aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
diff options
context:
space:
mode:
authorGravatar Deven Desai <deven.desai.amd@gmail.com>2018-06-13 12:09:52 -0400
committerGravatar Deven Desai <deven.desai.amd@gmail.com>2018-06-13 12:09:52 -0400
commitd1d22ef0f4af42f58bdd9d78b22bf912852a6bf4 (patch)
treed137f1e11d54028c241eee61bf8cd5fe6441f602 /unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
parent8fbd47052bcafea612b8ae2841c1de5db738f042 (diff)
parentd3a380af4d17513ab71630b59f390589fa7c207b (diff)
syncing this fork with upstream
Diffstat (limited to 'unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h')
-rw-r--r--unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h564
1 files changed, 361 insertions, 203 deletions
diff --git a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
index 5ab67dc1f..9a719e3c0 100644
--- a/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
+++ b/unsupported/Eigen/src/SpecialFunctions/SpecialFunctionsImpl.h
@@ -521,6 +521,197 @@ struct cephes_helper<double> {
}
};
+enum IgammaComputationMode { VALUE, DERIVATIVE, SAMPLE_DERIVATIVE };
+
+template <typename Scalar, IgammaComputationMode mode>
+EIGEN_DEVICE_FUNC
+int igamma_num_iterations() {
+ /* Returns the maximum number of internal iterations for igamma computation.
+ */
+ if (mode == VALUE) {
+ return 2000;
+ }
+
+ if (internal::is_same<Scalar, float>::value) {
+ return 200;
+ } else if (internal::is_same<Scalar, double>::value) {
+ return 500;
+ } else {
+ return 2000;
+ }
+}
+
+template <typename Scalar, IgammaComputationMode mode>
+struct igammac_cf_impl {
+ /* Computes igamc(a, x) or derivative (depending on the mode)
+ * using the continued fraction expansion of the complementary
+ * incomplete Gamma function.
+ *
+ * Preconditions:
+ * a > 0
+ * x >= 1
+ * x >= a
+ */
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar a, Scalar x) {
+ const Scalar zero = 0;
+ const Scalar one = 1;
+ const Scalar two = 2;
+ const Scalar machep = cephes_helper<Scalar>::machep();
+ const Scalar big = cephes_helper<Scalar>::big();
+ const Scalar biginv = cephes_helper<Scalar>::biginv();
+
+ if ((numext::isinf)(x)) {
+ return zero;
+ }
+
+ // continued fraction
+ Scalar y = one - a;
+ Scalar z = x + y + one;
+ Scalar c = zero;
+ Scalar pkm2 = one;
+ Scalar qkm2 = x;
+ Scalar pkm1 = x + one;
+ Scalar qkm1 = z * x;
+ Scalar ans = pkm1 / qkm1;
+
+ Scalar dpkm2_da = zero;
+ Scalar dqkm2_da = zero;
+ Scalar dpkm1_da = zero;
+ Scalar dqkm1_da = -x;
+ Scalar dans_da = (dpkm1_da - ans * dqkm1_da) / qkm1;
+
+ for (int i = 0; i < igamma_num_iterations<Scalar, mode>(); i++) {
+ c += one;
+ y += one;
+ z += two;
+
+ Scalar yc = y * c;
+ Scalar pk = pkm1 * z - pkm2 * yc;
+ Scalar qk = qkm1 * z - qkm2 * yc;
+
+ Scalar dpk_da = dpkm1_da * z - pkm1 - dpkm2_da * yc + pkm2 * c;
+ Scalar dqk_da = dqkm1_da * z - qkm1 - dqkm2_da * yc + qkm2 * c;
+
+ if (qk != zero) {
+ Scalar ans_prev = ans;
+ ans = pk / qk;
+
+ Scalar dans_da_prev = dans_da;
+ dans_da = (dpk_da - ans * dqk_da) / qk;
+
+ if (mode == VALUE) {
+ if (numext::abs(ans_prev - ans) <= machep * numext::abs(ans)) {
+ break;
+ }
+ } else {
+ if (numext::abs(dans_da - dans_da_prev) <= machep) {
+ break;
+ }
+ }
+ }
+
+ pkm2 = pkm1;
+ pkm1 = pk;
+ qkm2 = qkm1;
+ qkm1 = qk;
+
+ dpkm2_da = dpkm1_da;
+ dpkm1_da = dpk_da;
+ dqkm2_da = dqkm1_da;
+ dqkm1_da = dqk_da;
+
+ if (numext::abs(pk) > big) {
+ pkm2 *= biginv;
+ pkm1 *= biginv;
+ qkm2 *= biginv;
+ qkm1 *= biginv;
+
+ dpkm2_da *= biginv;
+ dpkm1_da *= biginv;
+ dqkm2_da *= biginv;
+ dqkm1_da *= biginv;
+ }
+ }
+
+ /* Compute x**a * exp(-x) / gamma(a) */
+ Scalar logax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
+ Scalar dlogax_da = numext::log(x) - digamma_impl<Scalar>::run(a);
+ Scalar ax = numext::exp(logax);
+ Scalar dax_da = ax * dlogax_da;
+
+ switch (mode) {
+ case VALUE:
+ return ans * ax;
+ case DERIVATIVE:
+ return ans * dax_da + dans_da * ax;
+ case SAMPLE_DERIVATIVE:
+ return -(dans_da + ans * dlogax_da) * x;
+ }
+ }
+};
+
+template <typename Scalar, IgammaComputationMode mode>
+struct igamma_series_impl {
+ /* Computes igam(a, x) or its derivative (depending on the mode)
+ * using the series expansion of the incomplete Gamma function.
+ *
+ * Preconditions:
+ * x > 0
+ * a > 0
+ * !(x > 1 && x > a)
+ */
+ EIGEN_DEVICE_FUNC
+ static Scalar run(Scalar a, Scalar x) {
+ const Scalar zero = 0;
+ const Scalar one = 1;
+ const Scalar machep = cephes_helper<Scalar>::machep();
+
+ /* power series */
+ Scalar r = a;
+ Scalar c = one;
+ Scalar ans = one;
+
+ Scalar dc_da = zero;
+ Scalar dans_da = zero;
+
+ for (int i = 0; i < igamma_num_iterations<Scalar, mode>(); i++) {
+ r += one;
+ Scalar term = x / r;
+ Scalar dterm_da = -x / (r * r);
+ dc_da = term * dc_da + dterm_da * c;
+ dans_da += dc_da;
+ c *= term;
+ ans += c;
+
+ if (mode == VALUE) {
+ if (c <= machep * ans) {
+ break;
+ }
+ } else {
+ if (numext::abs(dc_da) <= machep * numext::abs(dans_da)) {
+ break;
+ }
+ }
+ }
+
+ /* Compute x**a * exp(-x) / gamma(a + 1) */
+ Scalar logax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a + one);
+ Scalar dlogax_da = numext::log(x) - digamma_impl<Scalar>::run(a + one);
+ Scalar ax = numext::exp(logax);
+ Scalar dax_da = ax * dlogax_da;
+
+ switch (mode) {
+ case VALUE:
+ return ans * ax;
+ case DERIVATIVE:
+ return ans * dax_da + dans_da * ax;
+ case SAMPLE_DERIVATIVE:
+ return -(dans_da + ans * dlogax_da) * x / a;
+ }
+ }
+};
+
#if !EIGEN_HAS_C99_MATH
template <typename Scalar>
@@ -535,8 +726,6 @@ struct igammac_impl {
#else
-template <typename Scalar> struct igamma_impl; // predeclare igamma_impl
-
template <typename Scalar>
struct igammac_impl {
EIGEN_DEVICE_FUNC
@@ -604,97 +793,15 @@ struct igammac_impl {
return nan;
}
- if ((numext::isnan)(a) || (numext::isnan)(x)) { // propagate nans
+ if ((numext::isnan)(a) || (numext::isnan)(x)) { // propagate nans
return nan;
}
if ((x < one) || (x < a)) {
- /* The checks above ensure that we meet the preconditions for
- * igamma_impl::Impl(), so call it, rather than igamma_impl::Run().
- * Calling Run() would also work, but in that case the compiler may not be
- * able to prove that igammac_impl::Run and igamma_impl::Run are not
- * mutually recursive. This leads to worse code, particularly on
- * platforms like nvptx, where recursion is allowed only begrudgingly.
- */
- return (one - igamma_impl<Scalar>::Impl(a, x));
- }
-
- return Impl(a, x);
- }
-
- private:
- /* igamma_impl calls igammac_impl::Impl. */
- friend struct igamma_impl<Scalar>;
-
- /* Actually computes igamc(a, x).
- *
- * Preconditions:
- * a > 0
- * x >= 1
- * x >= a
- */
- EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) {
- const Scalar zero = 0;
- const Scalar one = 1;
- const Scalar two = 2;
- const Scalar machep = cephes_helper<Scalar>::machep();
- const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
- const Scalar big = cephes_helper<Scalar>::big();
- const Scalar biginv = cephes_helper<Scalar>::biginv();
- const Scalar inf = NumTraits<Scalar>::infinity();
-
- Scalar ans, ax, c, yc, r, t, y, z;
- Scalar pk, pkm1, pkm2, qk, qkm1, qkm2;
-
- if (x == inf) return zero; // std::isinf crashes on CUDA
-
- /* Compute x**a * exp(-x) / gamma(a) */
- ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
- if (ax < -maxlog) { // underflow
- return zero;
- }
- ax = numext::exp(ax);
-
- // continued fraction
- y = one - a;
- z = x + y + one;
- c = zero;
- pkm2 = one;
- qkm2 = x;
- pkm1 = x + one;
- qkm1 = z * x;
- ans = pkm1 / qkm1;
-
- for (int i = 0; i < 2000; i++) {
- c += one;
- y += one;
- z += two;
- yc = y * c;
- pk = pkm1 * z - pkm2 * yc;
- qk = qkm1 * z - qkm2 * yc;
- if (qk != zero) {
- r = pk / qk;
- t = numext::abs((ans - r) / r);
- ans = r;
- } else {
- t = one;
- }
- pkm2 = pkm1;
- pkm1 = pk;
- qkm2 = qkm1;
- qkm1 = qk;
- if (numext::abs(pk) > big) {
- pkm2 *= biginv;
- pkm1 *= biginv;
- qkm2 *= biginv;
- qkm1 *= biginv;
- }
- if (t <= machep) {
- break;
- }
+ return (one - igamma_series_impl<Scalar, VALUE>::run(a, x));
}
- return (ans * ax);
+ return igammac_cf_impl<Scalar, VALUE>::run(a, x);
}
};
@@ -704,15 +811,10 @@ struct igammac_impl {
* Implementation of igamma (incomplete gamma integral), based on Cephes but requires C++11/C99 *
************************************************************************************************/
-template <typename Scalar>
-struct igamma_retval {
- typedef Scalar type;
-};
-
#if !EIGEN_HAS_C99_MATH
-template <typename Scalar>
-struct igamma_impl {
+template <typename Scalar, IgammaComputationMode mode>
+struct igamma_generic_impl {
EIGEN_DEVICE_FUNC
static EIGEN_STRONG_INLINE Scalar run(Scalar a, Scalar x) {
EIGEN_STATIC_ASSERT((internal::is_same<Scalar, Scalar>::value == false),
@@ -723,69 +825,17 @@ struct igamma_impl {
#else
-template <typename Scalar>
-struct igamma_impl {
+template <typename Scalar, IgammaComputationMode mode>
+struct igamma_generic_impl {
EIGEN_DEVICE_FUNC
static Scalar run(Scalar a, Scalar x) {
- /* igam()
- * Incomplete gamma integral
- *
- *
- *
- * SYNOPSIS:
- *
- * double a, x, y, igam();
- *
- * y = igam( a, x );
- *
- * DESCRIPTION:
- *
- * The function is defined by
- *
- * x
- * -
- * 1 | | -t a-1
- * igam(a,x) = ----- | e t dt.
- * - | |
- * | (a) -
- * 0
- *
- *
- * In this implementation both arguments must be positive.
- * The integral is evaluated by either a power series or
- * continued fraction expansion, depending on the relative
- * values of a and x.
- *
- * ACCURACY (double):
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 200000 3.6e-14 2.9e-15
- * IEEE 0,100 300000 9.9e-14 1.5e-14
- *
- *
- * ACCURACY (float):
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE 0,30 20000 7.8e-6 5.9e-7
- *
- */
- /*
- Cephes Math Library Release 2.2: June, 1992
- Copyright 1985, 1987, 1992 by Stephen L. Moshier
- Direct inquiries to 30 Frost Street, Cambridge, MA 02140
- */
-
-
- /* left tail of incomplete gamma function:
- *
- * inf. k
- * a -x - x
- * x e > ----------
- * - -
- * k=0 | (a+k+1)
+ /* Depending on the mode, returns
+ * - VALUE: incomplete Gamma function igamma(a, x)
+ * - DERIVATIVE: derivative of incomplete Gamma function d/da igamma(a, x)
+ * - SAMPLE_DERIVATIVE: implicit derivative of a Gamma random variable
+ * x ~ Gamma(x | a, 1), dx/da = -1 / Gamma(x | a, 1) * d igamma(a, x) / dx
*
+ * Derivatives are implemented by forward-mode differentiation.
*/
const Scalar zero = 0;
const Scalar one = 1;
@@ -797,71 +847,167 @@ struct igamma_impl {
return nan;
}
- if ((numext::isnan)(a) || (numext::isnan)(x)) { // propagate nans
+ if ((numext::isnan)(a) || (numext::isnan)(x)) { // propagate nans
return nan;
}
if ((x > one) && (x > a)) {
- /* The checks above ensure that we meet the preconditions for
- * igammac_impl::Impl(), so call it, rather than igammac_impl::Run().
- * Calling Run() would also work, but in that case the compiler may not be
- * able to prove that igammac_impl::Run and igamma_impl::Run are not
- * mutually recursive. This leads to worse code, particularly on
- * platforms like nvptx, where recursion is allowed only begrudgingly.
- */
- return (one - igammac_impl<Scalar>::Impl(a, x));
+ Scalar ret = igammac_cf_impl<Scalar, mode>::run(a, x);
+ if (mode == VALUE) {
+ return one - ret;
+ } else {
+ return -ret;
+ }
}
- return Impl(a, x);
+ return igamma_series_impl<Scalar, mode>::run(a, x);
}
+};
+
+#endif // EIGEN_HAS_C99_MATH
- private:
- /* igammac_impl calls igamma_impl::Impl. */
- friend struct igammac_impl<Scalar>;
+template <typename Scalar>
+struct igamma_retval {
+ typedef Scalar type;
+};
- /* Actually computes igam(a, x).
+template <typename Scalar>
+struct igamma_impl : igamma_generic_impl<Scalar, VALUE> {
+ /* igam()
+ * Incomplete gamma integral.
+ *
+ * The CDF of Gamma(a, 1) random variable at the point x.
+ *
+ * Accuracy estimation. For each a in [10^-2, 10^-1...10^3] we sample
+ * 50 Gamma random variables x ~ Gamma(x | a, 1), a total of 300 points.
+ * The ground truth is computed by mpmath. Mean absolute error:
+ * float: 1.26713e-05
+ * double: 2.33606e-12
+ *
+ * Cephes documentation below.
+ *
+ * SYNOPSIS:
+ *
+ * double a, x, y, igam();
+ *
+ * y = igam( a, x );
+ *
+ * DESCRIPTION:
+ *
+ * The function is defined by
+ *
+ * x
+ * -
+ * 1 | | -t a-1
+ * igam(a,x) = ----- | e t dt.
+ * - | |
+ * | (a) -
+ * 0
+ *
+ *
+ * In this implementation both arguments must be positive.
+ * The integral is evaluated by either a power series or
+ * continued fraction expansion, depending on the relative
+ * values of a and x.
+ *
+ * ACCURACY (double):
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0,30 200000 3.6e-14 2.9e-15
+ * IEEE 0,100 300000 9.9e-14 1.5e-14
+ *
+ *
+ * ACCURACY (float):
+ *
+ * Relative error:
+ * arithmetic domain # trials peak rms
+ * IEEE 0,30 20000 7.8e-6 5.9e-7
*
- * Preconditions:
- * x > 0
- * a > 0
- * !(x > 1 && x > a)
*/
- EIGEN_DEVICE_FUNC static Scalar Impl(Scalar a, Scalar x) {
- const Scalar zero = 0;
- const Scalar one = 1;
- const Scalar machep = cephes_helper<Scalar>::machep();
- const Scalar maxlog = numext::log(NumTraits<Scalar>::highest());
+ /*
+ Cephes Math Library Release 2.2: June, 1992
+ Copyright 1985, 1987, 1992 by Stephen L. Moshier
+ Direct inquiries to 30 Frost Street, Cambridge, MA 02140
+ */
- Scalar ans, ax, c, r;
+ /* left tail of incomplete gamma function:
+ *
+ * inf. k
+ * a -x - x
+ * x e > ----------
+ * - -
+ * k=0 | (a+k+1)
+ *
+ */
+};
- /* Compute x**a * exp(-x) / gamma(a) */
- ax = a * numext::log(x) - x - lgamma_impl<Scalar>::run(a);
- if (ax < -maxlog) {
- // underflow
- return zero;
- }
- ax = numext::exp(ax);
+template <typename Scalar>
+struct igamma_der_a_retval : igamma_retval<Scalar> {};
- /* power series */
- r = a;
- c = one;
- ans = one;
+template <typename Scalar>
+struct igamma_der_a_impl : igamma_generic_impl<Scalar, DERIVATIVE> {
+ /* Derivative of the incomplete Gamma function with respect to a.
+ *
+ * Computes d/da igamma(a, x) by forward differentiation of the igamma code.
+ *
+ * Accuracy estimation. For each a in [10^-2, 10^-1...10^3] we sample
+ * 50 Gamma random variables x ~ Gamma(x | a, 1), a total of 300 points.
+ * The ground truth is computed by mpmath. Mean absolute error:
+ * float: 6.17992e-07
+ * double: 4.60453e-12
+ *
+ * Reference:
+ * R. Moore. "Algorithm AS 187: Derivatives of the incomplete gamma
+ * integral". Journal of the Royal Statistical Society. 1982
+ */
+};
- for (int i = 0; i < 2000; i++) {
- r += one;
- c *= x/r;
- ans += c;
- if (c/ans <= machep) {
- break;
- }
- }
+template <typename Scalar>
+struct gamma_sample_der_alpha_retval : igamma_retval<Scalar> {};
- return (ans * ax / a);
- }
+template <typename Scalar>
+struct gamma_sample_der_alpha_impl
+ : igamma_generic_impl<Scalar, SAMPLE_DERIVATIVE> {
+ /* Derivative of a Gamma random variable sample with respect to alpha.
+ *
+ * Consider a sample of a Gamma random variable with the concentration
+ * parameter alpha: sample ~ Gamma(alpha, 1). The reparameterization
+ * derivative that we want to compute is dsample / dalpha =
+ * d igammainv(alpha, u) / dalpha, where u = igamma(alpha, sample).
+ * However, this formula is numerically unstable and expensive, so instead
+ * we use implicit differentiation:
+ *
+ * igamma(alpha, sample) = u, where u ~ Uniform(0, 1).
+ * Apply d / dalpha to both sides:
+ * d igamma(alpha, sample) / dalpha
+ * + d igamma(alpha, sample) / dsample * dsample/dalpha = 0
+ * d igamma(alpha, sample) / dalpha
+ * + Gamma(sample | alpha, 1) dsample / dalpha = 0
+ * dsample/dalpha = - (d igamma(alpha, sample) / dalpha)
+ * / Gamma(sample | alpha, 1)
+ *
+ * Here Gamma(sample | alpha, 1) is the PDF of the Gamma distribution
+ * (note that the derivative of the CDF w.r.t. sample is the PDF).
+ * See the reference below for more details.
+ *
+ * The derivative of igamma(alpha, sample) is computed by forward
+ * differentiation of the igamma code. Division by the Gamma PDF is performed
+ * in the same code, increasing the accuracy and speed due to cancellation
+ * of some terms.
+ *
+ * Accuracy estimation. For each alpha in [10^-2, 10^-1...10^3] we sample
+ * 50 Gamma random variables sample ~ Gamma(sample | alpha, 1), a total of 300
+ * points. The ground truth is computed by mpmath. Mean absolute error:
+ * float: 2.1686e-06
+ * double: 1.4774e-12
+ *
+ * Reference:
+ * M. Figurnov, S. Mohamed, A. Mnih "Implicit Reparameterization Gradients".
+ * 2018
+ */
};
-#endif // EIGEN_HAS_C99_MATH
-
/*****************************************************************************
* Implementation of Riemann zeta function of two arguments, based on Cephes *
*****************************************************************************/
@@ -1574,6 +1720,8 @@ struct betainc_impl<double> {
}
};
+#endif // EIGEN_HAS_C99_MATH
+
/****************************************************************************
* Implementation of Bessel function, based on Cephes *
****************************************************************************/
@@ -1902,8 +2050,6 @@ struct i1e_impl<double> {
}
};
-#endif // EIGEN_HAS_C99_MATH
-
} // end namespace internal
namespace numext {
@@ -1951,6 +2097,18 @@ EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma, Scalar)
}
template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igamma_der_a, Scalar)
+ igamma_der_a(const Scalar& a, const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(igamma_der_a, Scalar)::run(a, x);
+}
+
+template <typename Scalar>
+EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(gamma_sample_der_alpha, Scalar)
+ gamma_sample_der_alpha(const Scalar& a, const Scalar& x) {
+ return EIGEN_MATHFUNC_IMPL(gamma_sample_der_alpha, Scalar)::run(a, x);
+}
+
+template <typename Scalar>
EIGEN_DEVICE_FUNC inline EIGEN_MATHFUNC_RETVAL(igammac, Scalar)
igammac(const Scalar& a, const Scalar& x) {
return EIGEN_MATHFUNC_IMPL(igammac, Scalar)::run(a, x);