aboutsummaryrefslogtreecommitdiffhomepage
path: root/test
diff options
context:
space:
mode:
authorGravatar Antonio Sanchez <cantonios@google.com>2021-01-16 10:22:07 -0800
committerGravatar Antonio Sanchez <cantonios@google.com>2021-01-17 08:50:57 -0800
commitbde6741641b7c677d901cd48db844fcea1fd32fe (patch)
treef25e6540b247ed01df1bdadc41502fbc332321d3 /test
parent21a8a2487c824e5ae05566f4fcc49540053b2702 (diff)
Improved std::complex sqrt and rsqrt.
Replaces `std::sqrt` with `complex_sqrt` for all platforms (previously `complex_sqrt` was only used for CUDA and MSVC), and implements custom `complex_rsqrt`. Also introduces `numext::rsqrt` to simplify implementation, and modified `numext::hypot` to adhere to IEEE IEC 6059 for special cases. The `complex_sqrt` and `complex_rsqrt` implementations were found to be significantly faster than `std::sqrt<std::complex<T>>` and `1/numext::sqrt<std::complex<T>>`. Benchmark file attached. ``` GCC 10, Intel Xeon, x86_64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 9.21 ns 9.21 ns 73225448 BM_StdSqrt<std::complex<float>> 17.1 ns 17.1 ns 40966545 BM_Sqrt<std::complex<double>> 8.53 ns 8.53 ns 81111062 BM_StdSqrt<std::complex<double>> 21.5 ns 21.5 ns 32757248 BM_Rsqrt<std::complex<float>> 10.3 ns 10.3 ns 68047474 BM_DivSqrt<std::complex<float>> 16.3 ns 16.3 ns 42770127 BM_Rsqrt<std::complex<double>> 11.3 ns 11.3 ns 61322028 BM_DivSqrt<std::complex<double>> 16.5 ns 16.5 ns 42200711 Clang 11, Intel Xeon, x86_64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 7.46 ns 7.45 ns 90742042 BM_StdSqrt<std::complex<float>> 16.6 ns 16.6 ns 42369878 BM_Sqrt<std::complex<double>> 8.49 ns 8.49 ns 81629030 BM_StdSqrt<std::complex<double>> 21.8 ns 21.7 ns 31809588 BM_Rsqrt<std::complex<float>> 8.39 ns 8.39 ns 82933666 BM_DivSqrt<std::complex<float>> 14.4 ns 14.4 ns 48638676 BM_Rsqrt<std::complex<double>> 9.83 ns 9.82 ns 70068956 BM_DivSqrt<std::complex<double>> 15.7 ns 15.7 ns 44487798 Clang 9, Pixel 2, aarch64: --------------------------------------------------------------------------- Benchmark Time CPU Iterations --------------------------------------------------------------------------- BM_Sqrt<std::complex<float>> 24.2 ns 24.1 ns 28616031 BM_StdSqrt<std::complex<float>> 104 ns 103 ns 6826926 BM_Sqrt<std::complex<double>> 31.8 ns 31.8 ns 22157591 BM_StdSqrt<std::complex<double>> 128 ns 128 ns 5437375 BM_Rsqrt<std::complex<float>> 31.9 ns 31.8 ns 22384383 BM_DivSqrt<std::complex<float>> 99.2 ns 98.9 ns 7250438 BM_Rsqrt<std::complex<double>> 46.0 ns 45.8 ns 15338689 BM_DivSqrt<std::complex<double>> 119 ns 119 ns 5898944 ```
Diffstat (limited to 'test')
-rw-r--r--test/numext.cpp240
-rw-r--r--test/stable_norm.cpp11
2 files changed, 230 insertions, 21 deletions
diff --git a/test/numext.cpp b/test/numext.cpp
index ff4d13ff3..cf1ca173d 100644
--- a/test/numext.cpp
+++ b/test/numext.cpp
@@ -9,6 +9,33 @@
#include "main.h"
+template<typename T, typename U>
+bool check_if_equal_or_nans(const T& actual, const U& expected) {
+ return ((actual == expected) || ((numext::isnan)(actual) && (numext::isnan)(expected)));
+}
+
+template<typename T, typename U>
+bool check_if_equal_or_nans(const std::complex<T>& actual, const std::complex<U>& expected) {
+ return check_if_equal_or_nans(numext::real(actual), numext::real(expected))
+ && check_if_equal_or_nans(numext::imag(actual), numext::imag(expected));
+}
+
+template<typename T, typename U>
+bool test_is_equal_or_nans(const T& actual, const U& expected)
+{
+ if (check_if_equal_or_nans(actual, expected)) {
+ return true;
+ }
+
+ // false:
+ std::cerr
+ << "\n actual = " << actual
+ << "\n expected = " << expected << "\n\n";
+ return false;
+}
+
+#define VERIFY_IS_EQUAL_OR_NANS(a, b) VERIFY(test_is_equal_or_nans(a, b))
+
template<typename T>
void check_abs() {
typedef typename NumTraits<T>::Real Real;
@@ -19,7 +46,7 @@ void check_abs() {
VERIFY_IS_EQUAL(numext::abs(T(0)), T(0));
VERIFY_IS_EQUAL(numext::abs(T(1)), T(1));
- for(int k=0; k<g_repeat*100; ++k)
+ for(int k=0; k<100; ++k)
{
T x = internal::random<T>();
if(!internal::is_same<T,bool>::value)
@@ -34,22 +61,199 @@ void check_abs() {
}
}
+template<typename T>
+struct check_sqrt_impl {
+ static void run() {
+ for (int i=0; i<1000; ++i) {
+ const T x = numext::abs(internal::random<T>());
+ const T sqrtx = numext::sqrt(x);
+ VERIFY_IS_APPROX(sqrtx*sqrtx, x);
+ }
+
+ // Corner cases.
+ const T zero = T(0);
+ const T one = T(1);
+ const T inf = std::numeric_limits<T>::infinity();
+ const T nan = std::numeric_limits<T>::quiet_NaN();
+ VERIFY_IS_EQUAL(numext::sqrt(zero), zero);
+ VERIFY_IS_EQUAL(numext::sqrt(inf), inf);
+ VERIFY((numext::isnan)(numext::sqrt(nan)));
+ VERIFY((numext::isnan)(numext::sqrt(-one)));
+ }
+};
+
+template<typename T>
+struct check_sqrt_impl<std::complex<T> > {
+ static void run() {
+ typedef typename std::complex<T> ComplexT;
+
+ for (int i=0; i<1000; ++i) {
+ const ComplexT x = internal::random<ComplexT>();
+ const ComplexT sqrtx = numext::sqrt(x);
+ VERIFY_IS_APPROX(sqrtx*sqrtx, x);
+ }
+
+ // Corner cases.
+ const T zero = T(0);
+ const T one = T(1);
+ const T inf = std::numeric_limits<T>::infinity();
+ const T nan = std::numeric_limits<T>::quiet_NaN();
+
+ // Set of corner cases from https://en.cppreference.com/w/cpp/numeric/complex/sqrt
+ const int kNumCorners = 20;
+ const ComplexT corners[kNumCorners][2] = {
+ {ComplexT(zero, zero), ComplexT(zero, zero)},
+ {ComplexT(-zero, zero), ComplexT(zero, zero)},
+ {ComplexT(zero, -zero), ComplexT(zero, zero)},
+ {ComplexT(-zero, -zero), ComplexT(zero, zero)},
+ {ComplexT(one, inf), ComplexT(inf, inf)},
+ {ComplexT(nan, inf), ComplexT(inf, inf)},
+ {ComplexT(one, -inf), ComplexT(inf, -inf)},
+ {ComplexT(nan, -inf), ComplexT(inf, -inf)},
+ {ComplexT(-inf, one), ComplexT(zero, inf)},
+ {ComplexT(inf, one), ComplexT(inf, zero)},
+ {ComplexT(-inf, -one), ComplexT(zero, -inf)},
+ {ComplexT(inf, -one), ComplexT(inf, -zero)},
+ {ComplexT(-inf, nan), ComplexT(nan, inf)},
+ {ComplexT(inf, nan), ComplexT(inf, nan)},
+ {ComplexT(zero, nan), ComplexT(nan, nan)},
+ {ComplexT(one, nan), ComplexT(nan, nan)},
+ {ComplexT(nan, zero), ComplexT(nan, nan)},
+ {ComplexT(nan, one), ComplexT(nan, nan)},
+ {ComplexT(nan, -one), ComplexT(nan, nan)},
+ {ComplexT(nan, nan), ComplexT(nan, nan)},
+ };
+
+ for (int i=0; i<kNumCorners; ++i) {
+ const ComplexT& x = corners[i][0];
+ const ComplexT sqrtx = corners[i][1];
+ VERIFY_IS_EQUAL_OR_NANS(numext::sqrt(x), sqrtx);
+ }
+ }
+};
+
+template<typename T>
+void check_sqrt() {
+ check_sqrt_impl<T>::run();
+}
+
+template<typename T>
+struct check_rsqrt_impl {
+ static void run() {
+ const T zero = T(0);
+ const T one = T(1);
+ const T inf = std::numeric_limits<T>::infinity();
+ const T nan = std::numeric_limits<T>::quiet_NaN();
+
+ for (int i=0; i<1000; ++i) {
+ const T x = numext::abs(internal::random<T>());
+ const T rsqrtx = numext::rsqrt(x);
+ const T invx = one / x;
+ VERIFY_IS_APPROX(rsqrtx*rsqrtx, invx);
+ }
+
+ // Corner cases.
+ VERIFY_IS_EQUAL(numext::rsqrt(zero), inf);
+ VERIFY_IS_EQUAL(numext::rsqrt(inf), zero);
+ VERIFY((numext::isnan)(numext::rsqrt(nan)));
+ VERIFY((numext::isnan)(numext::rsqrt(-one)));
+ }
+};
+
+template<typename T>
+struct check_rsqrt_impl<std::complex<T> > {
+ static void run() {
+ typedef typename std::complex<T> ComplexT;
+ const T zero = T(0);
+ const T one = T(1);
+ const T inf = std::numeric_limits<T>::infinity();
+ const T nan = std::numeric_limits<T>::quiet_NaN();
+
+ for (int i=0; i<1000; ++i) {
+ const ComplexT x = internal::random<ComplexT>();
+ const ComplexT invx = ComplexT(one, zero) / x;
+ const ComplexT rsqrtx = numext::rsqrt(x);
+ VERIFY_IS_APPROX(rsqrtx*rsqrtx, invx);
+ }
+
+ // GCC and MSVC differ in their treatment of 1/(0 + 0i)
+ // GCC/clang = (inf, nan)
+ // MSVC = (nan, nan)
+ // and 1 / (x + inf i)
+ // GCC/clang = (0, 0)
+ // MSVC = (nan, nan)
+ #if (EIGEN_COMP_GNUC)
+ {
+ const int kNumCorners = 20;
+ const ComplexT corners[kNumCorners][2] = {
+ // Only consistent across GCC, clang
+ {ComplexT(zero, zero), ComplexT(zero, zero)},
+ {ComplexT(-zero, zero), ComplexT(zero, zero)},
+ {ComplexT(zero, -zero), ComplexT(zero, zero)},
+ {ComplexT(-zero, -zero), ComplexT(zero, zero)},
+ {ComplexT(one, inf), ComplexT(inf, inf)},
+ {ComplexT(nan, inf), ComplexT(inf, inf)},
+ {ComplexT(one, -inf), ComplexT(inf, -inf)},
+ {ComplexT(nan, -inf), ComplexT(inf, -inf)},
+ // Consistent across GCC, clang, MSVC
+ {ComplexT(-inf, one), ComplexT(zero, inf)},
+ {ComplexT(inf, one), ComplexT(inf, zero)},
+ {ComplexT(-inf, -one), ComplexT(zero, -inf)},
+ {ComplexT(inf, -one), ComplexT(inf, -zero)},
+ {ComplexT(-inf, nan), ComplexT(nan, inf)},
+ {ComplexT(inf, nan), ComplexT(inf, nan)},
+ {ComplexT(zero, nan), ComplexT(nan, nan)},
+ {ComplexT(one, nan), ComplexT(nan, nan)},
+ {ComplexT(nan, zero), ComplexT(nan, nan)},
+ {ComplexT(nan, one), ComplexT(nan, nan)},
+ {ComplexT(nan, -one), ComplexT(nan, nan)},
+ {ComplexT(nan, nan), ComplexT(nan, nan)},
+ };
+
+ for (int i=0; i<kNumCorners; ++i) {
+ const ComplexT& x = corners[i][0];
+ const ComplexT rsqrtx = ComplexT(one, zero) / corners[i][1];
+ VERIFY_IS_EQUAL_OR_NANS(numext::rsqrt(x), rsqrtx);
+ }
+ }
+ #endif
+ }
+};
+
+template<typename T>
+void check_rsqrt() {
+ check_rsqrt_impl<T>::run();
+}
+
EIGEN_DECLARE_TEST(numext) {
- CALL_SUBTEST( check_abs<bool>() );
- CALL_SUBTEST( check_abs<signed char>() );
- CALL_SUBTEST( check_abs<unsigned char>() );
- CALL_SUBTEST( check_abs<short>() );
- CALL_SUBTEST( check_abs<unsigned short>() );
- CALL_SUBTEST( check_abs<int>() );
- CALL_SUBTEST( check_abs<unsigned int>() );
- CALL_SUBTEST( check_abs<long>() );
- CALL_SUBTEST( check_abs<unsigned long>() );
- CALL_SUBTEST( check_abs<half>() );
- CALL_SUBTEST( check_abs<bfloat16>() );
- CALL_SUBTEST( check_abs<float>() );
- CALL_SUBTEST( check_abs<double>() );
- CALL_SUBTEST( check_abs<long double>() );
-
- CALL_SUBTEST( check_abs<std::complex<float> >() );
- CALL_SUBTEST( check_abs<std::complex<double> >() );
+ for(int k=0; k<g_repeat; ++k)
+ {
+ CALL_SUBTEST( check_abs<bool>() );
+ CALL_SUBTEST( check_abs<signed char>() );
+ CALL_SUBTEST( check_abs<unsigned char>() );
+ CALL_SUBTEST( check_abs<short>() );
+ CALL_SUBTEST( check_abs<unsigned short>() );
+ CALL_SUBTEST( check_abs<int>() );
+ CALL_SUBTEST( check_abs<unsigned int>() );
+ CALL_SUBTEST( check_abs<long>() );
+ CALL_SUBTEST( check_abs<unsigned long>() );
+ CALL_SUBTEST( check_abs<half>() );
+ CALL_SUBTEST( check_abs<bfloat16>() );
+ CALL_SUBTEST( check_abs<float>() );
+ CALL_SUBTEST( check_abs<double>() );
+ CALL_SUBTEST( check_abs<long double>() );
+
+ CALL_SUBTEST( check_abs<std::complex<float> >() );
+ CALL_SUBTEST( check_abs<std::complex<double> >() );
+
+ CALL_SUBTEST( check_sqrt<float>() );
+ CALL_SUBTEST( check_sqrt<double>() );
+ CALL_SUBTEST( check_sqrt<std::complex<float> >() );
+ CALL_SUBTEST( check_sqrt<std::complex<double> >() );
+
+ CALL_SUBTEST( check_rsqrt<float>() );
+ CALL_SUBTEST( check_rsqrt<double>() );
+ CALL_SUBTEST( check_rsqrt<std::complex<float> >() );
+ CALL_SUBTEST( check_rsqrt<std::complex<double> >() );
+ }
}
diff --git a/test/stable_norm.cpp b/test/stable_norm.cpp
index ee5f91674..008e35d87 100644
--- a/test/stable_norm.cpp
+++ b/test/stable_norm.cpp
@@ -161,8 +161,12 @@ template<typename MatrixType> void stable_norm(const MatrixType& m)
// mix
{
- Index i2 = internal::random<Index>(0,rows-1);
- Index j2 = internal::random<Index>(0,cols-1);
+ // Ensure unique indices otherwise inf may be overwritten by NaN.
+ Index i2, j2;
+ do {
+ i2 = internal::random<Index>(0,rows-1);
+ j2 = internal::random<Index>(0,cols-1);
+ } while (i2 == i && j2 == j);
v = vrand;
v(i,j) = -std::numeric_limits<RealScalar>::infinity();
v(i2,j2) = std::numeric_limits<RealScalar>::quiet_NaN();
@@ -170,7 +174,8 @@ template<typename MatrixType> void stable_norm(const MatrixType& m)
VERIFY(!(numext::isfinite)(v.norm())); VERIFY((numext::isnan)(v.norm()));
VERIFY(!(numext::isfinite)(v.stableNorm())); VERIFY((numext::isnan)(v.stableNorm()));
VERIFY(!(numext::isfinite)(v.blueNorm())); VERIFY((numext::isnan)(v.blueNorm()));
- VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isnan)(v.hypotNorm()));
+ // hypot propagates inf over NaN.
+ VERIFY(!(numext::isfinite)(v.hypotNorm())); VERIFY((numext::isinf)(v.hypotNorm()));
}
// stableNormalize[d]