aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/src/Eigenvalues
diff options
context:
space:
mode:
authorGravatar David Harmon <dharmon@cs.nyu.edu>2012-10-06 17:18:09 -0600
committerGravatar David Harmon <dharmon@cs.nyu.edu>2012-10-06 17:18:09 -0600
commitdbe1ab67aca002f85330a08d869b15350ac3e55d (patch)
treeb66aa3b748971c415884b9561c1928d667c3e21b /unsupported/Eigen/src/Eigenvalues
parent8844f632fa0b8f36c114785ff190aa6e656c0f86 (diff)
Added ARPACK support for standard and generalized eigenvalue problems. Currently self-adjoint only.
Diffstat (limited to 'unsupported/Eigen/src/Eigenvalues')
-rw-r--r--unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h799
1 files changed, 799 insertions, 0 deletions
diff --git a/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h b/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h
new file mode 100644
index 000000000..2f1bb7c50
--- /dev/null
+++ b/unsupported/Eigen/src/Eigenvalues/ArpackSelfAdjointEigenSolver.h
@@ -0,0 +1,799 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2012 David Harmon <dharmon@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
+#define EIGEN_ARPACKGENERALIZEDSELFADJOINTEIGENSOLVER_H
+
+
+
+namespace Eigen {
+
+namespace internal {
+ template<typename Scalar, typename RealScalar> struct arpack_wrapper;
+ template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD> struct OP;
+}
+
+
+
+template<typename MatrixType, typename MatrixSolver=SimplicialLLT<MatrixType>, bool BisSPD=false>
+class ArpackGeneralizedSelfAdjointEigenSolver
+{
+public:
+ //typedef typename MatrixSolver::MatrixType MatrixType;
+
+ /** \brief Scalar type for matrices of type \p MatrixType. */
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::Index Index;
+
+ /** \brief Real scalar type for \p MatrixType.
+ *
+ * This is just \c Scalar if #Scalar is real (e.g., \c float or
+ * \c Scalar), and the type of the real part of \c Scalar if #Scalar is
+ * complex.
+ */
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+
+ /** \brief Type for vector of eigenvalues as returned by eigenvalues().
+ *
+ * This is a column vector with entries of type #RealScalar.
+ * The length of the vector is the size of \p nbrEigenvalues.
+ */
+ typedef typename internal::plain_col_type<MatrixType, RealScalar>::type RealVectorType;
+
+ /** \brief Default constructor.
+ *
+ * The default constructor is for cases in which the user intends to
+ * perform decompositions via compute().
+ *
+ */
+ ArpackGeneralizedSelfAdjointEigenSolver()
+ : m_eivec(),
+ m_eivalues(),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_nbrConverged(0),
+ m_nbrIterations(0)
+ { }
+
+ /** \brief Constructor; computes generalized eigenvalues of given matrix with respect to another matrix.
+ *
+ * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will
+ * computed. By default, the upper triangular part is used, but can be changed
+ * through the template parameter.
+ * \param[in] B Self-adjoint matrix for the generalized eigenvalue problem.
+ * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
+ * Must be less than the size of the input matrix, or an error is returned.
+ * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
+ * respective meanings to find the largest magnitude , smallest magnitude,
+ * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
+ * value can contain floating point value in string form, in which case the
+ * eigenvalues closest to this value will be found.
+ * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+ * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
+ * means machine precision.
+ *
+ * This constructor calls compute(const MatrixType&, const MatrixType&, Index, string, int, RealScalar)
+ * to compute the eigenvalues of the matrix \p A with respect to \p B. The eigenvectors are computed if
+ * \p options equals #ComputeEigenvectors.
+ *
+ */
+ ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A, const MatrixType& B,
+ Index nbrEigenvalues, std::string eigs_sigma="LM",
+ int options=ComputeEigenvectors, RealScalar tol=0.0)
+ : m_eivec(),
+ m_eivalues(),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_nbrConverged(0),
+ m_nbrIterations(0)
+ {
+ compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
+ }
+
+ /** \brief Constructor; computes eigenvalues of given matrix.
+ *
+ * \param[in] A Self-adjoint matrix whose eigenvalues / eigenvectors will
+ * computed. By default, the upper triangular part is used, but can be changed
+ * through the template parameter.
+ * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
+ * Must be less than the size of the input matrix, or an error is returned.
+ * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
+ * respective meanings to find the largest magnitude , smallest magnitude,
+ * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
+ * value can contain floating point value in string form, in which case the
+ * eigenvalues closest to this value will be found.
+ * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+ * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
+ * means machine precision.
+ *
+ * This constructor calls compute(const MatrixType&, Index, string, int, RealScalar)
+ * to compute the eigenvalues of the matrix \p A. The eigenvectors are computed if
+ * \p options equals #ComputeEigenvectors.
+ *
+ */
+
+ ArpackGeneralizedSelfAdjointEigenSolver(const MatrixType& A,
+ Index nbrEigenvalues, std::string eigs_sigma="LM",
+ int options=ComputeEigenvectors, RealScalar tol=0.0)
+ : m_eivec(),
+ m_eivalues(),
+ m_isInitialized(false),
+ m_eigenvectorsOk(false),
+ m_nbrConverged(0),
+ m_nbrIterations(0)
+ {
+ compute(A, nbrEigenvalues, eigs_sigma, options, tol);
+ }
+
+
+ /** \brief Computes generalized eigenvalues / eigenvectors of given matrix using the external ARPACK library.
+ *
+ * \param[in] A Selfadjoint matrix whose eigendecomposition is to be computed.
+ * \param[in] B Selfadjoint matrix for generalized eigenvalues.
+ * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
+ * Must be less than the size of the input matrix, or an error is returned.
+ * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
+ * respective meanings to find the largest magnitude , smallest magnitude,
+ * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
+ * value can contain floating point value in string form, in which case the
+ * eigenvalues closest to this value will be found.
+ * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+ * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
+ * means machine precision.
+ *
+ * \returns Reference to \c *this
+ *
+ * This function computes the generalized eigenvalues of \p A with respect to \p B using ARPACK. The eigenvalues()
+ * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
+ * then the eigenvectors are also computed and can be retrieved by
+ * calling eigenvectors().
+ *
+ */
+ ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A, const MatrixType& B,
+ Index nbrEigenvalues, std::string eigs_sigma="LM",
+ int options=ComputeEigenvectors, RealScalar tol=0.0);
+
+ /** \brief Computes eigenvalues / eigenvectors of given matrix using the external ARPACK library.
+ *
+ * \param[in] A Selfadjoint matrix whose eigendecomposition is to be computed.
+ * \param[in] nbrEigenvalues The number of eigenvalues / eigenvectors to compute.
+ * Must be less than the size of the input matrix, or an error is returned.
+ * \param[in] eigs_sigma String containing either "LM", "SM", "LA", or "SA", with
+ * respective meanings to find the largest magnitude , smallest magnitude,
+ * largest algebraic, or smallest algebraic eigenvalues. Alternatively, this
+ * value can contain floating point value in string form, in which case the
+ * eigenvalues closest to this value will be found.
+ * \param[in] options Can be #ComputeEigenvectors (default) or #EigenvaluesOnly.
+ * \param[in] tol What tolerance to find the eigenvalues to. Default is 0, which
+ * means machine precision.
+ *
+ * \returns Reference to \c *this
+ *
+ * This function computes the eigenvalues of \p A using ARPACK. The eigenvalues()
+ * function can be used to retrieve them. If \p options equals #ComputeEigenvectors,
+ * then the eigenvectors are also computed and can be retrieved by
+ * calling eigenvectors().
+ *
+ */
+ ArpackGeneralizedSelfAdjointEigenSolver& compute(const MatrixType& A,
+ Index nbrEigenvalues, std::string eigs_sigma="LM",
+ int options=ComputeEigenvectors, RealScalar tol=0.0);
+
+
+ /** \brief Returns the eigenvectors of given matrix.
+ *
+ * \returns A const reference to the matrix whose columns are the eigenvectors.
+ *
+ * \pre The eigenvectors have been computed before.
+ *
+ * Column \f$ k \f$ of the returned matrix is an eigenvector corresponding
+ * to eigenvalue number \f$ k \f$ as returned by eigenvalues(). The
+ * eigenvectors are normalized to have (Euclidean) norm equal to one. If
+ * this object was used to solve the eigenproblem for the selfadjoint
+ * matrix \f$ A \f$, then the matrix returned by this function is the
+ * matrix \f$ V \f$ in the eigendecomposition \f$ A V = D V \f$.
+ * For the generalized eigenproblem, the matrix returned is the solution \f$A V = D B V
+ *
+ * Example: \include SelfAdjointEigenSolver_eigenvectors.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_eigenvectors.out
+ *
+ * \sa eigenvalues()
+ */
+ const Matrix<Scalar, Dynamic, Dynamic>& eigenvectors() const
+ {
+ eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec;
+ }
+
+ /** \brief Returns the eigenvalues of given matrix.
+ *
+ * \returns A const reference to the column vector containing the eigenvalues.
+ *
+ * \pre The eigenvalues have been computed before.
+ *
+ * The eigenvalues are repeated according to their algebraic multiplicity,
+ * so there are as many eigenvalues as rows in the matrix. The eigenvalues
+ * are sorted in increasing order.
+ *
+ * Example: \include SelfAdjointEigenSolver_eigenvalues.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_eigenvalues.out
+ *
+ * \sa eigenvectors(), MatrixBase::eigenvalues()
+ */
+ const Matrix<Scalar, Dynamic, 1>& eigenvalues() const
+ {
+ eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
+ return m_eivalues;
+ }
+
+ /** \brief Computes the positive-definite square root of the matrix.
+ *
+ * \returns the positive-definite square root of the matrix
+ *
+ * \pre The eigenvalues and eigenvectors of a positive-definite matrix
+ * have been computed before.
+ *
+ * The square root of a positive-definite matrix \f$ A \f$ is the
+ * positive-definite matrix whose square equals \f$ A \f$. This function
+ * uses the eigendecomposition \f$ A = V D V^{-1} \f$ to compute the
+ * square root as \f$ A^{1/2} = V D^{1/2} V^{-1} \f$.
+ *
+ * Example: \include SelfAdjointEigenSolver_operatorSqrt.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_operatorSqrt.out
+ *
+ * \sa operatorInverseSqrt(),
+ * \ref MatrixFunctions_Module "MatrixFunctions Module"
+ */
+ Matrix<Scalar, Dynamic, Dynamic> operatorSqrt() const
+ {
+ eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec * m_eivalues.cwiseSqrt().asDiagonal() * m_eivec.adjoint();
+ }
+
+ /** \brief Computes the inverse square root of the matrix.
+ *
+ * \returns the inverse positive-definite square root of the matrix
+ *
+ * \pre The eigenvalues and eigenvectors of a positive-definite matrix
+ * have been computed before.
+ *
+ * This function uses the eigendecomposition \f$ A = V D V^{-1} \f$ to
+ * compute the inverse square root as \f$ V D^{-1/2} V^{-1} \f$. This is
+ * cheaper than first computing the square root with operatorSqrt() and
+ * then its inverse with MatrixBase::inverse().
+ *
+ * Example: \include SelfAdjointEigenSolver_operatorInverseSqrt.cpp
+ * Output: \verbinclude SelfAdjointEigenSolver_operatorInverseSqrt.out
+ *
+ * \sa operatorSqrt(), MatrixBase::inverse(),
+ * \ref MatrixFunctions_Module "MatrixFunctions Module"
+ */
+ Matrix<Scalar, Dynamic, Dynamic> operatorInverseSqrt() const
+ {
+ eigen_assert(m_isInitialized && "SelfAdjointEigenSolver is not initialized.");
+ eigen_assert(m_eigenvectorsOk && "The eigenvectors have not been computed together with the eigenvalues.");
+ return m_eivec * m_eivalues.cwiseInverse().cwiseSqrt().asDiagonal() * m_eivec.adjoint();
+ }
+
+ /** \brief Reports whether previous computation was successful.
+ *
+ * \returns \c Success if computation was succesful, \c NoConvergence otherwise.
+ */
+ ComputationInfo info() const
+ {
+ eigen_assert(m_isInitialized && "ArpackGeneralizedSelfAdjointEigenSolver is not initialized.");
+ return m_info;
+ }
+
+ size_t getNbrConvergedEigenValues() const
+ { return m_nbrConverged; }
+
+ size_t getNbrIterations() const
+ { return m_nbrIterations; }
+
+protected:
+ Matrix<Scalar, Dynamic, Dynamic> m_eivec;
+ Matrix<Scalar, Dynamic, 1> m_eivalues;
+ ComputationInfo m_info;
+ bool m_isInitialized;
+ bool m_eigenvectorsOk;
+
+ size_t m_nbrConverged;
+ size_t m_nbrIterations;
+};
+
+
+
+
+
+template<typename MatrixType, typename MatrixSolver, bool BisSPD>
+ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
+ ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
+::compute(const MatrixType& A, Index nbrEigenvalues,
+ std::string eigs_sigma, int options, RealScalar tol)
+{
+ MatrixType B(0,0);
+ compute(A, B, nbrEigenvalues, eigs_sigma, options, tol);
+}
+
+
+template<typename MatrixType, typename MatrixSolver, bool BisSPD>
+ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>&
+ ArpackGeneralizedSelfAdjointEigenSolver<MatrixType, MatrixSolver, BisSPD>
+::compute(const MatrixType& A, const MatrixType& B, Index nbrEigenvalues,
+ std::string eigs_sigma, int options, RealScalar tol)
+{
+ eigen_assert(A.cols() == A.rows());
+ eigen_assert(B.cols() == B.rows());
+ eigen_assert(B.rows() == 0 || A.cols() == B.rows());
+ eigen_assert((options &~ (EigVecMask | GenEigMask)) == 0
+ && (options & EigVecMask) != EigVecMask
+ && "invalid option parameter");
+
+ bool isBempty = (B.rows() == 0) || (B.cols() == 0);
+
+ // For clarity, all parameters match their ARPACK name
+ //
+ // Always 0 on the first call
+ //
+ int ido = 0;
+
+ int n = (int)A.cols();
+
+ // User options: "LA", "SA", "SM", "LM", "BE"
+ //
+ char whch[3] = "LM";
+
+ // Specifies the shift if iparam[6] = { 3, 4, 5 }, not used if iparam[6] = { 1, 2 }
+ //
+ RealScalar sigma = 0.0;
+
+ if (eigs_sigma.length() >= 2 && isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1]))
+ {
+ eigs_sigma[0] = toupper(eigs_sigma[0]);
+ eigs_sigma[1] = toupper(eigs_sigma[1]);
+
+ // In the following special case we're going to invert the problem, since solving
+ // for larger magnitude is much much faster
+ // i.e., if 'SM' is specified, we're going to really use 'LM', the default
+ //
+ if (eigs_sigma.substr(0,2) != "SM")
+ {
+ whch[0] = eigs_sigma[0];
+ whch[1] = eigs_sigma[1];
+ }
+ }
+ else
+ {
+ eigen_assert(false && "Specifying clustered eigenvalues is not yet supported!");
+
+ // If it's not scalar values, then the user may be explicitly
+ // specifying the sigma value to cluster the evs around
+ //
+ sigma = atof(eigs_sigma.c_str());
+
+ // If atof fails, it returns 0.0, which is a fine default
+ //
+ }
+
+ // "I" means normal eigenvalue problem, "G" means generalized
+ //
+ char bmat[2] = "I";
+ if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])) || (!isBempty && !BisSPD))
+ bmat[0] = 'G';
+
+ // Now we determine the mode to use
+ //
+ int mode = (bmat[0] == 'G') + 1;
+ if (eigs_sigma.substr(0,2) == "SM" || !(isalpha(eigs_sigma[0]) && isalpha(eigs_sigma[1])))
+ {
+ // We're going to use shift-and-invert mode, and basically find
+ // the largest eigenvalues of the inverse operator
+ //
+ mode = 3;
+ }
+
+ // The user-specified number of eigenvalues/vectors to compute
+ //
+ int nev = (int)nbrEigenvalues;
+
+ // Allocate space for ARPACK to store the residual
+ //
+ Scalar *resid = new Scalar[n];
+
+ // Number of Lanczos vectors, must satisfy nev < ncv <= n
+ // Note that this indicates that nev != n, and we cannot compute
+ // all eigenvalues of a mtrix
+ //
+ int ncv = std::min(std::max(2*nev, 20), n);
+
+ // The working n x ncv matrix, also store the final eigenvectors (if computed)
+ //
+ Scalar *v = new Scalar[n*ncv];
+ int ldv = n;
+
+ // Working space
+ //
+ Scalar *workd = new Scalar[3*n];
+ int lworkl = ncv*ncv+8*ncv; // Must be at least this length
+ Scalar *workl = new Scalar[lworkl];
+
+ int *iparam= new int[11];
+ iparam[0] = 1; // 1 means we let ARPACK perform the shifts, 0 means we'd have to do it
+ iparam[2] = std::max(300, (int)std::ceil(2*n/std::max(ncv,1)));
+ iparam[6] = mode; // The mode, 1 is standard ev problem, 2 for generalized ev, 3 for shift-and-invert
+
+ // Used during reverse communicate to notify where arrays start
+ //
+ int *ipntr = new int[11];
+
+ // Error codes are returned in here, initial value of 0 indicates a random initial
+ // residual vector is used, any other values means resid contains the initial residual
+ // vector, possibly from a previous run
+ //
+ int info = 0;
+
+ Scalar scale = 1.0;
+ //if (!isBempty)
+ //{
+ //Scalar scale = B.norm() / std::sqrt(n);
+ //scale = std::pow(2, std::floor(std::log(scale+1)));
+ ////M /= scale;
+ //for (size_t i=0; i<(size_t)B.outerSize(); i++)
+ // for (typename MatrixType::InnerIterator it(B, i); it; ++it)
+ // it.valueRef() /= scale;
+ //}
+
+ MatrixSolver OP;
+ if (mode == 1 || mode == 2)
+ {
+ if (!isBempty)
+ OP.compute(B);
+ }
+ else if (mode == 3)
+ {
+ if (sigma == 0.0)
+ {
+ OP.compute(A);
+ }
+ else
+ {
+ // Note: We will never enter here because sigma must be 0.0
+ //
+ if (isBempty)
+ {
+ MatrixType AminusSigmaB(A);
+ for (Index i=0; i<A.rows(); ++i)
+ AminusSigmaB.coeffRef(i,i) -= sigma;
+
+ OP.compute(AminusSigmaB);
+ }
+ else
+ {
+ MatrixType AminusSigmaB = A - sigma * B;
+ OP.compute(AminusSigmaB);
+ }
+ }
+ }
+
+ if (!(mode == 1 && isBempty) && !(mode == 2 && isBempty) && OP.info() != Success)
+ std::cout << "Error factoring matrix" << std::endl;
+
+ do
+ {
+ internal::arpack_wrapper<Scalar, RealScalar>::saupd(&ido, bmat, &n, whch, &nev, &tol, resid,
+ &ncv, v, &ldv, iparam, ipntr, workd, workl,
+ &lworkl, &info);
+
+ if (ido == -1 || ido == 1)
+ {
+ Scalar *in = workd + ipntr[0] - 1;
+ Scalar *out = workd + ipntr[1] - 1;
+
+ if (ido == 1 && mode != 2)
+ {
+ Scalar *out2 = workd + ipntr[2] - 1;
+ if (isBempty || mode == 1)
+ Matrix<Scalar, Dynamic, 1>::Map(out2, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
+ else
+ Matrix<Scalar, Dynamic, 1>::Map(out2, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
+
+ in = workd + ipntr[2] - 1;
+ }
+
+ if (mode == 1)
+ {
+ if (isBempty)
+ {
+ // OP = A
+ //
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
+ }
+ else
+ {
+ // OP = L^{-1}AL^{-T}
+ //
+ internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::applyOP(OP, A, n, in, out);
+ }
+ }
+ else if (mode == 2)
+ {
+ if (ido == 1)
+ Matrix<Scalar, Dynamic, 1>::Map(in, n) = A * Matrix<Scalar, Dynamic, 1>::Map(in, n);
+
+ // OP = B^{-1} A
+ //
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
+ }
+ else if (mode == 3)
+ {
+ // OP = (A-\sigmaB)B (\sigma could be 0, and B could be I)
+ // The B * in is already computed and stored at in if ido == 1
+ //
+ if (ido == 1 || isBempty)
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
+ else
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.solve(B * Matrix<Scalar, Dynamic, 1>::Map(in, n));
+ }
+ }
+ else if (ido == 2)
+ {
+ Scalar *in = workd + ipntr[0] - 1;
+ Scalar *out = workd + ipntr[1] - 1;
+
+ if (isBempty || mode == 1)
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = Matrix<Scalar, Dynamic, 1>::Map(in, n);
+ else
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = B * Matrix<Scalar, Dynamic, 1>::Map(in, n);
+ }
+ } while (ido != 99);
+
+ if (info == 1)
+ m_info = NoConvergence;
+ else if (info == 3)
+ m_info = NumericalIssue;
+ else if (info < 0)
+ m_info = InvalidInput;
+ else if (info != 0)
+ eigen_assert(false && "Unknown ARPACK return value!");
+ else
+ {
+ // Do we compute eigenvectors or not?
+ //
+ int rvec = (options & ComputeEigenvectors) == ComputeEigenvectors;
+
+ // "A" means "All", use "S" to choose specific eigenvalues (not yet supported in ARPACK))
+ //
+ char howmny[2] = "A";
+
+ // if howmny == "S", specifies the eigenvalues to compute (not implemented in ARPACK)
+ //
+ int *select = new int[ncv];
+
+ // Final eigenvalues
+ //
+ m_eivalues.resize(nev, 1);
+
+ internal::arpack_wrapper<Scalar, RealScalar>::seupd(&rvec, howmny, select, m_eivalues.data(), v, &ldv,
+ &sigma, bmat, &n, whch, &nev, &tol, resid, &ncv,
+ v, &ldv, iparam, ipntr, workd, workl, &lworkl, &info);
+
+ if (info == -14)
+ m_info = NoConvergence;
+ else if (info != 0)
+ m_info = InvalidInput;
+ else
+ {
+ if (rvec)
+ {
+ m_eivec.resize(A.rows(), nev);
+ for (int i=0; i<nev; i++)
+ for (int j=0; j<n; j++)
+ m_eivec(j,i) = v[i*n+j] / scale;
+
+ if (mode == 1 && !isBempty && BisSPD)
+ internal::OP<MatrixSolver, MatrixType, Scalar, BisSPD>::project(OP, n, nev, m_eivec.data());
+
+ m_eigenvectorsOk = true;
+ }
+
+ m_nbrIterations = iparam[2];
+ m_nbrConverged = iparam[4];
+
+ m_info = Success;
+ }
+
+ delete select;
+ }
+
+ delete v;
+ delete iparam;
+ delete ipntr;
+ delete workd;
+ delete workl;
+ delete resid;
+
+ m_isInitialized = true;
+
+ return *this;
+}
+
+
+// Single precision
+//
+extern "C" void ssaupd_(int *ido, char *bmat, int *n, char *which,
+ int *nev, float *tol, float *resid, int *ncv,
+ float *v, int *ldv, int *iparam, int *ipntr,
+ float *workd, float *workl, int *lworkl,
+ int *info);
+
+extern "C" void sseupd_(int *rvec, char *All, int *select, float *d,
+ float *z, int *ldz, float *sigma,
+ char *bmat, int *n, char *which, int *nev,
+ float *tol, float *resid, int *ncv, float *v,
+ int *ldv, int *iparam, int *ipntr, float *workd,
+ float *workl, int *lworkl, int *ierr);
+
+// Double precision
+//
+extern "C" void dsaupd_(int *ido, char *bmat, int *n, char *which,
+ int *nev, double *tol, double *resid, int *ncv,
+ double *v, int *ldv, int *iparam, int *ipntr,
+ double *workd, double *workl, int *lworkl,
+ int *info);
+
+extern "C" void dseupd_(int *rvec, char *All, int *select, double *d,
+ double *z, int *ldz, double *sigma,
+ char *bmat, int *n, char *which, int *nev,
+ double *tol, double *resid, int *ncv, double *v,
+ int *ldv, int *iparam, int *ipntr, double *workd,
+ double *workl, int *lworkl, int *ierr);
+
+
+namespace internal {
+
+template<typename Scalar, typename RealScalar> struct arpack_wrapper
+{
+ static inline void saupd(int *ido, char *bmat, int *n, char *which,
+ int *nev, RealScalar *tol, Scalar *resid, int *ncv,
+ Scalar *v, int *ldv, int *iparam, int *ipntr,
+ Scalar *workd, Scalar *workl, int *lworkl, int *info)
+ { EIGEN_STATIC_ASSERT(false, static_assertion<true>::NUMERIC_TYPE_MUST_BE_REAL); }
+
+ static inline void seupd(int *rvec, char *All, int *select, Scalar *d,
+ Scalar *z, int *ldz, RealScalar *sigma,
+ char *bmat, int *n, char *which, int *nev,
+ RealScalar *tol, Scalar *resid, int *ncv, Scalar *v,
+ int *ldv, int *iparam, int *ipntr, Scalar *workd,
+ Scalar *workl, int *lworkl, int *ierr)
+ { EIGEN_STATIC_ASSERT(false, static_assertion<true>::NUMERIC_TYPE_MUST_BE_REAL); }
+};
+
+template <> struct arpack_wrapper<float, float>
+{
+ static inline void saupd(int *ido, char *bmat, int *n, char *which,
+ int *nev, float *tol, float *resid, int *ncv,
+ float *v, int *ldv, int *iparam, int *ipntr,
+ float *workd, float *workl, int *lworkl, int *info)
+ {
+ ssaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
+ }
+
+ static inline void seupd(int *rvec, char *All, int *select, float *d,
+ float *z, int *ldz, float *sigma,
+ char *bmat, int *n, char *which, int *nev,
+ float *tol, float *resid, int *ncv, float *v,
+ int *ldv, int *iparam, int *ipntr, float *workd,
+ float *workl, int *lworkl, int *ierr)
+ {
+ sseupd_(rvec, All, select, d, z, ldz, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
+ workd, workl, lworkl, ierr);
+ }
+};
+
+template <> struct arpack_wrapper<double, double>
+{
+ static inline void saupd(int *ido, char *bmat, int *n, char *which,
+ int *nev, double *tol, double *resid, int *ncv,
+ double *v, int *ldv, int *iparam, int *ipntr,
+ double *workd, double *workl, int *lworkl, int *info)
+ {
+ dsaupd_(ido, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr, workd, workl, lworkl, info);
+ }
+
+ static inline void seupd(int *rvec, char *All, int *select, double *d,
+ double *z, int *ldz, double *sigma,
+ char *bmat, int *n, char *which, int *nev,
+ double *tol, double *resid, int *ncv, double *v,
+ int *ldv, int *iparam, int *ipntr, double *workd,
+ double *workl, int *lworkl, int *ierr)
+ {
+ dseupd_(rvec, All, select, d, v, ldv, sigma, bmat, n, which, nev, tol, resid, ncv, v, ldv, iparam, ipntr,
+ workd, workl, lworkl, ierr);
+ }
+};
+
+
+template<typename MatrixSolver, typename MatrixType, typename Scalar, bool BisSPD>
+struct OP
+{
+ static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out);
+ static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs);
+};
+
+template<typename MatrixSolver, typename MatrixType, typename Scalar>
+struct OP<MatrixSolver, MatrixType, Scalar, true>
+{
+ static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
+{
+ // OP = L^{-1} A L^{-T} (B = LL^T)
+ //
+ // First solve L^T out = in
+ //
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixU().solve(Matrix<Scalar, Dynamic, 1>::Map(in, n));
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationPinv() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
+
+ // Then compute out = A out
+ //
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = A * Matrix<Scalar, Dynamic, 1>::Map(out, n);
+
+ // Then solve L out = out
+ //
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.permutationP() * Matrix<Scalar, Dynamic, 1>::Map(out, n);
+ Matrix<Scalar, Dynamic, 1>::Map(out, n) = OP.matrixL().solve(Matrix<Scalar, Dynamic, 1>::Map(out, n));
+}
+
+ static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
+{
+ // Solve L^T out = in
+ //
+ Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.matrixU().solve(Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k));
+ Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k) = OP.permutationPinv() * Matrix<Scalar, Dynamic, Dynamic>::Map(vecs, n, k);
+}
+
+};
+
+template<typename MatrixSolver, typename MatrixType, typename Scalar>
+struct OP<MatrixSolver, MatrixType, Scalar, false>
+{
+ static inline void applyOP(MatrixSolver &OP, const MatrixType &A, int n, Scalar *in, Scalar *out)
+{
+ eigen_assert(false && "Should never be in here...");
+}
+
+ static inline void project(MatrixSolver &OP, int n, int k, Scalar *vecs)
+{
+ eigen_assert(false && "Should never be in here...");
+}
+
+};
+
+} // end namespace internal
+
+} // end namespace Eigen
+
+#endif // EIGEN_ARPACKSELFADJOINTEIGENSOLVER_H
+