aboutsummaryrefslogtreecommitdiffhomepage
path: root/unsupported/Eigen/CXX11/src/Tensor/Tensor.h
diff options
context:
space:
mode:
authorGravatar Christian Seiler <christian@iwakd.de>2013-11-14 22:52:37 +0100
committerGravatar Christian Seiler <christian@iwakd.de>2013-11-14 22:52:37 +0100
commitf97b3cd0249228820807229a2d529260522ba8c7 (patch)
tree9ed3353614ace9fd05e63cb8811f692475d19e47 /unsupported/Eigen/CXX11/src/Tensor/Tensor.h
parent5e28c41549c5e71011bb9312104d1d30e919e53f (diff)
CXX11/Tensor: add simple initial tensor implementation
This commit adds an initial implementation of a class template Tensor that allows for the storage of objects with more than two indices. Currently, only storing data and setting the object to zero for POD data types are implemented.
Diffstat (limited to 'unsupported/Eigen/CXX11/src/Tensor/Tensor.h')
-rw-r--r--unsupported/Eigen/CXX11/src/Tensor/Tensor.h314
1 files changed, 314 insertions, 0 deletions
diff --git a/unsupported/Eigen/CXX11/src/Tensor/Tensor.h b/unsupported/Eigen/CXX11/src/Tensor/Tensor.h
new file mode 100644
index 000000000..c40905af4
--- /dev/null
+++ b/unsupported/Eigen/CXX11/src/Tensor/Tensor.h
@@ -0,0 +1,314 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#ifndef EIGEN_CXX11_TENSOR_TENSOR_H
+#define EIGEN_CXX11_TENSOR_TENSOR_H
+
+namespace Eigen {
+
+/** \class Tensor
+ * \ingroup CXX11_Tensor_Module
+ *
+ * \brief The tensor class.
+ *
+ * The %Tensor class is the work-horse for all \em dense tensors within Eigen.
+ *
+ * The %Tensor class encompasses only dynamic-size objects so far.
+ *
+ * The first two template parameters are required:
+ * \tparam Scalar_ \anchor tensor_tparam_scalar Numeric type, e.g. float, double, int or std::complex<float>.
+ * User defined scalar types are supported as well (see \ref user_defined_scalars "here").
+ * \tparam NumIndices_ Number of indices (i.e. rank of the tensor)
+ *
+ * The remaining template parameters are optional -- in most cases you don't have to worry about them.
+ * \tparam Options_ \anchor tensor_tparam_options A combination of either \b #RowMajor or \b #ColMajor, and of either
+ * \b #AutoAlign or \b #DontAlign.
+ * The former controls \ref TopicStorageOrders "storage order", and defaults to column-major. The latter controls alignment, which is required
+ * for vectorization. It defaults to aligning tensors. Note that tensors currently do not support any operations that profit from vectorization.
+ * Support for such operations (i.e. adding two tensors etc.) is planned.
+ *
+ * You can access elements of tensors using normal subscripting:
+ *
+ * \code
+ * Eigen::Tensor<double, 4> t(10, 10, 10, 10);
+ * t(0, 1, 2, 3) = 42.0;
+ * \endcode
+ *
+ * This class can be extended with the help of the plugin mechanism described on the page
+ * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_TENSOR_PLUGIN.
+ *
+ * <i><b>Some notes:</b></i>
+ *
+ * <dl>
+ * <dt><b>Relation to other parts of Eigen:</b></dt>
+ * <dd>The midterm developement goal for this class is to have a similar hierarchy as Eigen uses for matrices, so that
+ * taking blocks or using tensors in expressions is easily possible, including an interface with the vector/matrix code
+ * by providing .asMatrix() and .asVector() (or similar) methods for rank 2 and 1 tensors. However, currently, the %Tensor
+ * class does not provide any of these features and is only available as a stand-alone class that just allows for
+ * coefficient access. Also, when fixed-size tensors are implemented, the number of template arguments is likely to
+ * change dramatically.</dd>
+ * </dl>
+ *
+ * \ref TopicStorageOrders
+ */
+template<typename Scalar_, std::size_t NumIndices_, int Options_ = 0>
+class Tensor;
+
+namespace internal {
+template<typename Scalar_, std::size_t NumIndices_, int Options_>
+struct traits<Tensor<Scalar_, NumIndices_, Options_>>
+{
+ typedef Scalar_ Scalar;
+ typedef Dense StorageKind;
+ typedef DenseIndex Index;
+ enum {
+ Options = Options_
+ };
+};
+
+template<typename Index, std::size_t NumIndices, std::size_t n, bool RowMajor>
+struct tensor_index_linearization_helper
+{
+ constexpr static inline Index run(std::array<Index, NumIndices> const& indices, std::array<Index, NumIndices> const& dimensions)
+ {
+ return std_array_get<RowMajor ? n : (NumIndices - n - 1)>(indices) +
+ std_array_get<RowMajor ? n : (NumIndices - n - 1)>(dimensions) *
+ tensor_index_linearization_helper<Index, NumIndices, n - 1, RowMajor>::run(indices, dimensions);
+ }
+};
+
+template<typename Index, std::size_t NumIndices, bool RowMajor>
+struct tensor_index_linearization_helper<Index, NumIndices, 0, RowMajor>
+{
+ constexpr static inline Index run(std::array<Index, NumIndices> const& indices, std::array<Index, NumIndices> const&)
+ {
+ return std_array_get<RowMajor ? 0 : NumIndices - 1>(indices);
+ }
+};
+} // end namespace internal
+
+template<typename Scalar_, std::size_t NumIndices_, int Options_>
+class Tensor
+{
+ static_assert(NumIndices_ >= 1, "A tensor must have at least one index.");
+
+ public:
+ typedef Tensor<Scalar_, NumIndices_, Options_> Self;
+ typedef typename internal::traits<Self>::StorageKind StorageKind;
+ typedef typename internal::traits<Self>::Index Index;
+ typedef typename internal::traits<Self>::Scalar Scalar;
+ typedef typename internal::packet_traits<Scalar>::type PacketScalar;
+ typedef typename NumTraits<Scalar>::Real RealScalar;
+ typedef Self DenseType;
+
+ constexpr static int Options = Options_;
+ constexpr static std::size_t NumIndices = NumIndices_;
+
+ protected:
+ TensorStorage<Scalar, NumIndices, Dynamic, Options> m_storage;
+
+ public:
+ EIGEN_STRONG_INLINE Index dimension(std::size_t n) const { return m_storage.dimensions()[n]; }
+ EIGEN_STRONG_INLINE std::array<Index, NumIndices> dimensions() const { return m_storage.dimensions(); }
+ EIGEN_STRONG_INLINE Index size() const { return internal::array_prod(m_storage.dimensions()); }
+ EIGEN_STRONG_INLINE Scalar *data() { return m_storage.data(); }
+ EIGEN_STRONG_INLINE const Scalar *data() const { return m_storage.data(); }
+
+ // This makes EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
+ // work, because that uses base().coeffRef() - and we don't yet
+ // implement a similar class hierarchy
+ inline Self& base() { return *this; }
+ inline const Self& base() const { return *this; }
+
+ void setZero()
+ {
+ // FIXME: until we have implemented packet access and the
+ // expression engine w.r.t. nullary ops, use this
+ // as a kludge. Only works with POD types, but for
+ // any standard usage, this shouldn't be a problem
+ memset((void *)data(), 0, size() * sizeof(Scalar));
+ }
+
+ inline Self& operator=(Self const& other)
+ {
+ m_storage = other.m_storage;
+ return *this;
+ }
+
+ template<typename... IndexTypes>
+ inline const Scalar& coeff(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
+ {
+ static_assert(sizeof...(otherIndices) + 2 == NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
+ return coeff(std::array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
+ }
+
+ inline const Scalar& coeff(const std::array<Index, NumIndices>& indices) const
+ {
+ eigen_internal_assert(checkIndexRange(indices));
+ return m_storage.data()[linearizedIndex(indices)];
+ }
+
+ inline const Scalar& coeff(Index index) const
+ {
+ eigen_internal_assert(index >= 0 && index < size());
+ return m_storage.data()[index];
+ }
+
+ template<typename... IndexTypes>
+ inline Scalar& coeffRef(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
+ {
+ static_assert(sizeof...(otherIndices) + 2 == NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
+ return coeffRef(std::array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
+ }
+
+ inline Scalar& coeffRef(const std::array<Index, NumIndices>& indices)
+ {
+ eigen_internal_assert(checkIndexRange(indices));
+ return m_storage.data()[linearizedIndex(indices)];
+ }
+
+ inline Scalar& coeffRef(Index index)
+ {
+ eigen_internal_assert(index >= 0 && index < size());
+ return m_storage.data()[index];
+ }
+
+ template<typename... IndexTypes>
+ inline const Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices) const
+ {
+ static_assert(sizeof...(otherIndices) + 2 == NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
+ return this->operator()(std::array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
+ }
+
+ inline const Scalar& operator()(const std::array<Index, NumIndices>& indices) const
+ {
+ eigen_assert(checkIndexRange(indices));
+ return coeff(indices);
+ }
+
+ inline const Scalar& operator()(Index index) const
+ {
+ eigen_internal_assert(index >= 0 && index < size());
+ return coeff(index);
+ }
+
+ inline const Scalar& operator[](Index index) const
+ {
+ static_assert(NumIndices == 1, "The bracket operator is only for vectors, use the parenthesis operator instead.");
+ return coeff(index);
+ }
+
+ template<typename... IndexTypes>
+ inline Scalar& operator()(Index firstIndex, Index secondIndex, IndexTypes... otherIndices)
+ {
+ static_assert(sizeof...(otherIndices) + 2 == NumIndices, "Number of indices used to access a tensor coefficient must be equal to the rank of the tensor.");
+ return operator()(std::array<Index, NumIndices>{{firstIndex, secondIndex, otherIndices...}});
+ }
+
+ inline Scalar& operator()(const std::array<Index, NumIndices>& indices)
+ {
+ eigen_assert(checkIndexRange(indices));
+ return coeffRef(indices);
+ }
+
+ inline Scalar& operator()(Index index)
+ {
+ eigen_assert(index >= 0 && index < size());
+ return coeffRef(index);
+ }
+
+ inline Scalar& operator[](Index index)
+ {
+ static_assert(NumIndices == 1, "The bracket operator is only for vectors, use the parenthesis operator instead.");
+ return coeffRef(index);
+ }
+
+ inline Tensor()
+ : m_storage()
+ {
+ }
+
+ inline Tensor(const Self& other)
+ : m_storage(other.m_storage)
+ {
+ }
+
+ inline Tensor(Self&& other)
+ : m_storage(other.m_storage)
+ {
+ }
+
+ template<typename... IndexTypes>
+ inline Tensor(Index firstDimension, IndexTypes... otherDimensions)
+ : m_storage()
+ {
+ static_assert(sizeof...(otherDimensions) + 1 == NumIndices, "Number of dimensions used to construct a tensor must be equal to the rank of the tensor.");
+ resize(std::array<Index, NumIndices>{{firstDimension, otherDimensions...}});
+ }
+
+ inline Tensor(std::array<Index, NumIndices> dimensions)
+ : m_storage(internal::array_prod(dimensions), dimensions)
+ {
+ EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
+ }
+
+ template<typename... IndexTypes>
+ void resize(Index firstDimension, IndexTypes... otherDimensions)
+ {
+ static_assert(sizeof...(otherDimensions) + 1 == NumIndices, "Number of dimensions used to resize a tensor must be equal to the rank of the tensor.");
+ resize(std::array<Index, NumIndices>{{firstDimension, otherDimensions...}});
+ }
+
+ void resize(const std::array<Index, NumIndices>& dimensions)
+ {
+ std::size_t i;
+ Index size = Index(1);
+ for (i = 0; i < NumIndices; i++) {
+ internal::check_rows_cols_for_overflow<Dynamic>::run(size, dimensions[i]);
+ size *= dimensions[i];
+ }
+ #ifdef EIGEN_INITIALIZE_COEFFS
+ bool size_changed = size != this->size();
+ m_storage.resize(size, dimensions);
+ if(size_changed) EIGEN_INITIALIZE_COEFFS_IF_THAT_OPTION_IS_ENABLED
+ #else
+ m_storage.resize(size, dimensions);
+ #endif
+ }
+
+ protected:
+ bool checkIndexRange(const std::array<Index, NumIndices>& indices) const
+ {
+ using internal::array_apply_and_reduce;
+ using internal::array_zip_and_reduce;
+ using internal::greater_equal_zero_op;
+ using internal::logical_and_op;
+ using internal::lesser_op;
+
+ return
+ // check whether the indices are all >= 0
+ array_apply_and_reduce<logical_and_op, greater_equal_zero_op>(indices) &&
+ // check whether the indices fit in the dimensions
+ array_zip_and_reduce<logical_and_op, lesser_op>(indices, m_storage.dimensions());
+ }
+
+ inline Index linearizedIndex(const std::array<Index, NumIndices>& indices) const
+ {
+ return internal::tensor_index_linearization_helper<Index, NumIndices, NumIndices - 1, Options&RowMajor>::run(indices, m_storage.dimensions());
+ }
+};
+
+} // end namespace Eigen
+
+#endif // EIGEN_CXX11_TENSOR_TENSOR_H
+
+/*
+ * kate: space-indent on; indent-width 2; mixedindent off; indent-mode cstyle;
+ */