aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src
diff options
context:
space:
mode:
authorGravatar Benoit Steiner <benoit.steiner.goog@gmail.com>2014-08-19 16:57:10 -0700
committerGravatar Benoit Steiner <benoit.steiner.goog@gmail.com>2014-08-19 16:57:10 -0700
commit9ac3c821ea3b956634116bcdf80bfab7d9a00d91 (patch)
tree110aada99764247e6ca34a5e1630e48a8becef8b /unsupported/Eigen/CXX11/src
parent33c702c79fe227a5b22229c26af276d359a6cb1d (diff)
Improved the speed of convolutions when running on cuda devices
Diffstat (limited to 'unsupported/Eigen/CXX11/src')
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h632
1 files changed, 622 insertions, 10 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h b/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h
index 4158271c3..7d0a21c3b 100644
--- a/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h
+++ b/unsupported/Eigen/CXX11/src/Tensor/TensorConvolution.h
@@ -20,6 +20,126 @@ namespace Eigen {
*
*/
namespace internal {
+
+
+template <typename Index, typename InputDims, size_t NumKernelDims> class IndexMapper {
+ public:
+ IndexMapper(const InputDims& input_dims, const array<Index, NumKernelDims>& kernel_dims,
+ const array<Index, NumKernelDims>& indices) {
+
+ array<Index, NumDims> dimensions = input_dims;
+ for (int i = 0; i < NumKernelDims; ++i) {
+ const Index index = indices[i];
+ const Index input_dim = input_dims[index];
+ const Index kernel_dim = kernel_dims[i];
+ const Index result_dim = input_dim - kernel_dim + 1;
+ dimensions[index] = result_dim;
+ }
+
+ array<Index, NumDims> inputStrides;
+ array<Index, NumDims> outputStrides;
+ for (int i = 0; i < NumDims; ++i) {
+ if (i > 0) {
+ inputStrides[i] = inputStrides[i-1] * input_dims[i-1];
+ outputStrides[i] = outputStrides[i-1] * dimensions[i-1];
+ } else {
+ inputStrides[0] = 1;
+ outputStrides[0] = 1;
+ }
+ }
+
+ array<Index, NumDims> cudaInputDimensions;
+ array<Index, NumDims> cudaOutputDimensions;
+ array<Index, NumDims> tmp = dimensions;
+ array<Index, NumDims> ordering;
+ for (int i = 0; i < NumKernelDims; ++i) {
+ ordering[i] = indices[i];
+ tmp[indices[i]] = -1;
+ cudaInputDimensions[i] = input_dims[ordering[i]];
+ cudaOutputDimensions[i] = dimensions[ordering[i]];
+ }
+ int written = NumKernelDims;
+ for (int i = 0; i < NumDims; ++i) {
+ if (tmp[i] >= 0) {
+ ordering[written] = i;
+ cudaInputDimensions[written] = input_dims[i];
+ cudaOutputDimensions[written] = dimensions[i];
+ ++written;
+ }
+ }
+
+ for (int i = 0; i < NumDims; ++i) {
+ m_inputStrides[i] = inputStrides[ordering[i]];
+ m_outputStrides[i] = outputStrides[ordering[i]];
+ }
+
+ for (int i = 0; i < NumDims; ++i) {
+ if (i > NumKernelDims) {
+ m_cudaInputStrides[i] = m_cudaInputStrides[i-1] * cudaInputDimensions[i-1];
+ m_cudaOutputStrides[i] = m_cudaOutputStrides[i-1] * cudaOutputDimensions[i-1];
+ } else {
+ m_cudaInputStrides[i] = 1;
+ m_cudaOutputStrides[i] = 1;
+ }
+ }
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputPlaneToTensorInputOffset(Index p) const {
+ Index inputIndex = 0;
+ for (int d = NumDims - 1; d > NumKernelDims; --d) {
+ const Index idx = p / m_cudaInputStrides[d];
+ inputIndex += idx * m_inputStrides[d];
+ p -= idx * m_cudaInputStrides[d];
+ }
+ inputIndex += p * m_inputStrides[NumKernelDims];
+ return inputIndex;
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputPlaneToTensorOutputOffset(Index p) const {
+ Index outputIndex = 0;
+ for (int d = NumDims - 1; d > NumKernelDims; --d) {
+ const Index idx = p / m_cudaOutputStrides[d];
+ outputIndex += idx * m_outputStrides[d];
+ p -= idx * m_cudaOutputStrides[d];
+ }
+ outputIndex += p * m_outputStrides[NumKernelDims];
+ return outputIndex;
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i) const {
+ return i * m_inputStrides[0];
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i) const {
+ return i * m_outputStrides[0];
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i, Index j) const {
+ return i * m_inputStrides[0] + j*m_inputStrides[1];
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i, Index j) const {
+ return i * m_outputStrides[0] + j * m_outputStrides[1];
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaInputKernelToTensorInputOffset(Index i, Index j, Index k) const {
+ return i * m_inputStrides[0] + j*m_inputStrides[1] + k*m_inputStrides[2];
+ }
+
+ EIGEN_STRONG_INLINE EIGEN_DEVICE_FUNC Index mapCudaOutputKernelToTensorOutputOffset(Index i, Index j, Index k) const {
+ return i * m_outputStrides[0] + j*m_outputStrides[1] + k*m_outputStrides[2];
+ }
+
+ private:
+ static const size_t NumDims = internal::array_size<InputDims>::value;
+ array<Index, NumDims> m_inputStrides;
+ array<Index, NumDims> m_outputStrides;
+ array<Index, NumDims> m_cudaInputStrides;
+ array<Index, NumDims> m_cudaOutputStrides;
+};
+
+
+
template<typename Dimensions, typename InputXprType, typename KernelXprType>
struct traits<TensorConvolutionOp<Dimensions, InputXprType, KernelXprType> >
{
@@ -75,15 +195,15 @@ class TensorConvolutionOp : public TensorBase<TensorConvolutionOp<Indices, Input
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorConvolutionOp(const InputXprType& input, const KernelXprType& kernel, const Indices& dims)
: m_input_xpr(input), m_kernel_xpr(kernel), m_indices(dims) {}
- EIGEN_DEVICE_FUNC
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const Indices& indices() const { return m_indices; }
/** \returns the nested expressions */
- EIGEN_DEVICE_FUNC
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const typename internal::remove_all<typename InputXprType::Nested>::type&
inputExpression() const { return m_input_xpr; }
- EIGEN_DEVICE_FUNC
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
const typename internal::remove_all<typename KernelXprType::Nested>::type&
kernelExpression() const { return m_kernel_xpr; }
@@ -99,8 +219,8 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
{
typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
- static const int NumDims = TensorEvaluator<InputArgType, Device>::Dimensions::count;
- static const int KernelDims = internal::array_size<Indices>::value;
+ static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, Device>::Dimensions>::value;
+ static const int NumKernelDims = internal::array_size<Indices>::value;
typedef typename XprType::Index Index;
typedef DSizes<Index, NumDims> Dimensions;
@@ -111,7 +231,7 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
};
EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device)
- : m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device), m_dimensions(op.inputExpression().dimensions())
+ : m_inputImpl(op.inputExpression(), device), m_kernelImpl(op.kernelExpression(), device)
{
const typename TensorEvaluator<InputArgType, Device>::Dimensions& input_dims = m_inputImpl.dimensions();
const typename TensorEvaluator<KernelArgType, Device>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
@@ -124,7 +244,8 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
}
}
- for (int i = 0; i < KernelDims; ++i) {
+ m_dimensions = m_inputImpl.dimensions();
+ for (int i = 0; i < NumKernelDims; ++i) {
const Index index = op.indices()[i];
const Index input_dim = input_dims[index];
const Index kernel_dim = kernel_dims[i];
@@ -148,6 +269,7 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
}
}
+
typedef typename XprType::Scalar Scalar;
typedef typename XprType::CoeffReturnType CoeffReturnType;
typedef typename XprType::PacketReturnType PacketReturnType;
@@ -195,7 +317,7 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
for (int j = 0; j < m_kernelImpl.dimensions()[DimIndex]; ++j) {
const Index input = firstIndex + j * m_indexStride[DimIndex];
const Index kernel = firstKernel + j * m_kernelStride[DimIndex];
- if (DimIndex < KernelDims-1) {
+ if (DimIndex < NumKernelDims-1) {
convolve(input, kernel, DimIndex+1, accum);
} else {
@@ -207,17 +329,507 @@ struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelAr
Scalar* data() const { return NULL; }
private:
+ // No copy, no assignment
+ TensorEvaluator(const TensorEvaluator&);
+ TensorEvaluator& operator = (const TensorEvaluator&);
+
array<Index, NumDims> m_inputStride;
array<Index, NumDims> m_outputStride;
- array<Index, KernelDims> m_indexStride;
- array<Index, KernelDims> m_kernelStride;
+ array<Index, NumKernelDims> m_indexStride;
+ array<Index, NumKernelDims> m_kernelStride;
TensorEvaluator<InputArgType, Device> m_inputImpl;
TensorEvaluator<KernelArgType, Device> m_kernelImpl;
Dimensions m_dimensions;
};
+
+
+// Use an optimized implementation of the evaluation code for GPUs whenever possible.
+#if defined(EIGEN_USE_GPU) && defined(__CUDACC__)
+
+template <int StaticKernelSize>
+struct GetKernelSize {
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int /*kernelSize*/) const {
+ return StaticKernelSize;
+ }
+};
+template <>
+struct GetKernelSize<Eigen::Dynamic> {
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE int operator() (const int kernelSize) const {
+ return kernelSize;
+ }
+};
+
+
+
+
+template <typename InputEvaluator, typename Index, typename InputDims, int StaticKernelSize>
+__global__ void EigenConvolutionKernel1D(InputEvaluator eval, const internal::IndexMapper<Index, InputDims, 1> indexMapper, const float* __restrict kernel, const int numPlanes, const int numX, const int maxX, const int kernelSize, float* buffer) {
+ extern __shared__ float s[];
+
+ const int first_x = blockIdx.x * maxX;
+ const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
+ const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSize>()(kernelSize);
+ const int num_x_output = last_x - first_x + 1;
+
+ const int first_plane = blockIdx.y * blockDim.y;
+ const int plane_stride = blockDim.y * gridDim.y;
+
+ for (int p = first_plane + threadIdx.y; p < numPlanes; p += plane_stride) {
+ // Load inputs to shared memory
+ const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
+ const int plane_kernel_offset = threadIdx.y * num_x_input;
+ #pragma unroll
+ for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
+ const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x);
+ s[i + plane_kernel_offset] = eval.coeff(tensor_index);
+ }
+
+ __syncthreads();
+
+ // Compute the convolution
+ const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
+
+ #pragma unroll
+ for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
+ const int kernel_offset = plane_kernel_offset + i;
+ float result = 0.0f;
+ #pragma unroll
+ for (int k = 0; k < GetKernelSize<StaticKernelSize>()(kernelSize); ++k) {
+ result += s[k + kernel_offset] * kernel[k];
+ }
+ const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x);
+ buffer[tensor_index] = result;
+ }
+ __syncthreads();
+ }
+};
+
+
+template <typename InputEvaluator, typename Index, typename InputDims, int StaticKernelSizeX, int StaticKernelSizeY>
+__global__ void EigenConvolutionKernel2D(InputEvaluator eval, const internal::IndexMapper<Index, InputDims, 2> indexMapper, const float* __restrict kernel, const int numPlanes, const int numX, const int maxX, const int numY, const int maxY, const int kernelSizeX, const int kernelSizeY, float* buffer) {
+ extern __shared__ float s[];
+
+ const int first_x = blockIdx.x * maxX;
+ const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
+ const int num_x_input = last_x - first_x + GetKernelSize<StaticKernelSizeX>()(kernelSizeX);
+ const int num_x_output = last_x - first_x + 1;
+
+ const int first_y = blockIdx.y * maxY;
+ const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1;
+ const int num_y_input = last_y - first_y + GetKernelSize<StaticKernelSizeY>()(kernelSizeY);
+ const int num_y_output = last_y - first_y + 1;
+
+ const int first_plane = blockIdx.z * blockDim.z;
+ const int plane_stride = blockDim.z * gridDim.z;
+
+ for (int p = first_plane + threadIdx.z; p < numPlanes; p += plane_stride) {
+
+ const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
+ const int plane_kernel_offset = threadIdx.z * num_y_input;
+
+ // Load inputs to shared memory
+ #pragma unroll
+ for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
+ const int input_offset = num_x_input * (j + plane_kernel_offset);
+ #pragma unroll
+ for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
+ const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x, j+first_y);
+ s[i + input_offset] = eval.coeff(tensor_index);
+ }
+ }
+
+ __syncthreads();
+
+ // Convolution
+ const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
+
+ #pragma unroll
+ for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
+ #pragma unroll
+ for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
+ float result = 0.0f;
+ #pragma unroll
+ for (int l = 0; l < GetKernelSize<StaticKernelSizeY>()(kernelSizeY); ++l) {
+ const int kernel_offset = kernelSizeX * l;
+ const int input_offset = i + num_x_input * (j + l + plane_kernel_offset);
+ #pragma unroll
+ for (int k = 0; k < GetKernelSize<StaticKernelSizeX>()(kernelSizeX); ++k) {
+ result += s[k + input_offset] * kernel[k + kernel_offset];
+ }
+ }
+ const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x, j+first_y);
+ buffer[tensor_index] = result;
+ }
+ }
+
+ __syncthreads();
+ }
+};
+
+
+template <typename InputEvaluator, typename Index, typename InputDims>
+__global__ void EigenConvolutionKernel3D(InputEvaluator eval, const internal::IndexMapper<Index, InputDims, 3> indexMapper, const float* __restrict kernel, const size_t numPlanes, const size_t numX, const size_t maxX, const size_t numY, const size_t maxY, const size_t numZ, const size_t maxZ, const size_t kernelSizeX, const size_t kernelSizeY, const size_t kernelSizeZ, float* buffer) {
+ extern __shared__ float s[];
+
+ // Load inputs to shared memory
+ const int first_x = blockIdx.x * maxX;
+ const int last_x = (first_x + maxX < numX ? first_x + maxX : numX) - 1;
+ const int num_x_input = last_x - first_x + kernelSizeX;
+
+ const int first_y = blockIdx.y * maxY;
+ const int last_y = (first_y + maxY < numY ? first_y + maxY : numY) - 1;
+ const int num_y_input = last_y - first_y + kernelSizeY;
+
+ const int first_z = blockIdx.z * maxZ;
+ const int last_z = (first_z + maxZ < numZ ? first_z + maxZ : numZ) - 1;
+ const int num_z_input = last_z - first_z + kernelSizeZ;
+
+ for (int p = 0; p < numPlanes; ++p) {
+
+ const int plane_input_offset = indexMapper.mapCudaInputPlaneToTensorInputOffset(p);
+ const int plane_kernel_offset = 0;
+
+ for (int k = threadIdx.z; k < num_z_input; k += blockDim.z) {
+ for (int j = threadIdx.y; j < num_y_input; j += blockDim.y) {
+ for (int i = threadIdx.x; i < num_x_input; i += blockDim.x) {
+ const int tensor_index = plane_input_offset + indexMapper.mapCudaInputKernelToTensorInputOffset(i+first_x, j+first_y, k+first_z);
+ s[i + num_x_input * (j + num_y_input * (k + plane_kernel_offset))] = eval.coeff(tensor_index);
+ }
+ }
+ }
+
+ __syncthreads();
+
+ // Convolution
+ const int num_z_output = last_z - first_z + 1;
+ const int num_y_output = last_y - first_y + 1;
+ const int num_x_output = last_x - first_x + 1;
+ const int plane_output_offset = indexMapper.mapCudaOutputPlaneToTensorOutputOffset(p);
+
+ for (int k = threadIdx.z; k < num_z_output; k += blockDim.z) {
+ for (int j = threadIdx.y; j < num_y_output; j += blockDim.y) {
+ for (int i = threadIdx.x; i < num_x_output; i += blockDim.x) {
+ float result = 0.0f;
+ for (int n = 0; n < kernelSizeZ; ++n) {
+ for (int m = 0; m < kernelSizeY; ++m) {
+ for (int l = 0; l < kernelSizeX; ++l) {
+ result += s[i + l + num_x_input * (j + m + num_y_input * (k + n + plane_kernel_offset))] * kernel[l + kernelSizeX * (m + kernelSizeY * n)];
+ }
+ }
+ }
+ const int tensor_index = plane_output_offset + indexMapper.mapCudaOutputKernelToTensorOutputOffset(i+first_x, j+first_y, k+first_z);
+ buffer[tensor_index] = result;
+ }
+ }
+ }
+ __syncthreads();
+ }
+};
+
+
+
+template<typename Indices, typename InputArgType, typename KernelArgType>
+struct TensorEvaluator<const TensorConvolutionOp<Indices, InputArgType, KernelArgType>, GpuDevice>
+{
+ typedef TensorConvolutionOp<Indices, InputArgType, KernelArgType> XprType;
+
+ static const int NumDims = internal::array_size<typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions>::value;
+ static const int NumKernelDims = internal::array_size<Indices>::value;
+ typedef typename XprType::Index Index;
+ typedef DSizes<Index, NumDims> Dimensions;
+ typedef typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions KernelDimensions;
+
+ enum {
+ IsAligned = TensorEvaluator<InputArgType, GpuDevice>::IsAligned & TensorEvaluator<KernelArgType, GpuDevice>::IsAligned,
+ PacketAccess = false,
+ };
+
+ EIGEN_DEVICE_FUNC TensorEvaluator(const XprType& op, const GpuDevice& device)
+ : m_inputImpl(op.inputExpression(), device), m_kernelArg(op.kernelExpression()), m_kernelImpl(op.kernelExpression(), device), m_indices(op.indices()), m_buf(NULL), m_kernel(NULL), m_local_kernel(false), m_device(device)
+ {
+ const typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions& input_dims = m_inputImpl.dimensions();
+ const typename TensorEvaluator<KernelArgType, GpuDevice>::Dimensions& kernel_dims = m_kernelImpl.dimensions();
+
+ m_dimensions = m_inputImpl.dimensions();
+ for (int i = 0; i < NumKernelDims; ++i) {
+ const Index index = op.indices()[i];
+ const Index input_dim = input_dims[index];
+ const Index kernel_dim = kernel_dims[i];
+ const Index result_dim = input_dim - kernel_dim + 1;
+ m_dimensions[index] = result_dim;
+ }
+ }
+
+ typedef typename XprType::CoeffReturnType CoeffReturnType;
+ typedef typename XprType::PacketReturnType PacketReturnType;
+ typedef typename InputArgType::Scalar Scalar;
+
+ EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_dimensions; }
+
+ EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* data) {
+ preloadKernel();
+ m_inputImpl.evalSubExprsIfNeeded(NULL);
+ if (data) {
+ executeEval(data);
+ return false;
+ } else {
+ m_buf = (Scalar*)m_device.allocate(dimensions().TotalSize() * sizeof(Scalar));
+ executeEval(m_buf);
+ return true;
+ }
+ }
+
+ EIGEN_STRONG_INLINE void cleanup() {
+ m_inputImpl.cleanup();
+ if (m_buf) {
+ m_device.deallocate(m_buf);
+ m_buf = NULL;
+ }
+ if (m_local_kernel) {
+ m_device.deallocate((void*)m_kernel);
+ m_local_kernel = false;
+ }
+ m_kernel = NULL;
+ }
+
+ EIGEN_STRONG_INLINE void preloadKernel() {
+ // Don't make a local copy of the kernel unless we have to (i.e. it's an
+ // expression that needs to be evaluated)
+ const Scalar* in_place = m_kernelImpl.data();
+ if (in_place) {
+ m_kernel = in_place;
+ m_local_kernel = false;
+ } else {
+ size_t kernel_sz = m_kernelImpl.dimensions().TotalSize() * sizeof(Scalar);
+ Scalar* local = (Scalar*)m_device.allocate(kernel_sz);
+ typedef TensorEvalToOp<const KernelArgType> EvalTo;
+ EvalTo evalToTmp(local, m_kernelArg);
+ internal::TensorExecutor<const EvalTo, GpuDevice, TensorEvaluator<KernelArgType, GpuDevice>::PacketAccess>::run(evalToTmp, m_device);
+
+ m_kernel = local;
+ m_local_kernel = true;
+ }
+ }
+
+ static unsigned int ceil(unsigned int num, unsigned int denom) {
+ const unsigned int rounded_toward_zero = num / denom;
+ if (num > rounded_toward_zero * denom) {
+ return rounded_toward_zero + 1;
+ }
+ return rounded_toward_zero;
+ }
+
+ void executeEval(Scalar* data) const {
+ typedef typename TensorEvaluator<InputArgType, GpuDevice>::Dimensions InputDims;
+
+ const int maxSharedMem = sharedMemPerBlock();
+ const int maxThreadsPerBlock = maxCudaThreadsPerBlock();
+ const int maxBlocksPerProcessor = maxCudaThreadsPerMultiProcessor() / maxThreadsPerBlock;
+ const int numMultiProcessors = getNumCudaMultiProcessors();
+ const int warpSize = 32;
+
+ switch (NumKernelDims) {
+ case 1: {
+ const int kernel_size = m_kernelImpl.dimensions().TotalSize();
+
+ const int numX = dimensions()[m_indices[0]];
+ const int numP = dimensions().TotalSize() / numX;
+
+ int maxX;
+ dim3 block_size;
+ if (m_indices[0] == 0) {
+ // Maximum the reuse
+ const int inner_dim = ((maxSharedMem / (sizeof(Scalar)) - kernel_size + 1 + 31) / 32) * 32;
+ maxX = (std::min<int>)(inner_dim, numX);
+ const int maxP = (std::min<int>)(maxSharedMem / ((kernel_size - 1 + maxX) * sizeof(Scalar)), numP);
+ block_size.x = (std::min)(maxThreadsPerBlock, maxX);
+ block_size.y = (std::min<int>)(maxThreadsPerBlock / block_size.x, maxP);
+ }
+ else {
+ // Read as much as possible alongside the inner most dimension, that is the plane
+ const int inner_dim = maxSharedMem / ((warpSize + kernel_size) * sizeof(Scalar));
+ const int maxP = (std::min<int>)(inner_dim, numP);
+ maxX = (std::min<int>)(maxSharedMem / (inner_dim * sizeof(Scalar)) - kernel_size + 1, numX);
+
+ block_size.x = (std::min)(warpSize, maxX);
+ block_size.y = (std::min<int>)(maxThreadsPerBlock/block_size.x, maxP);
+ }
+
+ const int shared_mem = block_size.y * (maxX + kernel_size - 1) * sizeof(Scalar);
+ assert(shared_mem <= maxSharedMem);
+
+ const int num_x_blocks = ceil(numX, maxX);
+ const int blocksPerProcessor = (std::min)(maxBlocksPerProcessor, maxSharedMem / shared_mem);
+ const int num_y_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks);
+
+ dim3 num_blocks(num_x_blocks, min<int>(num_y_blocks, ceil(numP, block_size.y)));
+
+
+ //cout << "launching 1D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " maxX: " << maxX << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
+
+ const array<Index, 1> indices(m_indices[0]);
+ const array<Index, 1> kernel_dims(m_kernelImpl.dimensions()[0]);
+ internal::IndexMapper<Index, InputDims, 1> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
+ switch(kernel_size) {
+ case 4: {
+ EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 4, data);
+ break;
+ }
+ case 7: {
+ EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, 7, data);
+ break;
+ }
+ default: {
+ EigenConvolutionKernel1D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Eigen::Dynamic> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, kernel_size, data);
+ }
+ }
+ cudaError_t error = cudaGetLastError();
+ assert(error == cudaSuccess);
+ break;
+ }
+
+ case 2: {
+ const int kernel_size_x = m_kernelImpl.dimensions()[0];
+ const int kernel_size_y = m_kernelImpl.dimensions()[1];
+
+ const int numX = dimensions()[m_indices[0]];
+ const int numY = dimensions()[m_indices[1]];
+ const int numP = dimensions().TotalSize() / (numX*numY);
+
+ const float scaling_factor = sqrtf(static_cast<float>(maxSharedMem) / (sizeof(Scalar) * kernel_size_y * kernel_size_x));
+
+ // Snap maxX to warp size
+ int inner_dim = ((static_cast<int>(scaling_factor * kernel_size_x) - kernel_size_x + 1 + 32) / 32) * 32;
+ const int maxX = (std::min<int>)(inner_dim, numX);
+ const int maxY = (std::min<int>)(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1)) - kernel_size_y + 1, numY);
+ const int maxP = (std::min<int>)(maxSharedMem / ((kernel_size_x - 1 + maxX) * (kernel_size_y - 1 + maxY) * sizeof(Scalar)), numP);
+
+ dim3 block_size;
+ block_size.x = (std::min)(1024, maxX);
+ block_size.y = (std::min<int>)(1024/block_size.x, maxY);
+ block_size.z = (std::min<int>)(1024/(block_size.x*block_size.y), maxP);
+
+ const int shared_mem = block_size.z * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * sizeof(Scalar);
+ assert(shared_mem <= maxSharedMem);
+
+ const int num_x_blocks = ceil(numX, maxX);
+ const int num_y_blocks = ceil(numY, maxY);
+ const int blocksPerProcessor = (std::min)(maxBlocksPerProcessor, maxSharedMem / shared_mem);
+ const int num_z_blocks = ceil(numMultiProcessors * blocksPerProcessor, num_x_blocks * num_y_blocks);
+
+ dim3 num_blocks(num_x_blocks, num_y_blocks, min<int>(num_z_blocks, ceil(numP, block_size.z)));
+
+
+ //cout << "launching 2D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " maxX: " << maxX << " maxY: " << maxY << " maxP: " << maxP << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
+
+ const array<Index, 2> indices(m_indices[0], m_indices[1]);
+ const array<Index, 2> kernel_dims(m_kernelImpl.dimensions()[0], m_kernelImpl.dimensions()[1]);
+ internal::IndexMapper<Index, InputDims, 2> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
+ switch (kernel_size_x) {
+ case 4: {
+ switch (kernel_size_y) {
+ case 7: {
+ EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, 7> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, 7, data);
+ break;
+ }
+ default: {
+ EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 4, Eigen::Dynamic> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 4, kernel_size_y, data);
+ break;
+ }
+ }
+ break;
+ }
+ case 7: {
+ switch (kernel_size_y) {
+ case 4: {
+ EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, 4> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, 4, data);
+ break;
+ }
+ default: {
+ EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, 7, Eigen::Dynamic> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, 7, kernel_size_y, data);
+ break;
+ }
+ }
+ break;
+ }
+ default: {
+ EigenConvolutionKernel2D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims, Eigen::Dynamic, Eigen::Dynamic> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, kernel_size_x, kernel_size_y, data);
+ break;
+ }
+ }
+ cudaError_t error = cudaGetLastError();
+ assert(error == cudaSuccess);
+ break;
+ }
+
+ case 3: {
+ const int kernel_size_x = m_kernelImpl.dimensions()[0];
+ const int kernel_size_y = m_kernelImpl.dimensions()[1];
+ const int kernel_size_z = m_kernelImpl.dimensions()[2];
+
+ const int numX = dimensions()[m_indices[0]];
+ const int numY = dimensions()[m_indices[1]];
+ const int numZ = dimensions()[m_indices[2]];
+ const int numP = dimensions().TotalSize() / (numX*numY*numZ);
+
+ const int maxX = (std::min<int>)(128, (std::min<int>)(maxSharedMem / (sizeof(Scalar) * kernel_size_y * kernel_size_z) - kernel_size_x + 1, numX));
+ const int maxY = (std::min<int>)(128, (std::min<int>)(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * kernel_size_z) - kernel_size_y + 1, numY));
+ const int maxZ = (std::min<int>)(128, (std::min<int>)(maxSharedMem / (sizeof(Scalar) * (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1)) - kernel_size_z + 1, numZ));
+
+ dim3 block_size;
+ block_size.x = (std::min)(32, maxX);
+ block_size.y = (std::min)(32, maxY);
+ block_size.z = (std::min<int>)(1024/(block_size.x*block_size.y), maxZ);
+ dim3 num_blocks(ceil(numX, maxX), ceil(numY, maxY), ceil(numZ, maxZ));
+
+ const int shared_mem = (maxX + kernel_size_x - 1) * (maxY + kernel_size_y - 1) * (maxZ + kernel_size_z - 1) * sizeof(Scalar);
+ assert(shared_mem <= maxSharedMem);
+
+ //cout << "launching 3D kernel with block_size.x: " << block_size.x << " block_size.y: " << block_size.y << " block_size.z: " << block_size.z << " num_blocks.x: " << num_blocks.x << " num_blocks.y: " << num_blocks.y << " num_blocks.z: " << num_blocks.z << " shared_mem: " << shared_mem << " in stream " << m_device.stream() << endl;
+ const array<Index, 3> indices(m_indices[0], m_indices[1], m_indices[2]);
+ const array<Index, 3> kernel_dims(m_kernelImpl.dimensions()[0], m_kernelImpl.dimensions()[1], m_kernelImpl.dimensions()[2]);
+ internal::IndexMapper<Index, InputDims, 3> indexMapper(m_inputImpl.dimensions(), kernel_dims, indices);
+
+ EigenConvolutionKernel3D<TensorEvaluator<InputArgType, GpuDevice>, Index, InputDims> <<<num_blocks, block_size, shared_mem, m_device.stream()>>>(m_inputImpl, indexMapper, m_kernel, numP, numX, maxX, numY, maxY, numZ, maxZ, kernel_size_x, kernel_size_y, kernel_size_z, data);
+ cudaError_t error = cudaGetLastError();
+ assert(error == cudaSuccess);
+ break;
+ }
+
+ default: {
+ assert(false && "not supported yet");
+ }
+ }
+ }
+
+ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const
+ {
+ assert(m_buf);
+ assert(index < m_dimensions.TotalSize());
+ return m_buf[index];
+ }
+
+ private:
+ // No assignment (copies are needed by the kernels)
+ TensorEvaluator& operator = (const TensorEvaluator&);
+
+ TensorEvaluator<InputArgType, GpuDevice> m_inputImpl;
+ TensorEvaluator<KernelArgType, GpuDevice> m_kernelImpl;
+ KernelArgType m_kernelArg;
+ Indices m_indices;
+ Dimensions m_dimensions;
+ Scalar* m_buf;
+ const Scalar* m_kernel;
+ bool m_local_kernel;
+
+ const GpuDevice& m_device;
+};
+#endif
+
+
} // end namespace Eigen
#endif // EIGEN_CXX11_TENSOR_TENSOR_CONVOLUTION_H