aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test
diff options
context:
space:
mode:
authorGravatar Mehdi Goli <mehdi.goli@codeplay.com>2017-01-19 11:30:59 +0000
committerGravatar Mehdi Goli <mehdi.goli@codeplay.com>2017-01-19 11:30:59 +0000
commit6bdd15f572c0b8cd21f5acba3671d536f50a9b53 (patch)
tree8343c43748cfbdefdac6e7b4e52aec7196669589 /unsupported/test
parente46e7223817cfd982edec6d8e25c77e8e2493d78 (diff)
Adding non-deferrenciable pointer track for ComputeCpp backend; Adding TensorConvolutionOp for ComputeCpp; fixing typos. modifying TensorDeviceSycl to use the LegacyPointer class.
Diffstat (limited to 'unsupported/test')
-rw-r--r--unsupported/test/CMakeLists.txt1
-rw-r--r--unsupported/test/cxx11_tensor_contract_sycl.cpp13
-rw-r--r--unsupported/test/cxx11_tensor_convolution_sycl.cpp469
-rw-r--r--unsupported/test/cxx11_tensor_sycl.cpp3
4 files changed, 477 insertions, 9 deletions
diff --git a/unsupported/test/CMakeLists.txt b/unsupported/test/CMakeLists.txt
index cbbd3efb4..cf07b033d 100644
--- a/unsupported/test/CMakeLists.txt
+++ b/unsupported/test/CMakeLists.txt
@@ -153,6 +153,7 @@ if(EIGEN_TEST_CXX11)
ei_add_test_sycl(cxx11_tensor_contract_sycl "-std=c++11")
ei_add_test_sycl(cxx11_tensor_concatenation_sycl "-std=c++11")
ei_add_test_sycl(cxx11_tensor_reverse_sycl "-std=c++11")
+ ei_add_test_sycl(cxx11_tensor_convolution_sycl "-std=c++11")
ei_add_test_sycl(cxx11_tensor_striding_sycl "-std=c++11")
endif(EIGEN_TEST_SYCL)
# It should be safe to always run these tests as there is some fallback code for
diff --git a/unsupported/test/cxx11_tensor_contract_sycl.cpp b/unsupported/test/cxx11_tensor_contract_sycl.cpp
index 5dacc87f2..cb8fcb74c 100644
--- a/unsupported/test/cxx11_tensor_contract_sycl.cpp
+++ b/unsupported/test/cxx11_tensor_contract_sycl.cpp
@@ -28,6 +28,7 @@ using Eigen::array;
using Eigen::SyclDevice;
using Eigen::Tensor;
using Eigen::TensorMap;
+static const float error_threshold =1e-4f;
typedef Tensor<float, 1>::DimensionPair DimPair;
template<int DataLayout, typename Device>
void test_sycl_contraction(const Device& sycl_device, int m_size, int k_size, int n_size)
@@ -70,10 +71,10 @@ void test_sycl_contraction(const Device& sycl_device, int m_size, int k_size, in
t_result = t_left.contract(t_right, dims);
for (DenseIndex i = 0; i < t_result.size(); i++) {
- if (static_cast<float>(fabs(t_result(i) - t_result_gpu(i))) < 1e-4f) {
+ if (static_cast<float>(fabs(t_result(i) - t_result_gpu(i))) < error_threshold) {
continue;
}
- if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) {
+ if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), error_threshold)) {
continue;
}
std::cout << "mismatch detected at index " << i << ": " << t_result(i)
@@ -132,10 +133,10 @@ void test_TF(const Device& sycl_device)
t_result = t_left.contract(t_right, dims);
for (DenseIndex i = 0; i < t_result.size(); i++) {
- if (static_cast<float>(fabs(t_result(i) - t_result_gpu(i))) < 1e-4f) {
+ if (static_cast<float>(fabs(t_result(i) - t_result_gpu(i))) < error_threshold) {
continue;
}
- if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), 1e-4f)) {
+ if (Eigen::internal::isApprox(t_result(i), t_result_gpu(i), error_threshold)) {
continue;
}
std::cout << "mismatch detected at index " << i << ": " << t_result(i)
@@ -187,8 +188,8 @@ void test_scalar(const Device& sycl_device, int m_size, int k_size, int n_size)
t_result = t_left.contract(t_right, dims);
- if (static_cast<float>(fabs(t_result() - t_result_gpu())) > 1e-4f &&
- !Eigen::internal::isApprox(t_result(), t_result_gpu(), 1e-4f)) {
+ if (static_cast<float>(fabs(t_result() - t_result_gpu())) > error_threshold &&
+ !Eigen::internal::isApprox(t_result(), t_result_gpu(), error_threshold)) {
std::cout << "mismatch detected: " << t_result()
<< " vs " << t_result_gpu() << std::endl;
assert(false);
diff --git a/unsupported/test/cxx11_tensor_convolution_sycl.cpp b/unsupported/test/cxx11_tensor_convolution_sycl.cpp
new file mode 100644
index 000000000..f7e0a2742
--- /dev/null
+++ b/unsupported/test/cxx11_tensor_convolution_sycl.cpp
@@ -0,0 +1,469 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2016
+// Mehdi Goli Codeplay Software Ltd.
+// Ralph Potter Codeplay Software Ltd.
+// Luke Iwanski Codeplay Software Ltd.
+// Contact: <eigen@codeplay.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#define EIGEN_TEST_NO_LONGDOUBLE
+#define EIGEN_TEST_NO_COMPLEX
+#define EIGEN_TEST_FUNC cxx11_tensor_convolution_sycl
+#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
+#define EIGEN_USE_SYCL
+
+#include <iostream>
+#include <chrono>
+#include <ctime>
+
+#include "main.h"
+#include <unsupported/Eigen/CXX11/Tensor>
+#include <iomanip>
+
+using Eigen::array;
+using Eigen::SyclDevice;
+using Eigen::Tensor;
+using Eigen::TensorMap;
+static const float error_threshold =1e-4f;
+
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_larg_expr1D(const Eigen::SyclDevice& sycl_device)
+{
+ int indim0 =53;
+ int indim1= 55;
+ int indim2= 51;
+ int outdim0=50;
+ int outdim1=55;
+ int outdim2=51;
+ Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}};
+ Eigen::array<IndexType, 1> kernel_dims = {{4}};
+ Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}};
+
+ Tensor<DataType, 3, DataLayout, IndexType> input(input_dims);
+ Tensor<DataType, 1, DataLayout,IndexType> kernel(kernel_dims);
+ Tensor<DataType, 3, DataLayout,IndexType> result(result_dims);
+ Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims);
+
+ Eigen::array<IndexType, 1> dims3{{0}};
+
+ input.setRandom();
+ kernel.setRandom();
+ result.setZero();
+ result_host.setZero();
+
+ std::size_t input_bytes = input.size() * sizeof(DataType);
+ std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
+ std::size_t result_bytes = result.size() * sizeof(DataType);
+
+ DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
+ DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
+ DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims);
+ sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
+ sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
+
+ gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3);
+ sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
+
+ result_host=input.convolve(kernel, dims3);
+
+for(int i=0; i< outdim0; i++ ){
+ for(int j=0; j< outdim1; j++ ){
+ for(int k=0; k< outdim2; k++ ){
+ if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) {
+ std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl;
+ assert(false);
+ }
+ }
+ }
+}
+ sycl_device.deallocate(d_input);
+ sycl_device.deallocate(d_kernel);
+ sycl_device.deallocate(d_result);
+
+}
+
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_larg_expr2D(const Eigen::SyclDevice& sycl_device)
+{
+ int indim0 =53;
+ int indim1= 55;
+ int indim2= 51;
+ int outdim0=50;
+ int outdim1=51;
+ int outdim2=51;
+ Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}};
+ Eigen::array<IndexType, 2> kernel_dims = {{4,5}};
+ Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}};
+
+ Tensor<DataType, 3, DataLayout, IndexType> input(input_dims);
+ Tensor<DataType, 2, DataLayout,IndexType> kernel(kernel_dims);
+ Tensor<DataType, 3, DataLayout,IndexType> result(result_dims);
+ Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims);
+
+ Eigen::array<IndexType, 2> dims3{{0,1}};
+
+ input.setRandom();
+ kernel.setRandom();
+ result.setZero();
+ result_host.setZero();
+
+ std::size_t input_bytes = input.size() * sizeof(DataType);
+ std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
+ std::size_t result_bytes = result.size() * sizeof(DataType);
+
+ DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
+ DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
+ DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims);
+ sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
+ sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
+
+ gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3);
+ sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
+
+ result_host=input.convolve(kernel, dims3);
+
+for(int i=0; i< outdim0; i++ ){
+ for(int j=0; j< outdim1; j++ ){
+ for(int k=0; k< outdim2; k++ ){
+ if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) {
+ std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl;
+ assert(false);
+ }
+ }
+ }
+}
+ sycl_device.deallocate(d_input);
+ sycl_device.deallocate(d_kernel);
+ sycl_device.deallocate(d_result);
+
+}
+
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_larg_expr3D(const Eigen::SyclDevice& sycl_device)
+{
+ int indim0 =53;
+ int indim1= 55;
+ int indim2= 51;
+ int outdim0=50;
+ int outdim1=51;
+ int outdim2=49;
+ Eigen::array<IndexType, 3> input_dims = {{indim0, indim1, indim2}};
+ Eigen::array<IndexType, 3> kernel_dims = {{4,5,3}};
+ Eigen::array<IndexType, 3> result_dims = {{outdim0, outdim1, outdim2}};
+
+ Tensor<DataType, 3, DataLayout, IndexType> input(input_dims);
+ Tensor<DataType, 3, DataLayout,IndexType> kernel(kernel_dims);
+ Tensor<DataType, 3, DataLayout,IndexType> result(result_dims);
+ Tensor<DataType, 3, DataLayout,IndexType> result_host(result_dims);
+
+ Eigen::array<IndexType, 3> dims3{{0,1,2}};
+
+ input.setRandom();
+ kernel.setRandom();
+ result.setZero();
+ result_host.setZero();
+
+ std::size_t input_bytes = input.size() * sizeof(DataType);
+ std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
+ std::size_t result_bytes = result.size() * sizeof(DataType);
+
+ DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
+ DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
+ DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_input(d_input, input_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 3, DataLayout, IndexType> > gpu_result(d_result, result_dims);
+ sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
+ sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
+
+ gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3);
+ sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
+
+ result_host=input.convolve(kernel, dims3);
+
+for(int i=0; i< outdim0; i++ ){
+ for(int j=0; j< outdim1; j++ ){
+ for(int k=0; k< outdim2; k++ ){
+ if (!(Eigen::internal::isApprox(result(i,j,k), result_host(i,j,k), error_threshold))) {
+ std::cout <<std::setprecision(16)<< "mismatch detected at index ( "<< i << " , " << j << ", " << k << " ) " << " \t " << result(i,j,k) << " vs "<< result_host(i,j,k) << std::endl;
+ assert(false);
+ }
+ }
+ }
+}
+ sycl_device.deallocate(d_input);
+ sycl_device.deallocate(d_kernel);
+ sycl_device.deallocate(d_result);
+
+}
+
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_evals(const Eigen::SyclDevice& sycl_device)
+{
+ Eigen::array<IndexType, 2> input_dims = {{3, 3}};
+ Eigen::array<IndexType, 1> kernel_dims = {{2}};
+ Eigen::array<IndexType, 2> result_dims = {{2, 3}};
+
+ Tensor<DataType, 2, DataLayout, IndexType> input(input_dims);
+ Tensor<DataType, 1, DataLayout,IndexType> kernel(kernel_dims);
+ Tensor<DataType, 2, DataLayout,IndexType> result(result_dims);
+
+ Eigen::array<IndexType, 1> dims3{{0}};
+
+ input.setRandom();
+ kernel.setRandom();
+ result.setZero();
+
+ std::size_t input_bytes = input.size() * sizeof(DataType);
+ std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
+ std::size_t result_bytes = result.size() * sizeof(DataType);
+
+ DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
+ DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
+ DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_input(d_input, input_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout, IndexType> > gpu_kernel(d_kernel, kernel_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout, IndexType> > gpu_result(d_result, result_dims);
+ sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
+ sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
+
+ gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims3);
+ sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
+
+ VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0) + input(1,0)*kernel(1)); // index 0
+ VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0) + input(1,1)*kernel(1)); // index 2
+ VERIFY_IS_APPROX(result(0,2), input(0,2)*kernel(0) + input(1,2)*kernel(1)); // index 4
+ VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0) + input(2,0)*kernel(1)); // index 1
+ VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0) + input(2,1)*kernel(1)); // index 3
+ VERIFY_IS_APPROX(result(1,2), input(1,2)*kernel(0) + input(2,2)*kernel(1)); // index 5
+
+ sycl_device.deallocate(d_input);
+ sycl_device.deallocate(d_kernel);
+ sycl_device.deallocate(d_result);
+}
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_expr(const Eigen::SyclDevice& sycl_device)
+{
+ Eigen::array<IndexType, 2> input_dims = {{3, 3}};
+ Eigen::array<IndexType, 2> kernel_dims = {{2, 2}};
+ Eigen::array<IndexType, 2> result_dims = {{2, 2}};
+
+ Tensor<DataType, 2, DataLayout, IndexType> input(input_dims);
+ Tensor<DataType, 2, DataLayout, IndexType> kernel(kernel_dims);
+ Tensor<DataType, 2, DataLayout, IndexType> result(result_dims);
+
+ input.setRandom();
+ kernel.setRandom();
+ Eigen::array<IndexType, 2> dims;
+ dims[0] = 0;
+ dims[1] = 1;
+
+ std::size_t input_bytes = input.size() * sizeof(DataType);
+ std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
+ std::size_t result_bytes = result.size() * sizeof(DataType);
+
+ DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
+ DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
+ DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_input(d_input, input_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 2, DataLayout,IndexType> > gpu_result(d_result, result_dims);
+ sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
+ sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
+
+ gpu_result.device(sycl_device)=gpu_input.convolve(gpu_kernel, dims);
+ sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
+
+ VERIFY_IS_APPROX(result(0,0), input(0,0)*kernel(0,0) + input(0,1)*kernel(0,1) +
+ input(1,0)*kernel(1,0) + input(1,1)*kernel(1,1));
+ VERIFY_IS_APPROX(result(0,1), input(0,1)*kernel(0,0) + input(0,2)*kernel(0,1) +
+ input(1,1)*kernel(1,0) + input(1,2)*kernel(1,1));
+ VERIFY_IS_APPROX(result(1,0), input(1,0)*kernel(0,0) + input(1,1)*kernel(0,1) +
+ input(2,0)*kernel(1,0) + input(2,1)*kernel(1,1));
+ VERIFY_IS_APPROX(result(1,1), input(1,1)*kernel(0,0) + input(1,2)*kernel(0,1) +
+ input(2,1)*kernel(1,0) + input(2,2)*kernel(1,1));
+
+ sycl_device.deallocate(d_input);
+ sycl_device.deallocate(d_kernel);
+ sycl_device.deallocate(d_result);
+}
+
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_modes(const Eigen::SyclDevice& sycl_device){
+
+Eigen::array<IndexType, 1> input_dims = {{3}};
+Eigen::array<IndexType, 1> kernel_dims = {{3}};
+
+Tensor<DataType, 1, DataLayout, IndexType> input(input_dims);
+Tensor<DataType, 1, DataLayout, IndexType> kernel(kernel_dims);
+
+input.setRandom();
+kernel.setRandom();
+Eigen::array<IndexType, 1> dims;
+dims[0] = 0;
+
+ input(0) = 1.0f;
+ input(1) = 2.0f;
+ input(2) = 3.0f;
+ kernel(0) = 0.5f;
+ kernel(1) = 1.0f;
+ kernel(2) = 0.0f;
+
+ Eigen::array<std::pair<IndexType, IndexType>, 1> padding;
+
+ // Emulate VALID mode (as defined in
+ // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
+ padding[0] = std::make_pair(0, 0);
+ Tensor<DataType, 1, DataLayout, IndexType> valid(1);
+
+ std::size_t input_bytes = input.size() * sizeof(DataType);
+ std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
+ std::size_t valid_bytes = valid.size() * sizeof(DataType);
+
+ DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
+ DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
+ DataType * d_valid = static_cast<DataType*>(sycl_device.allocate(valid_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_input(d_input, input_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_valid(d_valid, valid.dimensions());
+ sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
+ sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
+
+ gpu_valid.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims);
+ sycl_device.memcpyDeviceToHost(valid.data(), d_valid, valid_bytes);
+
+ VERIFY_IS_EQUAL(valid.dimension(0), 1);
+ VERIFY_IS_APPROX(valid(0), 2.5f);
+
+ // Emulate SAME mode (as defined in
+ // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
+ padding[0] = std::make_pair(1, 1);
+ Tensor<DataType, 1, DataLayout, IndexType> same(3);
+ std::size_t same_bytes = same.size() * sizeof(DataType);
+ DataType * d_same = static_cast<DataType*>(sycl_device.allocate(same_bytes));
+ Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_same(d_same, same.dimensions());
+ gpu_same.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims);
+ sycl_device.memcpyDeviceToHost(same.data(), d_same, same_bytes);
+
+ VERIFY_IS_EQUAL(same.dimension(0), 3);
+ VERIFY_IS_APPROX(same(0), 1.0f);
+ VERIFY_IS_APPROX(same(1), 2.5f);
+ VERIFY_IS_APPROX(same(2), 4.0f);
+
+ // Emulate FULL mode (as defined in
+ // http://docs.scipy.org/doc/numpy/reference/generated/numpy.convolve.html).
+ padding[0] = std::make_pair(2, 2);
+
+ Tensor<DataType, 1, DataLayout, IndexType> full(5);
+ std::size_t full_bytes = full.size() * sizeof(DataType);
+ DataType * d_full = static_cast<DataType*>(sycl_device.allocate(full_bytes));
+ Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_full(d_full, full.dimensions());
+ gpu_full.device(sycl_device)=gpu_input.pad(padding).convolve(gpu_kernel, dims);
+ sycl_device.memcpyDeviceToHost(full.data(), d_full, full_bytes);
+
+ VERIFY_IS_EQUAL(full.dimension(0), 5);
+ VERIFY_IS_APPROX(full(0), 0.0f);
+ VERIFY_IS_APPROX(full(1), 1.0f);
+ VERIFY_IS_APPROX(full(2), 2.5f);
+ VERIFY_IS_APPROX(full(3), 4.0f);
+ VERIFY_IS_APPROX(full(4), 1.5f);
+
+ sycl_device.deallocate(d_input);
+ sycl_device.deallocate(d_kernel);
+ sycl_device.deallocate(d_valid);
+ sycl_device.deallocate(d_same);
+ sycl_device.deallocate(d_full);
+
+}
+
+template <typename DataType, int DataLayout, typename IndexType>
+static void test_strides(const Eigen::SyclDevice& sycl_device){
+
+ Eigen::array<IndexType, 1> input_dims = {{13}};
+ Eigen::array<IndexType, 1> kernel_dims = {{3}};
+
+ Tensor<DataType, 1, DataLayout, IndexType> input(input_dims);
+ Tensor<DataType, 1, DataLayout, IndexType> kernel(kernel_dims);
+ Tensor<DataType, 1, DataLayout, IndexType> result(2);
+
+ input.setRandom();
+ kernel.setRandom();
+ Eigen::array<IndexType, 1> dims;
+ dims[0] = 0;
+
+ Eigen::array<IndexType, 1> stride_of_3;
+ stride_of_3[0] = 3;
+ Eigen::array<IndexType, 1> stride_of_2;
+ stride_of_2[0] = 2;
+
+ std::size_t input_bytes = input.size() * sizeof(DataType);
+ std::size_t kernel_bytes = kernel.size() * sizeof(DataType);
+ std::size_t result_bytes = result.size() * sizeof(DataType);
+
+ DataType * d_input = static_cast<DataType*>(sycl_device.allocate(input_bytes));
+ DataType * d_kernel = static_cast<DataType*>(sycl_device.allocate(kernel_bytes));
+ DataType * d_result = static_cast<DataType*>(sycl_device.allocate(result_bytes));
+
+ Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_input(d_input, input_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_kernel(d_kernel, kernel_dims);
+ Eigen::TensorMap<Eigen::Tensor<DataType, 1, DataLayout,IndexType> > gpu_result(d_result, result.dimensions());
+ sycl_device.memcpyHostToDevice(d_input, input.data(), input_bytes);
+ sycl_device.memcpyHostToDevice(d_kernel, kernel.data(), kernel_bytes);
+
+ gpu_result.device(sycl_device)=gpu_input.stride(stride_of_3).convolve(gpu_kernel, dims).stride(stride_of_2);
+ sycl_device.memcpyDeviceToHost(result.data(), d_result, result_bytes);
+
+ VERIFY_IS_EQUAL(result.dimension(0), 2);
+ VERIFY_IS_APPROX(result(0), (input(0)*kernel(0) + input(3)*kernel(1) +
+ input(6)*kernel(2)));
+ VERIFY_IS_APPROX(result(1), (input(6)*kernel(0) + input(9)*kernel(1) +
+ input(12)*kernel(2)));
+}
+
+template <typename Dev_selector> void tensorConvolutionPerDevice(Dev_selector& s){
+ QueueInterface queueInterface(s);
+ auto sycl_device=Eigen::SyclDevice(&queueInterface);
+ test_larg_expr1D<float, RowMajor, ptrdiff_t>(sycl_device);
+ test_larg_expr1D<float, ColMajor, ptrdiff_t>(sycl_device);
+ test_larg_expr2D<float, RowMajor, ptrdiff_t>(sycl_device);
+ test_larg_expr2D<float, ColMajor, ptrdiff_t>(sycl_device);
+ test_larg_expr3D<float, RowMajor, ptrdiff_t>(sycl_device);
+ test_larg_expr3D<float, ColMajor, ptrdiff_t>(sycl_device);
+ test_evals<float, ColMajor, ptrdiff_t>(sycl_device);
+ test_evals<float, RowMajor, ptrdiff_t>(sycl_device);
+ test_expr<float, ColMajor, ptrdiff_t>(sycl_device);
+ test_expr<float, RowMajor, ptrdiff_t>(sycl_device);
+ test_modes<float, ColMajor, ptrdiff_t>(sycl_device);
+ test_modes<float, RowMajor, ptrdiff_t>(sycl_device);
+ test_strides<float, ColMajor, ptrdiff_t>(sycl_device);
+ test_strides<float, RowMajor, ptrdiff_t>(sycl_device);
+}
+
+void test_cxx11_tensor_convolution_sycl() {
+ for (const auto& device :Eigen::get_sycl_supported_devices()) {
+ CALL_SUBTEST(tensorConvolutionPerDevice(device));
+ }
+}
diff --git a/unsupported/test/cxx11_tensor_sycl.cpp b/unsupported/test/cxx11_tensor_sycl.cpp
index 5992a306d..6f7e29890 100644
--- a/unsupported/test/cxx11_tensor_sycl.cpp
+++ b/unsupported/test/cxx11_tensor_sycl.cpp
@@ -242,9 +242,6 @@ static void test_sycl_cast(const Eigen::SyclDevice& sycl_device){
Scalar1* gpu_in_data = static_cast<Scalar1*>(sycl_device.allocate(in.size()*sizeof(Scalar1)));
Scalar2 * gpu_out_data = static_cast<Scalar2*>(sycl_device.allocate(out.size()*sizeof(Scalar2)));
-
-
-
TensorMap<Tensor<Scalar1, 1, DataLayout>> gpu_in(gpu_in_data, tensorRange);
TensorMap<Tensor<Scalar2, 1, DataLayout>> gpu_out(gpu_out_data, tensorRange);
sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.size())*sizeof(Scalar1));