aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/product_extra.cpp
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2009-07-08 18:24:37 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2009-07-08 18:24:37 +0200
commit96e7d9f8969395db702775eaa0907b4aa941b2ba (patch)
treecf0789828bcf49b3ec4f4bf1ff28af1b2c30d0f1 /test/product_extra.cpp
parent13b2dafb5033a9de83c3dbd038b06c45845aeac1 (diff)
ok now all the complex mat-mat and mat-vec products involving conjugate,
adjoint, -, and scalar multiple seems to be well handled. It only remains the simpler case: C = alpha*(A*B) ... for the next commit
Diffstat (limited to 'test/product_extra.cpp')
-rw-r--r--test/product_extra.cpp120
1 files changed, 120 insertions, 0 deletions
diff --git a/test/product_extra.cpp b/test/product_extra.cpp
new file mode 100644
index 000000000..4fa4c23f5
--- /dev/null
+++ b/test/product_extra.cpp
@@ -0,0 +1,120 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#include "main.h"
+#include <Eigen/Array>
+
+template<typename MatrixType> void product_extra(const MatrixType& m)
+{
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<Scalar>::FloatingPoint FloatingPoint;
+ typedef Matrix<Scalar, 1, Dynamic> RowVectorType;
+ typedef Matrix<Scalar, Dynamic, 1> ColVectorType;
+ typedef Matrix<Scalar, Dynamic, Dynamic,
+ MatrixType::Flags&RowMajorBit> OtherMajorMatrixType;
+
+ int rows = m.rows();
+ int cols = m.cols();
+
+ MatrixType m1 = MatrixType::Random(rows, cols),
+ m2 = MatrixType::Random(rows, cols),
+ m3(rows, cols),
+ mzero = MatrixType::Zero(rows, cols),
+ identity = MatrixType::Identity(rows, rows),
+ square = MatrixType::Random(rows, rows),
+ res = MatrixType::Random(rows, rows),
+ square2 = MatrixType::Random(cols, cols),
+ res2 = MatrixType::Random(cols, cols);
+ RowVectorType v1 = RowVectorType::Random(rows),
+ v2 = RowVectorType::Random(rows),
+ vzero = RowVectorType::Zero(rows);
+ ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols);
+ OtherMajorMatrixType tm1 = m1;
+
+ Scalar s1 = ei_random<Scalar>(),
+ s2 = ei_random<Scalar>(),
+ s3 = ei_random<Scalar>();
+
+ // all the expressions in this test should be compiled as a single matrix product
+ // TODO: add internal checks to verify that
+
+ VERIFY_IS_APPROX(m1 * m2.adjoint(), m1 * m2.adjoint().eval());
+ VERIFY_IS_APPROX(m1.adjoint() * square.adjoint(), m1.adjoint().eval() * square.adjoint().eval());
+ VERIFY_IS_APPROX(m1.adjoint() * m2, m1.adjoint().eval() * m2);
+ VERIFY_IS_APPROX( (s1 * m1.adjoint()) * m2, (s1 * m1.adjoint()).eval() * m2);
+ VERIFY_IS_APPROX( (- m1.adjoint() * s1) * (s3 * m2), (- m1.adjoint() * s1).eval() * (s3 * m2).eval());
+ VERIFY_IS_APPROX( (s2 * m1.adjoint() * s1) * m2, (s2 * m1.adjoint() * s1).eval() * m2);
+ VERIFY_IS_APPROX( (-m1*s2) * s1*m2.adjoint(), (-m1*s2).eval() * (s1*m2.adjoint()).eval());
+ // a very tricky case where a scale factor has to be automatically conjugated:
+ VERIFY_IS_APPROX( m1.adjoint() * (s1*m2).conjugate(), (m1.adjoint()).eval() * ((s1*m2).conjugate()).eval());
+
+
+ // test all possible conjugate combinations for the four matrix-vector product cases:
+
+// std::cerr << "a\n";
+ VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2),
+ (-m1.conjugate()*s2).eval() * (s1 * vc2).eval());
+ VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()),
+ (-m1*s2).eval() * (s1 * vc2.conjugate()).eval());
+ VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()),
+ (-m1.conjugate()*s2).eval() * (s1 * vc2.conjugate()).eval());
+
+// std::cerr << "b\n";
+ VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2),
+ (s1 * vc2.transpose()).eval() * (-m1.adjoint()*s2).eval());
+ VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2),
+ (s1 * vc2.adjoint()).eval() * (-m1.transpose()*s2).eval());
+ VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2),
+ (s1 * vc2.adjoint()).eval() * (-m1.adjoint()*s2).eval());
+
+// std::cerr << "c\n";
+ VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()),
+ (-m1.adjoint()*s2).eval() * (s1 * v1.transpose()).eval());
+ VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()),
+ (-m1.transpose()*s2).eval() * (s1 * v1.adjoint()).eval());
+ VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
+ (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
+
+// std::cerr << "d\n";
+ VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2),
+ (s1 * v1).eval() * (-m1.conjugate()*s2).eval());
+ VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2),
+ (s1 * v1.conjugate()).eval() * (-m1*s2).eval());
+ VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2),
+ (s1 * v1.conjugate()).eval() * (-m1.conjugate()*s2).eval());
+
+ VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()),
+ (-m1.adjoint()*s2).eval() * (s1 * v1.adjoint()).eval());
+}
+
+void test_product_extra()
+{
+// for(int i = 0; i < g_repeat; i++) {
+// CALL_SUBTEST( product_extra(MatrixXf(ei_random<int>(1,320), ei_random<int>(1,320))) );
+// CALL_SUBTEST( product(MatrixXd(ei_random<int>(1,320), ei_random<int>(1,320))) );
+// CALL_SUBTEST( product(MatrixXi(ei_random<int>(1,320), ei_random<int>(1,320))) );
+ CALL_SUBTEST( product_extra(MatrixXcf(ei_random<int>(50,50), ei_random<int>(50,50))) );
+// CALL_SUBTEST( product(Matrix<float,Dynamic,Dynamic,RowMajor>(ei_random<int>(1,320), ei_random<int>(1,320))) );
+// }
+}