aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/test/cxx11_tensor_fft.cpp
diff options
context:
space:
mode:
authorGravatar Benoit Steiner <benoit.steiner.goog@gmail.com>2015-10-22 16:52:55 -0700
committerGravatar Benoit Steiner <benoit.steiner.goog@gmail.com>2015-10-22 16:52:55 -0700
commit2495e2479fb00674a8ad78ea79e10ac2c952f2a7 (patch)
treebceaa2e60dc260537a9345a344995efa947d5126 /unsupported/test/cxx11_tensor_fft.cpp
parenta147c62998dd38d9adf180291783845c43f8a0fa (diff)
Added tests for the fft code
Diffstat (limited to 'unsupported/test/cxx11_tensor_fft.cpp')
-rw-r--r--unsupported/test/cxx11_tensor_fft.cpp273
1 files changed, 273 insertions, 0 deletions
diff --git a/unsupported/test/cxx11_tensor_fft.cpp b/unsupported/test/cxx11_tensor_fft.cpp
new file mode 100644
index 000000000..4aefcc79c
--- /dev/null
+++ b/unsupported/test/cxx11_tensor_fft.cpp
@@ -0,0 +1,273 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Jianwei Cui <thucjw@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "main.h"
+#include <Eigen/CXX11/Tensor>
+
+using Eigen::Tensor;
+
+template <int DataLayout>
+static void test_fft_2D_golden() {
+ Tensor<float, 2, DataLayout, long> input(2, 3);
+ input(0, 0) = 1;
+ input(0, 1) = 2;
+ input(0, 2) = 3;
+ input(1, 0) = 4;
+ input(1, 1) = 5;
+ input(1, 2) = 6;
+
+ array<int, 2> fft;
+ fft[0] = 0;
+ fft[1] = 1;
+
+ Tensor<std::complex<float>, 2, DataLayout, long> output = input.template fft<Eigen::BothParts, Eigen::FFT_FORWARD>(fft);
+
+ std::complex<float> output_golden[6]; // in ColMajor order
+ output_golden[0] = std::complex<float>(21, 0);
+ output_golden[1] = std::complex<float>(-9, 0);
+ output_golden[2] = std::complex<float>(-3, 1.73205);
+ output_golden[3] = std::complex<float>( 0, 0);
+ output_golden[4] = std::complex<float>(-3, -1.73205);
+ output_golden[5] = std::complex<float>(0 ,0);
+
+ std::complex<float> c_offset = std::complex<float>(1.0, 1.0);
+
+ if (DataLayout == ColMajor) {
+ VERIFY_IS_APPROX(output(0) + c_offset, output_golden[0] + c_offset);
+ VERIFY_IS_APPROX(output(1) + c_offset, output_golden[1] + c_offset);
+ VERIFY_IS_APPROX(output(2) + c_offset, output_golden[2] + c_offset);
+ VERIFY_IS_APPROX(output(3) + c_offset, output_golden[3] + c_offset);
+ VERIFY_IS_APPROX(output(4) + c_offset, output_golden[4] + c_offset);
+ VERIFY_IS_APPROX(output(5) + c_offset, output_golden[5] + c_offset);
+ }
+ else {
+ VERIFY_IS_APPROX(output(0)+ c_offset, output_golden[0]+ c_offset);
+ VERIFY_IS_APPROX(output(1)+ c_offset, output_golden[2]+ c_offset);
+ VERIFY_IS_APPROX(output(2)+ c_offset, output_golden[4]+ c_offset);
+ VERIFY_IS_APPROX(output(3)+ c_offset, output_golden[1]+ c_offset);
+ VERIFY_IS_APPROX(output(4)+ c_offset, output_golden[3]+ c_offset);
+ VERIFY_IS_APPROX(output(5)+ c_offset, output_golden[5]+ c_offset);
+ }
+}
+
+static void test_fft_complex_input_golden() {
+ Tensor<std::complex<float>, 1, ColMajor, long> input(5);
+ input(0) = std::complex<float>(1, 1);
+ input(1) = std::complex<float>(2, 2);
+ input(2) = std::complex<float>(3, 3);
+ input(3) = std::complex<float>(4, 4);
+ input(4) = std::complex<float>(5, 5);
+
+ array<int, 1> fft;
+ fft[0] = 0;
+
+ Tensor<std::complex<float>, 1, ColMajor, long> forward_output_both_parts = input.template fft<BothParts, FFT_FORWARD>(fft);
+ Tensor<std::complex<float>, 1, ColMajor, long> reverse_output_both_parts = input.template fft<BothParts, FFT_REVERSE>(fft);
+
+ Tensor<float, 1, ColMajor, long> forward_output_real_part = input.template fft<RealPart, FFT_FORWARD>(fft);
+ Tensor<float, 1, ColMajor, long> reverse_output_real_part = input.template fft<RealPart, FFT_REVERSE>(fft);
+
+ Tensor<float, 1, ColMajor, long> forward_output_imag_part = input.template fft<ImagPart, FFT_FORWARD>(fft);
+ Tensor<float, 1, ColMajor, long> reverse_output_imag_part = input.template fft<ImagPart, FFT_REVERSE>(fft);
+
+ VERIFY_IS_EQUAL(forward_output_both_parts.dimension(0), input.dimension(0));
+ VERIFY_IS_EQUAL(reverse_output_both_parts.dimension(0), input.dimension(0));
+
+ VERIFY_IS_EQUAL(forward_output_real_part.dimension(0), input.dimension(0));
+ VERIFY_IS_EQUAL(reverse_output_real_part.dimension(0), input.dimension(0));
+
+ VERIFY_IS_EQUAL(forward_output_imag_part.dimension(0), input.dimension(0));
+ VERIFY_IS_EQUAL(reverse_output_imag_part.dimension(0), input.dimension(0));
+
+ std::complex<float> forward_golden_result[5];
+ std::complex<float> reverse_golden_result[5];
+
+ forward_golden_result[0] = std::complex<float>(15.000000000000000,+15.000000000000000);
+ forward_golden_result[1] = std::complex<float>(-5.940954801177935, +0.940954801177934);
+ forward_golden_result[2] = std::complex<float>(-3.312299240582266, -1.687700759417735);
+ forward_golden_result[3] = std::complex<float>(-1.687700759417735, -3.312299240582266);
+ forward_golden_result[4] = std::complex<float>( 0.940954801177934, -5.940954801177935);
+
+ reverse_golden_result[0] = std::complex<float>( 3.000000000000000, + 3.000000000000000);
+ reverse_golden_result[1] = std::complex<float>( 0.188190960235587, - 1.188190960235587);
+ reverse_golden_result[2] = std::complex<float>(-0.337540151883547, - 0.662459848116453);
+ reverse_golden_result[3] = std::complex<float>(-0.662459848116453, - 0.337540151883547);
+ reverse_golden_result[4] = std::complex<float>(-1.188190960235587, + 0.188190960235587);
+
+ for(int i = 0; i < 5; ++i) {
+ VERIFY_IS_APPROX(forward_output_both_parts(i), forward_golden_result[i]);
+ VERIFY_IS_APPROX(forward_output_real_part(i), forward_golden_result[i].real());
+ VERIFY_IS_APPROX(forward_output_imag_part(i), forward_golden_result[i].imag());
+ }
+
+ for(int i = 0; i < 5; ++i) {
+ VERIFY_IS_APPROX(reverse_output_both_parts(i), reverse_golden_result[i]);
+ VERIFY_IS_APPROX(reverse_output_real_part(i), reverse_golden_result[i].real());
+ VERIFY_IS_APPROX(reverse_output_imag_part(i), reverse_golden_result[i].imag());
+ }
+}
+
+static void test_fft_real_input_golden() {
+ Tensor<float, 1, ColMajor, long> input(5);
+ input(0) = 1.0;
+ input(1) = 2.0;
+ input(2) = 3.0;
+ input(3) = 4.0;
+ input(4) = 5.0;
+
+ array<int, 1> fft;
+ fft[0] = 0;
+
+ Tensor<std::complex<float>, 1, ColMajor, long> forward_output_both_parts = input.template fft<BothParts, FFT_FORWARD>(fft);
+ Tensor<std::complex<float>, 1, ColMajor, long> reverse_output_both_parts = input.template fft<BothParts, FFT_REVERSE>(fft);
+
+ Tensor<float, 1, ColMajor, long> forward_output_real_part = input.template fft<RealPart, FFT_FORWARD>(fft);
+ Tensor<float, 1, ColMajor, long> reverse_output_real_part = input.template fft<RealPart, FFT_REVERSE>(fft);
+
+ Tensor<float, 1, ColMajor, long> forward_output_imag_part = input.template fft<ImagPart, FFT_FORWARD>(fft);
+ Tensor<float, 1, ColMajor, long> reverse_output_imag_part = input.template fft<ImagPart, FFT_REVERSE>(fft);
+
+ VERIFY_IS_EQUAL(forward_output_both_parts.dimension(0), input.dimension(0));
+ VERIFY_IS_EQUAL(reverse_output_both_parts.dimension(0), input.dimension(0));
+
+ VERIFY_IS_EQUAL(forward_output_real_part.dimension(0), input.dimension(0));
+ VERIFY_IS_EQUAL(reverse_output_real_part.dimension(0), input.dimension(0));
+
+ VERIFY_IS_EQUAL(forward_output_imag_part.dimension(0), input.dimension(0));
+ VERIFY_IS_EQUAL(reverse_output_imag_part.dimension(0), input.dimension(0));
+
+ std::complex<float> forward_golden_result[5];
+ std::complex<float> reverse_golden_result[5];
+
+
+ forward_golden_result[0] = std::complex<float>( 15, 0);
+ forward_golden_result[1] = std::complex<float>(-2.5, +3.44095480117793);
+ forward_golden_result[2] = std::complex<float>(-2.5, +0.81229924058227);
+ forward_golden_result[3] = std::complex<float>(-2.5, -0.81229924058227);
+ forward_golden_result[4] = std::complex<float>(-2.5, -3.44095480117793);
+
+ reverse_golden_result[0] = std::complex<float>( 3.0, 0);
+ reverse_golden_result[1] = std::complex<float>(-0.5, -0.688190960235587);
+ reverse_golden_result[2] = std::complex<float>(-0.5, -0.162459848116453);
+ reverse_golden_result[3] = std::complex<float>(-0.5, +0.162459848116453);
+ reverse_golden_result[4] = std::complex<float>(-0.5, +0.688190960235587);
+
+ std::complex<float> c_offset(1.0, 1.0);
+ float r_offset = 1.0;
+
+ for(int i = 0; i < 5; ++i) {
+ VERIFY_IS_APPROX(forward_output_both_parts(i) + c_offset, forward_golden_result[i] + c_offset);
+ VERIFY_IS_APPROX(forward_output_real_part(i) + r_offset, forward_golden_result[i].real() + r_offset);
+ VERIFY_IS_APPROX(forward_output_imag_part(i) + r_offset, forward_golden_result[i].imag() + r_offset);
+ }
+
+ for(int i = 0; i < 5; ++i) {
+ VERIFY_IS_APPROX(reverse_output_both_parts(i) + c_offset, reverse_golden_result[i] + c_offset);
+ VERIFY_IS_APPROX(reverse_output_real_part(i) + r_offset, reverse_golden_result[i].real() + r_offset);
+ VERIFY_IS_APPROX(reverse_output_imag_part(i) + r_offset, reverse_golden_result[i].imag() + r_offset);
+ }
+}
+
+
+template <int DataLayout, typename RealScalar, bool isComplexInput, int FFTResultType, int FFTDirection, int TensorRank>
+static void test_fft_real_input_energy() {
+
+ Eigen::DSizes<long, TensorRank> dimensions;
+ int total_size = 1;
+ for (int i = 0; i < TensorRank; ++i) {
+ dimensions[i] = rand() % 20 + 1;
+ total_size *= dimensions[i];
+ }
+ const DSizes<long, TensorRank> arr = dimensions;
+
+ typedef typename internal::conditional<isComplexInput == true, std::complex<RealScalar>, RealScalar>::type InputScalar;
+
+ Tensor<InputScalar, TensorRank, DataLayout, long> input;
+ input.resize(arr);
+ input.setRandom();
+
+ array<int, TensorRank> fft;
+ for (int i = 0; i < TensorRank; ++i) {
+ fft[i] = i;
+ }
+
+ typedef typename internal::conditional<FFTResultType == Eigen::BothParts, std::complex<RealScalar>, RealScalar>::type OutputScalar;
+ Tensor<OutputScalar, TensorRank, DataLayout> output;
+ output = input.template fft<FFTResultType, FFTDirection>(fft);
+
+ for (int i = 0; i < TensorRank; ++i) {
+ VERIFY_IS_EQUAL(output.dimension(i), input.dimension(i));
+ }
+
+ float energy_original = 0.0;
+ float energy_after_fft = 0.0;
+
+ for (int i = 0; i < total_size; ++i) {
+ energy_original += pow(std::abs(input(i)), 2);
+ }
+
+ for (int i = 0; i < total_size; ++i) {
+ energy_after_fft += pow(std::abs(output(i)), 2);
+ }
+
+ if(FFTDirection == FFT_FORWARD) {
+ VERIFY_IS_APPROX(energy_original, energy_after_fft / total_size);
+ }
+ else {
+ VERIFY_IS_APPROX(energy_original, energy_after_fft * total_size);
+ }
+}
+
+void test_cxx11_tensor_fft() {
+ test_fft_complex_input_golden();
+ test_fft_real_input_golden();
+
+ test_fft_2D_golden<ColMajor>();
+ test_fft_2D_golden<RowMajor>();
+
+ test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 1>();
+ test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 1>();
+ test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 1>();
+ test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 1>();
+
+ test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 2>();
+ test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 2>();
+ test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 2>();
+ test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 2>();
+
+ test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 3>();
+ test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 3>();
+ test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 3>();
+ test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 3>();
+
+ test_fft_real_input_energy<ColMajor, float, true, Eigen::BothParts, FFT_FORWARD, 4>();
+ test_fft_real_input_energy<ColMajor, double, true, Eigen::BothParts, FFT_FORWARD, 4>();
+ test_fft_real_input_energy<ColMajor, float, false, Eigen::BothParts, FFT_FORWARD, 4>();
+ test_fft_real_input_energy<ColMajor, double, false, Eigen::BothParts, FFT_FORWARD, 4>();
+
+ test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 1>();
+ test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 1>();
+ test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 1>();
+ test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 1>();
+
+ test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 2>();
+ test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 2>();
+ test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 2>();
+ test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 2>();
+
+ test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 3>();
+ test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 3>();
+ test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 3>();
+ test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 3>();
+
+ test_fft_real_input_energy<RowMajor, float, true, Eigen::BothParts, FFT_FORWARD, 4>();
+ test_fft_real_input_energy<RowMajor, double, true, Eigen::BothParts, FFT_FORWARD, 4>();
+ test_fft_real_input_energy<RowMajor, float, false, Eigen::BothParts, FFT_FORWARD, 4>();
+ test_fft_real_input_energy<RowMajor, double, false, Eigen::BothParts, FFT_FORWARD, 4>();
+}