aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/EulerAngles
diff options
context:
space:
mode:
authorGravatar Tal Hadad <tal_hd@hotmail.com>2016-10-14 16:03:28 +0300
committerGravatar Tal Hadad <tal_hd@hotmail.com>2016-10-14 16:03:28 +0300
commit078a20262145fdce8faed37dde05ec7ccc78210e (patch)
tree817f0fec806a4de64a54502d789c0b5aee9c2d07 /unsupported/Eigen/src/EulerAngles
parentf3a00dd2b5faf6037b72dee50213e4d4538dd77a (diff)
parent014d9f1d9b60206deaeb7ac5349816cb556fb35b (diff)
Merge Hongkai Dai correct range calculation, and remove ranges from API.
Docs updated.
Diffstat (limited to 'unsupported/Eigen/src/EulerAngles')
-rw-r--r--unsupported/Eigen/src/EulerAngles/EulerAngles.h182
-rw-r--r--unsupported/Eigen/src/EulerAngles/EulerSystem.h168
2 files changed, 120 insertions, 230 deletions
diff --git a/unsupported/Eigen/src/EulerAngles/EulerAngles.h b/unsupported/Eigen/src/EulerAngles/EulerAngles.h
index 13a0da1ab..da86cc13b 100644
--- a/unsupported/Eigen/src/EulerAngles/EulerAngles.h
+++ b/unsupported/Eigen/src/EulerAngles/EulerAngles.h
@@ -55,33 +55,25 @@ namespace Eigen
* Additionally, some axes related computation is done in compile time.
*
* #### Euler angles ranges in conversions ####
+ * Rotations representation as EulerAngles are not singular (unlike matrices), and even have infinite EulerAngles representations.<BR>
+ * For example, add or subtract 2*PI from either angle of EulerAngles
+ * and you'll get the same rotation.
+ * This is the reason for infinite representation, but it's not the only reason for non-singularity.
*
- * When converting some rotation to Euler angles, there are some ways you can guarantee
- * the Euler angles ranges.
+ * When converting rotation to EulerAngles, this class convert it to specific ranges
+ * When converting some rotation to EulerAngles, the rules for ranges are as follow:
+ * - If the rotation we converting from is an EulerAngles
+ * (even when it represented as RotationBase explicitly), angles ranges are __undefined__.
+ * - otherwise, Alpha and Gamma angles will be in the range [-PI, PI].<BR>
+ * As for Beta angle:
+ * - If the system is Tait-Bryan, the beta angle will be in the range [-PI, PI].
+ * - otherwise:
+ * - If the beta axis is positive, the beta angle will be in the range [0, 2*PI]
+ * - If the beta axis is negative, the beta angle will be in the range [-2*PI, 0]
*
- * #### implicit ranges ####
- * When using implicit ranges, all angles are guarantee to be in the range [-PI, +PI],
- * unless you convert from some other Euler angles.
- * In this case, the range is __undefined__ (might be even less than -PI or greater than +2*PI).
* \sa EulerAngles(const MatrixBase<Derived>&)
* \sa EulerAngles(const RotationBase<Derived, 3>&)
*
- * #### explicit ranges ####
- * When using explicit ranges, all angles are guarantee to be in the range you choose.
- * In the range Boolean parameter, you're been ask whether you prefer the positive range or not:
- * - _true_ - force the range between [0, +2*PI]
- * - _false_ - force the range between [-PI, +PI]
- *
- * ##### compile time ranges #####
- * This is when you have compile time ranges and you prefer to
- * use template parameter. (e.g. for performance)
- * \sa FromRotation()
- *
- * ##### run-time time ranges #####
- * Run-time ranges are also supported.
- * \sa EulerAngles(const MatrixBase<Derived>&, bool, bool, bool)
- * \sa EulerAngles(const RotationBase<Derived, 3>&, bool, bool, bool)
- *
* ### Convenient user typedefs ###
*
* Convenient typedefs for EulerAngles exist for float and double scalar,
@@ -152,61 +144,43 @@ namespace Eigen
/** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m.
*
- * \note All angles will be in the range [-PI, PI].
- */
- template<typename Derived>
- EulerAngles(const MatrixBase<Derived>& m) { *this = m; }
-
- /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
- * with options to choose for each angle the requested range.
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
- *
- * \param m The 3x3 rotation matrix to convert
- * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * \note Alpha and Gamma angles will be in the range [-PI, PI].<BR>
+ * As for Beta angle:
+ * - If the system is Tait-Bryan, the beta angle will be in the range [-PI, PI].
+ * - otherwise:
+ * - If the beta axis is positive, the beta angle will be in the range [0, 2*PI]
+ * - If the beta axis is negative, the beta angle will be in the range [-2*PI, 0]
*/
template<typename Derived>
- EulerAngles(
- const MatrixBase<Derived>& m,
- bool positiveRangeAlpha,
- bool positiveRangeBeta,
- bool positiveRangeGamma) {
-
- System::CalcEulerAngles(*this, m, positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
- }
+ EulerAngles(const MatrixBase<Derived>& m) { System::CalcEulerAngles(*this, m); }
/** Constructs and initialize Euler angles from a rotation \p rot.
*
- * \note All angles will be in the range [-PI, PI], unless \p rot is an EulerAngles.
- * If rot is an EulerAngles, expected EulerAngles range is __undefined__.
- * (Use other functions here for enforcing range if this effect is desired)
+ * \note If \p rot is an EulerAngles (even when it represented as RotationBase explicitly),
+ * angles ranges are __undefined__.
+ * Otherwise, Alpha and Gamma angles will be in the range [-PI, PI].<BR>
+ * As for Beta angle:
+ * - If the system is Tait-Bryan, the beta angle will be in the range [-PI, PI].
+ * - otherwise:
+ * - If the beta axis is positive, the beta angle will be in the range [0, 2*PI]
+ * - If the beta axis is negative, the beta angle will be in the range [-2*PI, 0]
*/
template<typename Derived>
- EulerAngles(const RotationBase<Derived, 3>& rot) { *this = rot; }
+ EulerAngles(const RotationBase<Derived, 3>& rot) { System::CalcEulerAngles(*this, rot.toRotationMatrix()); }
- /** Constructs and initialize Euler angles from a rotation \p rot,
- * with options to choose for each angle the requested range.
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
- *
- * \param rot The 3x3 rotation matrix to convert
- * \param positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \param positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- */
- template<typename Derived>
- EulerAngles(
- const RotationBase<Derived, 3>& rot,
- bool positiveRangeAlpha,
- bool positiveRangeBeta,
- bool positiveRangeGamma) {
-
- System::CalcEulerAngles(*this, rot.toRotationMatrix(), positiveRangeAlpha, positiveRangeBeta, positiveRangeGamma);
- }
+ /*EulerAngles(const QuaternionType& q)
+ {
+ // TODO: Implement it in a faster way for quaternions
+ // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
+ // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below)
+ // Currently we compute all matrix cells from quaternion.
+
+ // Special case only for ZYX
+ //Scalar y2 = q.y() * q.y();
+ //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
+ //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
+ //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
+ }*/
/** \returns The angle values stored in a vector (alpha, beta, gamma). */
const Vector3& angles() const { return m_angles; }
@@ -246,68 +220,11 @@ namespace Eigen
return inverse();
}
- /** Constructs and initialize Euler angles from a 3x3 rotation matrix \p m,
- * with options to choose for each angle the requested range (__only in compile time__).
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
- *
- * \param m The 3x3 rotation matrix to convert
- * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- */
- template<
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma,
- typename Derived>
- static EulerAngles FromRotation(const MatrixBase<Derived>& m)
- {
- EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
-
- EulerAngles e;
- System::template CalcEulerAngles<
- PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma, _Scalar>(e, m);
- return e;
- }
-
- /** Constructs and initialize Euler angles from a rotation \p rot,
- * with options to choose for each angle the requested range (__only in compile time__).
- *
- * If positive range is true, then the specified angle will be in the range [0, +2*PI].
- * Otherwise, the specified angle will be in the range [-PI, +PI].
+ /** Set \c *this from a rotation matrix(i.e. pure orthogonal matrix with determinant of +1).
*
- * \param rot The 3x3 rotation matrix to convert
- * \tparam positiveRangeAlpha If true, alpha will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeBeta If true, beta will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
- * \tparam positiveRangeGamma If true, gamma will be in [0, 2*PI]. Otherwise, in [-PI, +PI].
+ * See EulerAngles(const MatrixBase<Derived, 3>&) for more information about
+ * angles ranges output.
*/
- template<
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma,
- typename Derived>
- static EulerAngles FromRotation(const RotationBase<Derived, 3>& rot)
- {
- return FromRotation<PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma>(rot.toRotationMatrix());
- }
-
- /*EulerAngles& fromQuaternion(const QuaternionType& q)
- {
- // TODO: Implement it in a faster way for quaternions
- // According to http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
- // we can compute only the needed matrix cells and then convert to euler angles. (see ZYX example below)
- // Currently we compute all matrix cells from quaternion.
-
- // Special case only for ZYX
- //Scalar y2 = q.y() * q.y();
- //m_angles[0] = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z())));
- //m_angles[1] = std::asin( 2*(q.w()*q.y() - q.z()*q.x()));
- //m_angles[2] = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2)));
- }*/
-
- /** Set \c *this from a rotation matrix(i.e. pure orthogonal matrix with determinant of +1). */
template<typename Derived>
EulerAngles& operator=(const MatrixBase<Derived>& m) {
EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(Derived, 3, 3)
@@ -318,7 +235,11 @@ namespace Eigen
// TODO: Assign and construct from another EulerAngles (with different system)
- /** Set \c *this from a rotation. */
+ /** Set \c *this from a rotation.
+ *
+ * See EulerAngles(const RotationBase<Derived, 3>&) for more information about
+ * angles ranges output.
+ */
template<typename Derived>
EulerAngles& operator=(const RotationBase<Derived, 3>& rot) {
System::CalcEulerAngles(*this, rot.toRotationMatrix());
@@ -330,6 +251,7 @@ namespace Eigen
/** \returns an equivalent 3x3 rotation matrix. */
Matrix3 toRotationMatrix() const
{
+ // TODO: Calc it faster
return static_cast<QuaternionType>(*this).toRotationMatrix();
}
diff --git a/unsupported/Eigen/src/EulerAngles/EulerSystem.h b/unsupported/Eigen/src/EulerAngles/EulerSystem.h
index 98f9f647d..aa96461f9 100644
--- a/unsupported/Eigen/src/EulerAngles/EulerSystem.h
+++ b/unsupported/Eigen/src/EulerAngles/EulerSystem.h
@@ -69,7 +69,7 @@ namespace Eigen
*
* You can use this class to get two things:
* - Build an Euler system, and then pass it as a template parameter to EulerAngles.
- * - Query some compile time data about an Euler system. (e.g. Whether it's tait bryan)
+ * - Query some compile time data about an Euler system. (e.g. Whether it's Tait-Bryan)
*
* Euler rotation is a set of three rotation on fixed axes. (see \ref EulerAngles)
* This meta-class store constantly those signed axes. (see \ref EulerAxis)
@@ -80,7 +80,7 @@ namespace Eigen
* signed axes{+X,+Y,+Z,-X,-Y,-Z} are supported:
* - all axes X, Y, Z in each valid order (see below what order is valid)
* - rotation over the axis is supported both over the positive and negative directions.
- * - both tait bryan and proper/classic Euler angles (i.e. the opposite).
+ * - both Tait-Bryan and proper/classic Euler angles (i.e. the opposite).
*
* Since EulerSystem support both positive and negative directions,
* you may call this rotation distinction in other names:
@@ -90,7 +90,7 @@ namespace Eigen
* Notice all axed combination are valid, and would trigger a static assertion.
* Same unsigned axes can't be neighbors, e.g. {X,X,Y} is invalid.
* This yield two and only two classes:
- * - _tait bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
+ * - _Tait-Bryan_ - all unsigned axes are distinct, e.g. {X,Y,Z}
* - _proper/classic Euler angles_ - The first and the third unsigned axes is equal,
* and the second is different, e.g. {X,Y,X}
*
@@ -112,9 +112,9 @@ namespace Eigen
*
* \tparam _AlphaAxis the first fixed EulerAxis
*
- * \tparam _AlphaAxis the second fixed EulerAxis
+ * \tparam _BetaAxis the second fixed EulerAxis
*
- * \tparam _AlphaAxis the third fixed EulerAxis
+ * \tparam _GammaAxis the third fixed EulerAxis
*/
template <int _AlphaAxis, int _BetaAxis, int _GammaAxis>
class EulerSystem
@@ -138,14 +138,16 @@ namespace Eigen
BetaAxisAbs = internal::Abs<BetaAxis>::value, /*!< the second rotation axis unsigned */
GammaAxisAbs = internal::Abs<GammaAxis>::value, /*!< the third rotation axis unsigned */
- IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< weather alpha axis is negative */
- IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< weather beta axis is negative */
- IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< weather gamma axis is negative */
-
- IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< weather the Euler system is odd */
- IsEven = IsOdd ? 0 : 1, /*!< weather the Euler system is even */
+ IsAlphaOpposite = (AlphaAxis < 0) ? 1 : 0, /*!< whether alpha axis is negative */
+ IsBetaOpposite = (BetaAxis < 0) ? 1 : 0, /*!< whether beta axis is negative */
+ IsGammaOpposite = (GammaAxis < 0) ? 1 : 0, /*!< whether gamma axis is negative */
+
+ // Parity is even if alpha axis X is followed by beta axis Y, or Y is followed
+ // by Z, or Z is followed by X; otherwise it is odd.
+ IsOdd = ((AlphaAxisAbs)%3 == (BetaAxisAbs - 1)%3) ? 0 : 1, /*!< whether the Euler system is odd */
+ IsEven = IsOdd ? 0 : 1, /*!< whether the Euler system is even */
- IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< weather the Euler system is tait bryan */
+ IsTaitBryan = ((unsigned)AlphaAxisAbs != (unsigned)GammaAxisAbs) ? 1 : 0 /*!< whether the Euler system is Tait-Bryan */
};
private:
@@ -180,71 +182,70 @@ namespace Eigen
static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar, 3, 1>& res, const MatrixBase<Derived>& mat, internal::true_type /*isTaitBryan*/)
{
using std::atan2;
- using std::sin;
- using std::cos;
+ using std::sqrt;
typedef typename Derived::Scalar Scalar;
- typedef Matrix<Scalar,2,1> Vector2;
-
- res[0] = atan2(mat(J,K), mat(K,K));
- Scalar c2 = Vector2(mat(I,I), mat(I,J)).norm();
- if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0))) {
- if(res[0] > Scalar(0)) {
- res[0] -= Scalar(EIGEN_PI);
- }
- else {
- res[0] += Scalar(EIGEN_PI);
- }
- res[1] = atan2(-mat(I,K), -c2);
+
+ Scalar plusMinus = IsEven? 1 : -1;
+ Scalar minusPlus = IsOdd? 1 : -1;
+
+ Scalar Rsum = sqrt((mat(I,I) * mat(I,I) + mat(I,J) * mat(I,J) + mat(J,K) * mat(J,K) + mat(K,K) * mat(K,K))/2);
+ res[1] = atan2(plusMinus * mat(I,K), Rsum);
+
+ // There is a singularity when cos(beta) = 0
+ if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {
+ res[0] = atan2(minusPlus * mat(J, K), mat(K, K));
+ res[2] = atan2(minusPlus * mat(I, J), mat(I, I));
+ }
+ else if(plusMinus * mat(I, K) > 0) {
+ Scalar spos = mat(J, I) + plusMinus * mat(K, J); // 2*sin(alpha + plusMinus * gamma)
+ Scalar cpos = mat(J, J) + minusPlus * mat(K, I); // 2*cos(alpha + plusMinus * gamma);
+ Scalar alphaPlusMinusGamma = atan2(spos, cpos);
+ res[0] = alphaPlusMinusGamma;
+ res[2] = 0;
+ }
+ else {
+ Scalar sneg = plusMinus * (mat(K, J) + minusPlus * mat(J, I)); // 2*sin(alpha + minusPlus*gamma)
+ Scalar cneg = mat(J, J) + plusMinus * mat(K, I); // 2*cos(alpha + minusPlus*gamma)
+ Scalar alphaMinusPlusBeta = atan2(sneg, cneg);
+ res[0] = alphaMinusPlusBeta;
+ res[2] = 0;
}
- else
- res[1] = atan2(-mat(I,K), c2);
- Scalar s1 = sin(res[0]);
- Scalar c1 = cos(res[0]);
- res[2] = atan2(s1*mat(K,I)-c1*mat(J,I), c1*mat(J,J) - s1 * mat(K,J));
}
template <typename Derived>
- static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res, const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
+ static void CalcEulerAngles_imp(Matrix<typename MatrixBase<Derived>::Scalar,3,1>& res,
+ const MatrixBase<Derived>& mat, internal::false_type /*isTaitBryan*/)
{
using std::atan2;
- using std::sin;
- using std::cos;
+ using std::sqrt;
typedef typename Derived::Scalar Scalar;
- typedef Matrix<Scalar,2,1> Vector2;
-
- res[0] = atan2(mat(J,I), mat(K,I));
- if((IsOdd && res[0]<Scalar(0)) || ((!IsOdd) && res[0]>Scalar(0)))
- {
- if(res[0] > Scalar(0)) {
- res[0] -= Scalar(EIGEN_PI);
- }
- else {
- res[0] += Scalar(EIGEN_PI);
- }
- Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
- res[1] = -atan2(s2, mat(I,I));
+
+ Scalar plusMinus = IsEven? 1 : -1;
+ Scalar minusPlus = IsOdd? 1 : -1;
+
+ Scalar Rsum = sqrt((mat(I, J) * mat(I, J) + mat(I, K) * mat(I, K) + mat(J, I) * mat(J, I) + mat(K, I) * mat(K, I)) / 2);
+
+ res[1] = atan2(Rsum, mat(I, I));
+
+ if(Rsum > 4 * NumTraits<Scalar>::epsilon()) {
+ res[0] = atan2(mat(J, I), minusPlus * mat(K, I));
+ res[2] = atan2(mat(I, J), plusMinus * mat(I, K));
}
- else
- {
- Scalar s2 = Vector2(mat(J,I), mat(K,I)).norm();
- res[1] = atan2(s2, mat(I,I));
+ else if( mat(I, I) > 0) {
+ Scalar spos = plusMinus * mat(K, J) + minusPlus * mat(J, K); // 2*sin(alpha + gamma)
+ Scalar cpos = mat(J, J) + mat(K, K); // 2*cos(alpha + gamma)
+ res[0] = atan2(spos, cpos);
+ res[2] = 0;
+ }
+ else {
+ Scalar sneg = plusMinus * mat(K, J) + plusMinus * mat(J, K); // 2*sin(alpha - gamma)
+ Scalar cneg = mat(J, J) - mat(K, K); // 2*cos(alpha - gamma)
+ res[0] = atan2(sneg, cneg);
+ res[1] = 0;
}
- // With a=(0,1,0), we have i=0; j=1; k=2, and after computing the first two angles,
- // we can compute their respective rotation, and apply its inverse to M. Since the result must
- // be a rotation around x, we have:
- //
- // c2 s1.s2 c1.s2 1 0 0
- // 0 c1 -s1 * M = 0 c3 s3
- // -s2 s1.c2 c1.c2 0 -s3 c3
- //
- // Thus: m11.c1 - m21.s1 = c3 & m12.c1 - m22.s1 = s3
-
- Scalar s1 = sin(res[0]);
- Scalar c1 = cos(res[0]);
- res[2] = atan2(c1*mat(J,K)-s1*mat(K,K), c1*mat(J,J) - s1 * mat(K,J));
}
template<typename Scalar>
@@ -252,51 +253,18 @@ namespace Eigen
EulerAngles<Scalar, EulerSystem>& res,
const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
{
- CalcEulerAngles(res, mat, false, false, false);
- }
-
- template<
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma,
- typename Scalar>
- static void CalcEulerAngles(
- EulerAngles<Scalar, EulerSystem>& res,
- const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat)
- {
- CalcEulerAngles(res, mat, PositiveRangeAlpha, PositiveRangeBeta, PositiveRangeGamma);
- }
-
- template<typename Scalar>
- static void CalcEulerAngles(
- EulerAngles<Scalar, EulerSystem>& res,
- const typename EulerAngles<Scalar, EulerSystem>::Matrix3& mat,
- bool PositiveRangeAlpha,
- bool PositiveRangeBeta,
- bool PositiveRangeGamma)
- {
CalcEulerAngles_imp(
res.angles(), mat,
typename internal::conditional<IsTaitBryan, internal::true_type, internal::false_type>::type());
- if (IsAlphaOpposite == IsOdd)
+ if (IsAlphaOpposite)
res.alpha() = -res.alpha();
- if (IsBetaOpposite == IsOdd)
+ if (IsBetaOpposite)
res.beta() = -res.beta();
- if (IsGammaOpposite == IsOdd)
+ if (IsGammaOpposite)
res.gamma() = -res.gamma();
-
- // Saturate results to the requested range
- if (PositiveRangeAlpha && (res.alpha() < 0))
- res.alpha() += Scalar(2 * EIGEN_PI);
-
- if (PositiveRangeBeta && (res.beta() < 0))
- res.beta() += Scalar(2 * EIGEN_PI);
-
- if (PositiveRangeGamma && (res.gamma() < 0))
- res.gamma() += Scalar(2 * EIGEN_PI);
}
template <typename _Scalar, class _System>