aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/sparse_solvers.cpp
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2008-11-05 13:47:55 +0000
committerGravatar Gael Guennebaud <g.gael@free.fr>2008-11-05 13:47:55 +0000
commit86ccd99d8d9a87d03f2f327766a02cc13849b54d (patch)
tree38dc0f0ad8253bc14d8b939d6e0f6f5cef440433 /test/sparse_solvers.cpp
parent9aba671cfc9d25357f74ba3811e182b8937e0d09 (diff)
Several improvements in sparse module:
* add a LDL^T factorization with solver using code from T. Davis's LDL library (LPGL2.1+) * various bug fixes in trianfular solver, matrix product, etc. * improve cmake files for the supported libraries * split the sparse unit test * etc.
Diffstat (limited to 'test/sparse_solvers.cpp')
-rw-r--r--test/sparse_solvers.cpp180
1 files changed, 180 insertions, 0 deletions
diff --git a/test/sparse_solvers.cpp b/test/sparse_solvers.cpp
new file mode 100644
index 000000000..b73494879
--- /dev/null
+++ b/test/sparse_solvers.cpp
@@ -0,0 +1,180 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra. Eigen itself is part of the KDE project.
+//
+// Copyright (C) 2008 Daniel Gomez Ferro <dgomezferro@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#include "sparse.h"
+
+template<typename Scalar> void sparse_solvers(int rows, int cols)
+{
+ double density = std::max(8./(rows*cols), 0.01);
+ typedef Matrix<Scalar,Dynamic,Dynamic> DenseMatrix;
+ typedef Matrix<Scalar,Dynamic,1> DenseVector;
+ Scalar eps = 1e-6;
+
+ DenseVector vec1 = DenseVector::Random(rows);
+
+ std::vector<Vector2i> zeroCoords;
+ std::vector<Vector2i> nonzeroCoords;
+
+ // test triangular solver
+ {
+ DenseVector vec2 = vec1, vec3 = vec1;
+ SparseMatrix<Scalar> m2(rows, cols);
+ DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols);
+
+ // lower
+ initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
+ VERIFY_IS_APPROX(refMat2.template marked<Lower>().solveTriangular(vec2),
+ m2.template marked<Lower>().solveTriangular(vec3));
+
+ // upper
+ initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
+ VERIFY_IS_APPROX(refMat2.template marked<Upper>().solveTriangular(vec2),
+ m2.template marked<Upper>().solveTriangular(vec3));
+
+ // TODO test row major
+ }
+
+ // test LLT
+ if (!NumTraits<Scalar>::IsComplex)
+ {
+ // TODO fix the issue with complex (see SparseLLT::solveInPlace)
+ SparseMatrix<Scalar> m2(rows, cols);
+ DenseMatrix refMat2(rows, cols);
+
+ DenseVector b = DenseVector::Random(cols);
+ DenseVector refX(cols), x(cols);
+
+ initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeLowerTriangular, &zeroCoords, &nonzeroCoords);
+ refMat2 += refMat2.adjoint();
+ refMat2.diagonal() *= 0.5;
+
+ refMat2.llt().solve(b, &refX);
+ typedef SparseMatrix<Scalar,Lower|SelfAdjoint> SparseSelfAdjointMatrix;
+ x = b;
+ SparseLLT<SparseSelfAdjointMatrix> (m2).solveInPlace(x);
+ //VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: default");
+ #ifdef EIGEN_CHOLMOD_SUPPORT
+ x = b;
+ SparseLLT<SparseSelfAdjointMatrix,Cholmod>(m2).solveInPlace(x);
+ VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: cholmod");
+ #endif
+ #ifdef EIGEN_TAUCS_SUPPORT
+ x = b;
+ SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,IncompleteFactorization).solveInPlace(x);
+ VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (IncompleteFactorization)");
+ x = b;
+ SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalMultifrontal).solveInPlace(x);
+ VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalMultifrontal)");
+ x = b;
+ SparseLLT<SparseSelfAdjointMatrix,Taucs>(m2,SupernodalLeftLooking).solveInPlace(x);
+ VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LLT: taucs (SupernodalLeftLooking)");
+ #endif
+ }
+
+ // test LDLT
+ if (!NumTraits<Scalar>::IsComplex)
+ {
+ // TODO fix the issue with complex (see SparseLDT::solveInPlace)
+ SparseMatrix<Scalar> m2(rows, cols);
+ DenseMatrix refMat2(rows, cols);
+
+ DenseVector b = DenseVector::Random(cols);
+ DenseVector refX(cols), x(cols);
+
+ initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag|MakeUpperTriangular, &zeroCoords, &nonzeroCoords);
+ refMat2 += refMat2.adjoint();
+ refMat2.diagonal() *= 0.5;
+
+ refMat2.ldlt().solve(b, &refX);
+ typedef SparseMatrix<Scalar,Lower|SelfAdjoint> SparseSelfAdjointMatrix;
+ x = b;
+ SparseLDLT<SparseSelfAdjointMatrix> ldlt(m2);
+ if (ldlt.succeeded())
+ ldlt.solveInPlace(x);
+ VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LDLT: default");
+ }
+
+ // test LU
+ {
+ static int count = 0;
+ SparseMatrix<Scalar> m2(rows, cols);
+ DenseMatrix refMat2(rows, cols);
+
+ DenseVector b = DenseVector::Random(cols);
+ DenseVector refX(cols), x(cols);
+
+ initSparse<Scalar>(density, refMat2, m2, ForceNonZeroDiag, &zeroCoords, &nonzeroCoords);
+
+ LU<DenseMatrix> refLu(refMat2);
+ refLu.solve(b, &refX);
+ Scalar refDet = refLu.determinant();
+ x.setZero();
+ // // SparseLU<SparseMatrix<Scalar> > (m2).solve(b,&x);
+ // // VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: default");
+ #ifdef EIGEN_SUPERLU_SUPPORT
+ {
+ x.setZero();
+ SparseLU<SparseMatrix<Scalar>,SuperLU> slu(m2);
+ if (slu.succeeded())
+ {
+ if (slu.solve(b,&x)) {
+ VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: SuperLU");
+ }
+ // std::cerr << refDet << " == " << slu.determinant() << "\n";
+ if (count==0) {
+ VERIFY_IS_APPROX(refDet,slu.determinant()); // FIXME det is not very stable for complex
+ }
+ }
+ }
+ #endif
+ #ifdef EIGEN_UMFPACK_SUPPORT
+ {
+ // check solve
+ x.setZero();
+ SparseLU<SparseMatrix<Scalar>,UmfPack> slu(m2);
+ if (slu.succeeded()) {
+ if (slu.solve(b,&x)) {
+ if (count==0) {
+ VERIFY(refX.isApprox(x,test_precision<Scalar>()) && "LU: umfpack"); // FIXME solve is not very stable for complex
+ }
+ }
+ VERIFY_IS_APPROX(refDet,slu.determinant());
+ // TODO check the extracted data
+ //std::cerr << slu.matrixL() << "\n";
+ }
+ }
+ #endif
+ count++;
+ }
+
+}
+
+void test_sparse_solvers()
+{
+ for(int i = 0; i < g_repeat; i++) {
+ CALL_SUBTEST( sparse_solvers<double>(8, 8) );
+ CALL_SUBTEST( sparse_solvers<std::complex<double> >(16, 16) );
+ CALL_SUBTEST( sparse_solvers<double>(33, 33) );
+ }
+}