diff options
author | Benoit Steiner <benoit.steiner.goog@gmail.com> | 2017-07-07 04:18:03 +0000 |
---|---|---|
committer | Benoit Steiner <benoit.steiner.goog@gmail.com> | 2017-07-07 04:18:03 +0000 |
commit | 9daed6795224ef93719db66b71098bb7ac1a30ec (patch) | |
tree | 0d1c01b6c368cdf9ae65b496958868f8d5ef0711 /unsupported/Eigen/CXX11 | |
parent | 6795512e5942b5fd1829f776fde6611a7405b5bf (diff) |
Merged in tntnatbry/eigen (pull request PR-319)
Tensor Trace op
Diffstat (limited to 'unsupported/Eigen/CXX11')
-rw-r--r-- | unsupported/Eigen/CXX11/Tensor | 1 | ||||
-rw-r--r-- | unsupported/Eigen/CXX11/src/Tensor/README.md | 52 | ||||
-rw-r--r-- | unsupported/Eigen/CXX11/src/Tensor/TensorBase.h | 12 | ||||
-rw-r--r-- | unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h | 1 | ||||
-rw-r--r-- | unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h | 288 |
5 files changed, 354 insertions, 0 deletions
diff --git a/unsupported/Eigen/CXX11/Tensor b/unsupported/Eigen/CXX11/Tensor index 5d71a9c25..d243fe035 100644 --- a/unsupported/Eigen/CXX11/Tensor +++ b/unsupported/Eigen/CXX11/Tensor @@ -141,6 +141,7 @@ typedef unsigned __int64 uint64_t; #include "src/Tensor/TensorGenerator.h" #include "src/Tensor/TensorAssign.h" #include "src/Tensor/TensorScan.h" +#include "src/Tensor/TensorTrace.h" #include "src/Tensor/TensorSycl.h" #include "src/Tensor/TensorExecutor.h" diff --git a/unsupported/Eigen/CXX11/src/Tensor/README.md b/unsupported/Eigen/CXX11/src/Tensor/README.md index 8d989f13a..4423f81f7 100644 --- a/unsupported/Eigen/CXX11/src/Tensor/README.md +++ b/unsupported/Eigen/CXX11/src/Tensor/README.md @@ -1168,6 +1168,58 @@ Reduce a tensor using a user-defined reduction operator. See ```SumReducer``` in TensorFunctors.h for information on how to implement a reduction operator. +## Trace + +A *Trace* operation returns a tensor with fewer dimensions than the original +tensor. It returns a tensor whose elements are the sum of the elements of the +original tensor along the main diagonal for a list of specified dimensions, the +"trace dimensions". Similar to the ```Reduction Dimensions```, the trace dimensions +are passed as an input parameter to the operation, are of type ```<TensorType>::Dimensions``` +, and have the same requirements when passed as an input parameter. In addition, +the trace dimensions must have the same size. + +Example: Trace along 2 dimensions. + + // Create a tensor of 3 dimensions + Eigen::Tensor<int, 3> a(2, 2, 3); + a.setValues({{{1, 2, 3}, {4, 5, 6}}, {{7, 8, 9}, {10, 11, 12}}}); + // Specify the dimensions along which the trace will be computed. + // In this example, the trace can only be computed along the dimensions + // with indices 0 and 1 + Eigen::array<int, 2> dims({0, 1}); + // The output tensor contains all but the trace dimensions. + Tensor<int, 1> a_trace = a.trace(dims); + cout << "a_trace:" << endl; + cout << a_trace << endl; + => + a_trace: + 11 + 13 + 15 + + +### <Operation> trace(const Dimensions& new_dims) +### <Operation> trace() + +As a special case, if no parameter is passed to the operation, trace is computed +along *all* dimensions of the input tensor. + +Example: Trace along all dimensions. + + // Create a tensor of 3 dimensions, with all dimensions having the same size. + Eigen::Tensor<int, 3> a(3, 3, 3); + a.setValues({{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}, + {{10, 11, 12}, {13, 14, 15}, {16, 17, 18}}, + {{19, 20, 21}, {22, 23, 24}, {25, 26, 27}}}); + // Result is a zero dimension tensor + Tensor<int, 0> a_trace = a.trace(); + cout<<"a_trace:"<<endl; + cout<<a_trace<<endl; + => + a_trace: + 42 + + ## Scan Operations A *Scan* operation returns a tensor with the same dimensions as the original diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h b/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h index 5b1235826..0d6331e9c 100644 --- a/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h +++ b/unsupported/Eigen/CXX11/src/Tensor/TensorBase.h @@ -671,6 +671,18 @@ class TensorBase<Derived, ReadOnlyAccessors> return TensorReductionOp<Reducer, const Dims, const Derived>(derived(), dims, reducer); } + template <typename Dims> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const TensorTraceOp<const Dims, const Derived> + trace(const Dims& dims) const { + return TensorTraceOp<const Dims, const Derived>(derived(), dims); + } + + const TensorTraceOp<const DimensionList<Index, NumDimensions>, const Derived> + trace() const { + DimensionList<Index, NumDimensions> in_dims; + return TensorTraceOp<const DimensionList<Index, NumDimensions>, const Derived>(derived(), in_dims); + } + template <typename Broadcast> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const TensorBroadcastingOp<const Broadcast, const Derived> broadcast(const Broadcast& broadcast) const { diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h b/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h index 2e638992a..2950e6963 100644 --- a/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h +++ b/unsupported/Eigen/CXX11/src/Tensor/TensorForwardDeclarations.h @@ -70,6 +70,7 @@ template<typename Strides, typename XprType> class TensorInflationOp; template<typename Generator, typename XprType> class TensorGeneratorOp; template<typename LeftXprType, typename RightXprType> class TensorAssignOp; template<typename Op, typename XprType> class TensorScanOp; +template<typename Dims, typename XprType> class TensorTraceOp; template<typename CustomUnaryFunc, typename XprType> class TensorCustomUnaryOp; template<typename CustomBinaryFunc, typename LhsXprType, typename RhsXprType> class TensorCustomBinaryOp; diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h b/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h new file mode 100644 index 000000000..4b165399f --- /dev/null +++ b/unsupported/Eigen/CXX11/src/Tensor/TensorTrace.h @@ -0,0 +1,288 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2017 Gagan Goel <gagan.nith@gmail.com> +// Copyright (C) 2017 Benoit Steiner <benoit.steiner.goog@gmail.com> +// +// This Source Code Form is subject to the terms of the Mozilla +// Public License v. 2.0. If a copy of the MPL was not distributed +// with this file, You can obtain one at http://mozilla.org/MPL/2.0/. + +#ifndef EIGEN_CXX11_TENSOR_TENSOR_TRACE_H +#define EIGEN_CXX11_TENSOR_TENSOR_TRACE_H + +namespace Eigen { + +/** \class TensorTrace + * \ingroup CXX11_Tensor_Module + * + * \brief Tensor Trace class. + * + * + */ + +namespace internal { +template<typename Dims, typename XprType> +struct traits<TensorTraceOp<Dims, XprType> > : public traits<XprType> +{ + typedef typename XprType::Scalar Scalar; + typedef traits<XprType> XprTraits; + typedef typename XprTraits::StorageKind StorageKind; + typedef typename XprTraits::Index Index; + typedef typename XprType::Nested Nested; + typedef typename remove_reference<Nested>::type _Nested; + static const int NumDimensions = XprTraits::NumDimensions - array_size<Dims>::value; + static const int Layout = XprTraits::Layout; +}; + +template<typename Dims, typename XprType> +struct eval<TensorTraceOp<Dims, XprType>, Eigen::Dense> +{ + typedef const TensorTraceOp<Dims, XprType>& type; +}; + +template<typename Dims, typename XprType> +struct nested<TensorTraceOp<Dims, XprType>, 1, typename eval<TensorTraceOp<Dims, XprType> >::type> +{ + typedef TensorTraceOp<Dims, XprType> type; +}; + +} // end namespace internal + + +template<typename Dims, typename XprType> +class TensorTraceOp : public TensorBase<TensorTraceOp<Dims, XprType> > +{ + public: + typedef typename Eigen::internal::traits<TensorTraceOp>::Scalar Scalar; + typedef typename Eigen::NumTraits<Scalar>::Real RealScalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename Eigen::internal::nested<TensorTraceOp>::type Nested; + typedef typename Eigen::internal::traits<TensorTraceOp>::StorageKind StorageKind; + typedef typename Eigen::internal::traits<TensorTraceOp>::Index Index; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorTraceOp(const XprType& expr, const Dims& dims) + : m_xpr(expr), m_dims(dims) { + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const Dims& dims() const { return m_dims; } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE + const typename internal::remove_all<typename XprType::Nested>::type& expression() const { return m_xpr; } + + protected: + typename XprType::Nested m_xpr; + const Dims m_dims; +}; + + +// Eval as rvalue +template<typename Dims, typename ArgType, typename Device> +struct TensorEvaluator<const TensorTraceOp<Dims, ArgType>, Device> +{ + typedef TensorTraceOp<Dims, ArgType> XprType; + static const int NumInputDims = internal::array_size<typename TensorEvaluator<ArgType, Device>::Dimensions>::value; + static const int NumReducedDims = internal::array_size<Dims>::value; + static const int NumOutputDims = NumInputDims - NumReducedDims; + typedef typename XprType::Index Index; + typedef DSizes<Index, NumOutputDims> Dimensions; + typedef typename XprType::Scalar Scalar; + typedef typename XprType::CoeffReturnType CoeffReturnType; + typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType; + static const int PacketSize = internal::unpacket_traits<PacketReturnType>::size; + + enum { + IsAligned = false, + PacketAccess = TensorEvaluator<ArgType, Device>::PacketAccess, + Layout = TensorEvaluator<ArgType, Device>::Layout, + CoordAccess = false, + RawAccess = false + }; + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) + : m_impl(op.expression(), device), m_device(device) + { + + EIGEN_STATIC_ASSERT((NumOutputDims >= 0), YOU_MADE_A_PROGRAMMING_MISTAKE); + EIGEN_STATIC_ASSERT((NumReducedDims >= 2) || ((NumReducedDims == 0) && (NumInputDims == 0)), YOU_MADE_A_PROGRAMMING_MISTAKE); + + for (int i = 0; i < NumInputDims; ++i) { + m_reduced[i] = false; + } + + const Dims& op_dims = op.dims(); + for (int i = 0; i < NumReducedDims; ++i) { + eigen_assert(op_dims[i] >= 0); + eigen_assert(op_dims[i] < NumInputDims); + m_reduced[op_dims[i]] = true; + } + + // All the dimensions should be distinct to compute the trace + int num_distinct_reduce_dims = 0; + for (int i = 0; i < NumInputDims; ++i) { + if (m_reduced[i]) { + ++num_distinct_reduce_dims; + } + } + + eigen_assert(num_distinct_reduce_dims == NumReducedDims); + + // Compute the dimensions of the result. + const typename TensorEvaluator<ArgType, Device>::Dimensions& input_dims = m_impl.dimensions(); + + int output_index = 0; + int reduced_index = 0; + for (int i = 0; i < NumInputDims; ++i) { + if (m_reduced[i]) { + m_reducedDims[reduced_index] = input_dims[i]; + if (reduced_index > 0) { + // All the trace dimensions must have the same size + eigen_assert(m_reducedDims[0] == m_reducedDims[reduced_index]); + } + ++reduced_index; + } + else { + m_dimensions[output_index] = input_dims[i]; + ++output_index; + } + } + + if (NumReducedDims != 0) { + m_traceDim = m_reducedDims[0]; + } + + // Compute the output strides + if (NumOutputDims > 0) { + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + m_outputStrides[0] = 1; + for (int i = 1; i < NumOutputDims; ++i) { + m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1]; + } + } + else { + m_outputStrides.back() = 1; + for (int i = NumOutputDims - 2; i >= 0; --i) { + m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1]; + } + } + } + + // Compute the input strides + if (NumInputDims > 0) { + array<Index, NumInputDims> input_strides; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + input_strides[0] = 1; + for (int i = 1; i < NumInputDims; ++i) { + input_strides[i] = input_strides[i - 1] * input_dims[i - 1]; + } + } + else { + input_strides.back() = 1; + for (int i = NumInputDims - 2; i >= 0; --i) { + input_strides[i] = input_strides[i + 1] * input_dims[i + 1]; + } + } + + output_index = 0; + reduced_index = 0; + for (int i = 0; i < NumInputDims; ++i) { + if(m_reduced[i]) { + m_reducedStrides[reduced_index] = input_strides[i]; + ++reduced_index; + } + else { + m_preservedStrides[output_index] = input_strides[i]; + ++output_index; + } + } + } + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { + return m_dimensions; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { + m_impl.evalSubExprsIfNeeded(NULL); + return true; + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { + m_impl.cleanup(); + } + + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const + { + // Initialize the result + CoeffReturnType result = internal::cast<int, CoeffReturnType>(0); + Index index_stride = 0; + for (int i = 0; i < NumReducedDims; ++i) { + index_stride += m_reducedStrides[i]; + } + + // If trace is requested along all dimensions, starting index would be 0 + Index cur_index = 0; + if (NumOutputDims != 0) + cur_index = firstInput(index); + for (Index i = 0; i < m_traceDim; ++i) { + result += m_impl.coeff(cur_index); + cur_index += index_stride; + } + + return result; + } + + template<int LoadMode> + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { + + EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE); + eigen_assert(index + PacketSize - 1 < dimensions().TotalSize()); + + EIGEN_ALIGN_MAX typename internal::remove_const<CoeffReturnType>::type values[PacketSize]; + for (int i = 0; i < PacketSize; ++i) { + values[i] = coeff(index + i); + } + PacketReturnType result = internal::ploadt<PacketReturnType, LoadMode>(values); + return result; + } + + protected: + // Given the output index, finds the first index in the input tensor used to compute the trace + EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index firstInput(Index index) const { + Index startInput = 0; + if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) { + for (int i = NumOutputDims - 1; i > 0; --i) { + const Index idx = index / m_outputStrides[i]; + startInput += idx * m_preservedStrides[i]; + index -= idx * m_outputStrides[i]; + } + startInput += index * m_preservedStrides[0]; + } + else { + for (int i = 0; i < NumOutputDims - 1; ++i) { + const Index idx = index / m_outputStrides[i]; + startInput += idx * m_preservedStrides[i]; + index -= idx * m_outputStrides[i]; + } + startInput += index * m_preservedStrides[NumOutputDims - 1]; + } + return startInput; + } + + Dimensions m_dimensions; + TensorEvaluator<ArgType, Device> m_impl; + const Device& m_device; + array<bool, NumInputDims> m_reduced; + array<Index, NumReducedDims> m_reducedDims; + // Initialize the size of the trace dimension + Index m_traceDim = 1; + array<Index, NumOutputDims> m_outputStrides; + array<Index, NumReducedDims> m_reducedStrides; + array<Index, NumOutputDims> m_preservedStrides; +}; + + +} // End namespace Eigen + +#endif // EIGEN_CXX11_TENSOR_TENSOR_TRACE_H |