aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2011-07-26 09:04:10 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2011-07-26 09:04:10 +0200
commit80b1d1371db8c2d5da21b3570bc866655263894e (patch)
treea966d95e9fe17516b6696279557bcac1b9c6593d /unsupported/Eigen
parent8fa7e92e77f550efb6d67635f19dfd7672d3259c (diff)
add a conjugate gradient solver
Diffstat (limited to 'unsupported/Eigen')
-rw-r--r--unsupported/Eigen/IterativeSolvers1
-rw-r--r--unsupported/Eigen/src/IterativeSolvers/ConjugateGradient.h429
2 files changed, 430 insertions, 0 deletions
diff --git a/unsupported/Eigen/IterativeSolvers b/unsupported/Eigen/IterativeSolvers
index bf1a9460b..42f4a32f1 100644
--- a/unsupported/Eigen/IterativeSolvers
+++ b/unsupported/Eigen/IterativeSolvers
@@ -43,6 +43,7 @@ namespace Eigen {
#include "src/IterativeSolvers/IterationController.h"
#include "src/IterativeSolvers/ConstrainedConjGrad.h"
+#include "src/IterativeSolvers/ConjugateGradient.h"
//@}
diff --git a/unsupported/Eigen/src/IterativeSolvers/ConjugateGradient.h b/unsupported/Eigen/src/IterativeSolvers/ConjugateGradient.h
new file mode 100644
index 000000000..52d167b72
--- /dev/null
+++ b/unsupported/Eigen/src/IterativeSolvers/ConjugateGradient.h
@@ -0,0 +1,429 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2011 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_CONJUGATE_GRADIENT_H
+#define EIGEN_CONJUGATE_GRADIENT_H
+
+namespace internal {
+
+/** \internal Low-level conjugate gradient algorithm
+ * \param mat The matrix A
+ * \param rhs The right hand side vector b
+ * \param x On input and initial solution, on output the computed solution.
+ * \param precond A preconditioner being able to efficiently solve for an
+ * approximation of Ax=b (regardless of b)
+ * \param iters On input the max number of iteration, on output the number of performed iterations.
+ * \param tol_error On input the tolerance error, on output an estimation of the relative error.
+ */
+template<typename MatrixType, typename Rhs, typename Dest, typename Preconditioner>
+void conjugate_gradient(const MatrixType& mat, const Rhs& rhs, Dest& x,
+ const Preconditioner& precond, int& iters,
+ typename Dest::RealScalar& tol_error)
+{
+ using std::sqrt;
+ using std::abs;
+ typedef typename Dest::RealScalar RealScalar;
+ typedef typename Dest::Scalar Scalar;
+ typedef Dest VectorType;
+
+ RealScalar tol = tol_error;
+ int maxIters = iters;
+
+ int n = mat.cols();
+ VectorType residual = rhs - mat * x; //initial residual
+ VectorType p(n);
+
+ p = precond.solve(residual); //initial search direction
+
+ VectorType z(n), tmp(n);
+ RealScalar absNew = internal::real(residual.dot(p)); // the square of the absolute value of r scaled by invM
+ RealScalar absInit = absNew; // the initial absolute value
+
+ int i = 0;
+ while ((i < maxIters) && (absNew > tol*tol*absInit))
+ {
+ tmp.noalias() = mat * p; // the bottleneck of the algorithm
+
+ Scalar alpha = absNew / p.dot(tmp); // the amount we travel on dir
+ x += alpha * p; // update solution
+ residual -= alpha * tmp; // update residue
+ z = precond.solve(residual); // approximately solve for "A z = residual"
+
+ RealScalar absOld = absNew;
+ absNew = internal::real(residual.dot(z)); // update the absolute value of r
+ RealScalar beta = absNew / absOld; // calculate the Gram-Schmidit value used to create the new search direction
+ p = z + beta * p; // update search direction
+ i++;
+ }
+
+ tol_error = sqrt(abs(absNew / absInit));
+ iters = i;
+}
+
+}
+
+/** \brief A preconditioner based on the digonal entries
+ *
+ * This class allows to approximately solve for A.x = b problems assuming A is a diagonal matrix.
+ * In other words, this preconditioner neglects all off diagonal entries and, in Eigen's language, solves for:
+ * \code
+ * A.diagonal().asDiagonal() . x = b
+ * \endcode
+ *
+ * \tparam _Scalar the type of the scalar.
+ *
+ * This preconditioner is suitable for both selfadjoint and general problems.
+ * The diagonal entries are pre-inverted and stored into a dense vector.
+ *
+ * \note A variant that has yet to be implemented would attempt to preserve the norm of each column.
+ *
+ */
+template <typename _Scalar>
+class DiagonalPreconditioner
+{
+ typedef _Scalar Scalar;
+ typedef Matrix<Scalar,Dynamic,1> Vector;
+ typedef typename Vector::Index Index;
+
+ public:
+ typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
+
+ DiagonalPreconditioner() : m_isInitialized(false) {}
+
+ template<typename MatrixType>
+ DiagonalPreconditioner(const MatrixType& mat) : m_invdiag(mat.cols())
+ {
+ compute(mat);
+ }
+
+ Index rows() const { return m_invdiag.size(); }
+ Index cols() const { return m_invdiag.size(); }
+
+ template<typename MatrixType>
+ DiagonalPreconditioner& compute(const MatrixType& mat)
+ {
+ m_invdiag.resize(mat.cols());
+ for(int j=0; j<mat.outerSize(); ++j)
+ {
+ typename MatrixType::InnerIterator it(mat,j);
+ while(it && it.index()!=j) ++it;
+ if(it.index()==j)
+ m_invdiag(j) = Scalar(1)/it.value();
+ else
+ m_invdiag(j) = 0;
+ }
+ m_isInitialized = true;
+ return *this;
+ }
+
+ template<typename Rhs, typename Dest>
+ void _solve(const Rhs& b, Dest& x) const
+ {
+ x = m_invdiag.array() * b.array() ;
+ }
+
+ template<typename Rhs> inline const internal::solve_retval<DiagonalPreconditioner, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_isInitialized && "DiagonalPreconditioner is not initialized.");
+ eigen_assert(m_invdiag.size()==b.rows()
+ && "DiagonalPreconditioner::solve(): invalid number of rows of the right hand side matrix b");
+ return internal::solve_retval<DiagonalPreconditioner, Rhs>(*this, b.derived());
+ }
+
+ protected:
+ Vector m_invdiag;
+ bool m_isInitialized;
+};
+
+namespace internal {
+
+template<typename _MatrixType, typename Rhs>
+struct solve_retval<DiagonalPreconditioner<_MatrixType>, Rhs>
+ : solve_retval_base<DiagonalPreconditioner<_MatrixType>, Rhs>
+{
+ typedef DiagonalPreconditioner<_MatrixType> Dec;
+ EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dec()._solve(rhs(),dst);
+ }
+};
+
+template<typename CG, typename Rhs, typename Guess>
+class conjugate_gradient_solve_retval_with_guess;
+
+}
+
+/** \brief A conjugate gradient solver for sparse self-adjoint problems
+ *
+ * This class allows to solve for A.x = b sparse linear problems using a conjugate gradient algorithm.
+ * The sparse matrix A must be selfadjoint. The vectors x and b can be either dense or sparse.
+ *
+ * \tparam _MatrixType the type of the sparse matrix A, can be a dense or a sparse matrix.
+ * \tparam _UpLo the triangular part that will be used for the computations. It can be Lower
+ * or Upper. Default is Lower.
+ * \tparam _Preconditioner the type of the preconditioner. Default is DiagonalPreconditioner
+ *
+ * The maximal number of iterations and tolerance value can be controlled via the setMaxIterations()
+ * and setTolerance() methods. The default are 1000 max iterations and NumTraits<Scalar>::epsilon()
+ * for the tolerance.
+ *
+ * This class can be used as the direct solver classes. Here is a typical usage example:
+ * \code
+ * int n = 10000;
+ * VectorXd x(n), b(n);
+ * SparseMatrix<double> A(n,n);
+ * // fill A and b
+ * ConjugateGradient<SparseMatrix<double> > cg;
+ * cg(A);
+ * x = cg.solve(b);
+ * std::cout << "#iterations: " << cg.iterations() << std::endl;
+ * std::cout << "estimated error: " << cg.error() << std::endl;
+ * // update b, and solve again
+ * x = cg.solve(b);
+ * \endcode
+ *
+ * By default the iterations start with x=0 as an initial guess of the solution.
+ * One can control the start using the solveWithGuess() method. Here is a step by
+ * step execution example starting with a random guess and printing the evolution
+ * of the estimated error:
+ * * \code
+ * x = VectorXd::Random(n);
+ * cg.setMaxIterations(1);
+ * int i = 0;
+ * do {
+ * x = cg.solveWithGuess(b,x);
+ * std::cout << i << " : " << cg.error() << std::endl;
+ * ++i;
+ * } while (cg.info()!=Success && i<100);
+ * \endcode
+ * Note that such a step by step excution is slightly slower.
+ *
+ */
+template< typename _MatrixType, int _UpLo=Lower,
+ typename _Preconditioner = DiagonalPreconditioner<typename _MatrixType::Scalar> >
+class ConjugateGradient
+{
+public:
+ typedef _MatrixType MatrixType;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::RealScalar RealScalar;
+ typedef _Preconditioner Preconditioner;
+
+ enum {
+ UpLo = _UpLo
+ };
+
+public:
+
+ /** Default constructor. */
+ ConjugateGradient()
+ : mp_matrix(0)
+ {
+ init();
+ }
+
+ /** Initialize the solver with matrix \a A for further \c Ax=b solving.
+ *
+ * \warning this class stores a reference to the matrix A as well as some
+ * precomputed values that depend on it. Therefore, if \a A is changed
+ * this class becomes invalid. Call compute() to update it with the new
+ * matrix A, or modify a copy of A.
+ */
+ ConjugateGradient(const MatrixType& A)
+ {
+ init();
+ compute(A);
+ }
+
+ ~ConjugateGradient() {}
+
+ /** Initializes the iterative solver with the matrix \a A for further solving \c Ax=b problems.
+ *
+ * \warning this class stores a reference to the matrix A as well as some
+ * precomputed values that depend on it. Therefore, if \a A is changed
+ * this class becomes invalid. Call compute() to update it with the new
+ * matrix A, or modify a copy of A.
+ */
+ ConjugateGradient& compute(const MatrixType& A)
+ {
+ mp_matrix = &A;
+ m_preconditioner.compute(A);
+ m_isInitialized = true;
+ return *this;
+ }
+
+ /** \internal */
+ Index rows() const { return mp_matrix->rows(); }
+ /** \internal */
+ Index cols() const { return mp_matrix->cols(); }
+
+ /** \returns the tolerance threshold used by the stopping criteria */
+ RealScalar tolerance() const { return m_tolerance; }
+
+ /** Sets the tolerance threshold used by the stopping criteria */
+ ConjugateGradient& setTolerance(RealScalar tolerance)
+ {
+ m_tolerance = tolerance;
+ return *this;
+ }
+
+ /** \returns the max number of iterations */
+ int maxIterations() const { return m_maxIterations; }
+
+ /** Sets the max number of iterations */
+ ConjugateGradient& setMaxIterations(int maxIters)
+ {
+ m_maxIterations = maxIters;
+ return *this;
+ }
+
+ /** \returns the number of iterations performed during the last solve */
+ int iterations() const
+ {
+ eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
+ return m_iterations;
+ }
+
+ /** \returns the tolerance error reached during the last solve */
+ RealScalar error() const
+ {
+ eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
+ return m_error;
+ }
+
+ /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A.
+ *
+ * \sa compute()
+ */
+ template<typename Rhs> inline const internal::solve_retval<ConjugateGradient, Rhs>
+ solve(const MatrixBase<Rhs>& b) const
+ {
+ eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
+ eigen_assert(rows()==b.rows()
+ && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
+ return internal::solve_retval<ConjugateGradient, Rhs>(*this, b.derived());
+ }
+
+ /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A
+ * \a x0 as an initial solution.
+ *
+ * \sa compute()
+ */
+ template<typename Rhs,typename Guess>
+ inline const internal::conjugate_gradient_solve_retval_with_guess<ConjugateGradient, Rhs, Guess>
+ solveWithGuess(const MatrixBase<Rhs>& b, const Guess& x0) const
+ {
+ eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
+ eigen_assert(rows()==b.rows()
+ && "ConjugateGradient::solve(): invalid number of rows of the right hand side matrix b");
+ return internal::conjugate_gradient_solve_retval_with_guess
+ <ConjugateGradient, Rhs, Guess>(*this, b.derived(), x0);
+ }
+
+ /** \returns Success if the iterations converged, and NoConvergence otherwise. */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "ConjugateGradient is not initialized.");
+ return m_info;
+ }
+
+ /** \internal */
+ template<typename Rhs,typename Dest>
+ void _solve(const Rhs& b, Dest& x) const
+ {
+ m_iterations = m_maxIterations;
+ m_error = m_tolerance;
+
+ internal::conjugate_gradient(mp_matrix->template selfadjointView<UpLo>(), b, x,
+ m_preconditioner, m_iterations, m_error);
+
+ m_isInitialized = true;
+ m_info = m_error <= m_tolerance ? Success : NoConvergence;
+ }
+
+protected:
+ void init()
+ {
+ m_isInitialized = false;
+ m_maxIterations = 1000;
+ m_tolerance = NumTraits<Scalar>::epsilon();
+ }
+ const MatrixType* mp_matrix;
+ Preconditioner m_preconditioner;
+
+ int m_maxIterations;
+ RealScalar m_tolerance;
+
+ mutable RealScalar m_error;
+ mutable int m_iterations;
+ mutable ComputationInfo m_info;
+ mutable bool m_isInitialized;
+};
+
+
+namespace internal {
+
+ template<typename _MatrixType, int _UpLo, typename _Preconditioner, typename Rhs>
+struct solve_retval<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
+ : solve_retval_base<ConjugateGradient<_MatrixType,_UpLo,_Preconditioner>, Rhs>
+{
+ typedef ConjugateGradient<_MatrixType,_UpLo,_Preconditioner> Dec;
+ EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dst.setZero();
+ dec()._solve(rhs(),dst);
+ }
+};
+
+template<typename CG, typename Rhs, typename Guess>
+class conjugate_gradient_solve_retval_with_guess
+ : solve_retval_base<CG, Rhs>
+{
+ typedef Eigen::internal::solve_retval_base<CG,Rhs> Base;
+ using Base::dec;
+ using Base::rhs;
+
+ conjugate_gradient_solve_retval_with_guess(const CG& cg, const Rhs& rhs, const Guess guess)
+ : Base(cg, rhs), m_guess(guess)
+ {}
+
+ template<typename Dest> void evalTo(Dest& dst) const
+ {
+ dst = m_guess;
+ dec()._solve(rhs(), dst);
+ }
+ protected:
+ const Guess& m_guess;
+
+};
+
+}
+
+#endif // EIGEN_CONJUGATE_GRADIENT_H