root of arg
+ result = U * sqrtT * U.adjoint();
+ }
};
// ********** Partial specialization for complex matrices **********
template <typename MatrixType>
-class MatrixSquareRoot<MatrixType, 1> : internal::noncopyable
+struct matrix_sqrt_compute<MatrixType, 1>
{
- public:
-
- explicit MatrixSquareRoot(const MatrixType& A)
- : m_A(A)
- {
- eigen_assert(A.rows() == A.cols());
- }
-
- template <typename ResultType> void compute(ResultType &result)
- {
- // Compute Schur decomposition of m_A
- const ComplexSchur<MatrixType> schurOfA(m_A);
- const MatrixType& T = schurOfA.matrixT();
- const MatrixType& U = schurOfA.matrixU();
+ template <typename ResultType>
+ static void run(const MatrixType &arg, ResultType &result)
+ {
+ eigen_assert(arg.rows() == arg.cols());
+
+ // Compute Schur decomposition of arg
+ const ComplexSchur<MatrixType> schurOfA(arg);
+ const MatrixType& T = schurOfA.matrixT();
+ const MatrixType& U = schurOfA.matrixU();
- // Compute square root of T
- MatrixType sqrtT;
- MatrixSquareRootTriangular<MatrixType>(T).compute(sqrtT);
+ // Compute square root of T
+ MatrixType sqrtT;
+ matrix_sqrt_triangular(T, sqrtT);
- // Compute square root of m_A
- result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
- }
-
- private:
- const MatrixType& m_A;
+ // Compute square root of arg
+ result = U * (sqrtT.template triangularView<Upper>() * U.adjoint());
+ }
};
+} // end namespace internal
/** \ingroup MatrixFunctions_Module
*
@@ -432,9 +335,9 @@ template<typename Derived> class MatrixSquareRootReturnValue
template <typename ResultType>
inline void evalTo(ResultType& result) const
{
- const typename Derived::PlainObject srcEvaluated = m_src.eval();
- MatrixSquareRoot<typename Derived::PlainObject> me(srcEvaluated);
- me.compute(result);
+ typedef typename Derived::PlainObject PlainObject;
+ const PlainObject srcEvaluated = m_src.eval();
+ internal::matrix_sqrt_compute<PlainObject>::run(srcEvaluated, result);
}
Index rows() const { return m_src.rows(); }
diff --git a/unsupported/test/matrix_power.cpp b/unsupported/test/matrix_power.cpp
index 849e4287b..4c4cac509 100644
--- a/unsupported/test/matrix_power.cpp
+++ b/unsupported/test/matrix_power.cpp
@@ -100,8 +100,6 @@ template<typename MatrixType>
void testSingular(MatrixType m, double tol)
{
const int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex;
- typedef typename internal::conditional< IsComplex, MatrixSquareRootTriangular<MatrixType>,
- MatrixSquareRootQuasiTriangular<MatrixType> >::type SquareRootType;
typedef typename internal::conditional<IsComplex, TriangularView<MatrixType,Upper>, const MatrixType&>::type TriangularType;
typename internal::conditional< IsComplex, ComplexSchur<MatrixType>, RealSchur<MatrixType> >::type schur;
MatrixType T;
@@ -116,13 +114,13 @@ void testSingular(MatrixType m, double tol)
processTriangularMatrix<MatrixType>::run(m, T, U);
MatrixPower<MatrixType> mpow(m);
- SquareRootType(T).compute(T);
+ T = T.sqrt();
VERIFY(mpow(0.5).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
- SquareRootType(T).compute(T);
+ T = T.sqrt();
VERIFY(mpow(0.25).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
- SquareRootType(T).compute(T);
+ T = T.sqrt();
VERIFY(mpow(0.125).isApprox(U * (TriangularType(T) * U.adjoint()), tol));
}
}