aboutsummaryrefslogtreecommitdiffhomepage
path: root/test/gpu_basic.cu
diff options
context:
space:
mode:
authorGravatar Deven Desai <deven.desai.amd@gmail.com>2018-07-11 09:26:54 -0400
committerGravatar Deven Desai <deven.desai.amd@gmail.com>2018-07-11 09:26:54 -0400
commitdec47a64930b2a5b68c55706cbdba7f945781d0e (patch)
tree7b2417220ff2f85f55e3abbecdbd39bbc8d36997 /test/gpu_basic.cu
parent471cfe5ff7577b51adc37de61ca39ad63a2d0b40 (diff)
renaming CUDA* to GPU* for some header files
Diffstat (limited to 'test/gpu_basic.cu')
-rw-r--r--test/gpu_basic.cu203
1 files changed, 203 insertions, 0 deletions
diff --git a/test/gpu_basic.cu b/test/gpu_basic.cu
new file mode 100644
index 000000000..33e5fd119
--- /dev/null
+++ b/test/gpu_basic.cu
@@ -0,0 +1,203 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2015-2016 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+// workaround issue between gcc >= 4.7 and cuda 5.5
+#if (defined __GNUC__) && (__GNUC__>4 || __GNUC_MINOR__>=7)
+ #undef _GLIBCXX_ATOMIC_BUILTINS
+ #undef _GLIBCXX_USE_INT128
+#endif
+
+#define EIGEN_TEST_NO_LONGDOUBLE
+#define EIGEN_TEST_NO_COMPLEX
+#define EIGEN_TEST_FUNC cuda_basic
+#define EIGEN_DEFAULT_DENSE_INDEX_TYPE int
+
+#include <math_constants.h>
+#include <cuda.h>
+#include "main.h"
+#include "cuda_common.h"
+
+// Check that dense modules can be properly parsed by nvcc
+#include <Eigen/Dense>
+
+// struct Foo{
+// EIGEN_DEVICE_FUNC
+// void operator()(int i, const float* mats, float* vecs) const {
+// using namespace Eigen;
+// // Matrix3f M(data);
+// // Vector3f x(data+9);
+// // Map<Vector3f>(data+9) = M.inverse() * x;
+// Matrix3f M(mats+i/16);
+// Vector3f x(vecs+i*3);
+// // using std::min;
+// // using std::sqrt;
+// Map<Vector3f>(vecs+i*3) << x.minCoeff(), 1, 2;// / x.dot(x);//(M.inverse() * x) / x.x();
+// //x = x*2 + x.y() * x + x * x.maxCoeff() - x / x.sum();
+// }
+// };
+
+template<typename T>
+struct coeff_wise {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ using namespace Eigen;
+ T x1(in+i);
+ T x2(in+i+1);
+ T x3(in+i+2);
+ Map<T> res(out+i*T::MaxSizeAtCompileTime);
+
+ res.array() += (in[0] * x1 + x2).array() * x3.array();
+ }
+};
+
+template<typename T>
+struct replicate {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ using namespace Eigen;
+ T x1(in+i);
+ int step = x1.size() * 4;
+ int stride = 3 * step;
+
+ typedef Map<Array<typename T::Scalar,Dynamic,Dynamic> > MapType;
+ MapType(out+i*stride+0*step, x1.rows()*2, x1.cols()*2) = x1.replicate(2,2);
+ MapType(out+i*stride+1*step, x1.rows()*3, x1.cols()) = in[i] * x1.colwise().replicate(3);
+ MapType(out+i*stride+2*step, x1.rows(), x1.cols()*3) = in[i] * x1.rowwise().replicate(3);
+ }
+};
+
+template<typename T>
+struct redux {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ using namespace Eigen;
+ int N = 10;
+ T x1(in+i);
+ out[i*N+0] = x1.minCoeff();
+ out[i*N+1] = x1.maxCoeff();
+ out[i*N+2] = x1.sum();
+ out[i*N+3] = x1.prod();
+ out[i*N+4] = x1.matrix().squaredNorm();
+ out[i*N+5] = x1.matrix().norm();
+ out[i*N+6] = x1.colwise().sum().maxCoeff();
+ out[i*N+7] = x1.rowwise().maxCoeff().sum();
+ out[i*N+8] = x1.matrix().colwise().squaredNorm().sum();
+ }
+};
+
+template<typename T1, typename T2>
+struct prod_test {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
+ {
+ using namespace Eigen;
+ typedef Matrix<typename T1::Scalar, T1::RowsAtCompileTime, T2::ColsAtCompileTime> T3;
+ T1 x1(in+i);
+ T2 x2(in+i+1);
+ Map<T3> res(out+i*T3::MaxSizeAtCompileTime);
+ res += in[i] * x1 * x2;
+ }
+};
+
+template<typename T1, typename T2>
+struct diagonal {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T1::Scalar* in, typename T1::Scalar* out) const
+ {
+ using namespace Eigen;
+ T1 x1(in+i);
+ Map<T2> res(out+i*T2::MaxSizeAtCompileTime);
+ res += x1.diagonal();
+ }
+};
+
+template<typename T>
+struct eigenvalues_direct {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ using namespace Eigen;
+ typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
+ T M(in+i);
+ Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
+ T A = M*M.adjoint();
+ SelfAdjointEigenSolver<T> eig;
+ eig.computeDirect(M);
+ res = eig.eigenvalues();
+ }
+};
+
+template<typename T>
+struct eigenvalues {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ using namespace Eigen;
+ typedef Matrix<typename T::Scalar, T::RowsAtCompileTime, 1> Vec;
+ T M(in+i);
+ Map<Vec> res(out+i*Vec::MaxSizeAtCompileTime);
+ T A = M*M.adjoint();
+ SelfAdjointEigenSolver<T> eig;
+ eig.compute(M);
+ res = eig.eigenvalues();
+ }
+};
+
+template<typename T>
+struct matrix_inverse {
+ EIGEN_DEVICE_FUNC
+ void operator()(int i, const typename T::Scalar* in, typename T::Scalar* out) const
+ {
+ using namespace Eigen;
+ T M(in+i);
+ Map<T> res(out+i*T::MaxSizeAtCompileTime);
+ res = M.inverse();
+ }
+};
+
+void test_cuda_basic()
+{
+ ei_test_init_cuda();
+
+ int nthreads = 100;
+ Eigen::VectorXf in, out;
+
+ #ifndef __CUDA_ARCH__
+ int data_size = nthreads * 512;
+ in.setRandom(data_size);
+ out.setRandom(data_size);
+ #endif
+
+ CALL_SUBTEST( run_and_compare_to_cuda(coeff_wise<Vector3f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_cuda(coeff_wise<Array44f>(), nthreads, in, out) );
+
+ CALL_SUBTEST( run_and_compare_to_cuda(replicate<Array4f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_cuda(replicate<Array33f>(), nthreads, in, out) );
+
+ CALL_SUBTEST( run_and_compare_to_cuda(redux<Array4f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_cuda(redux<Matrix3f>(), nthreads, in, out) );
+
+ CALL_SUBTEST( run_and_compare_to_cuda(prod_test<Matrix3f,Matrix3f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_cuda(prod_test<Matrix4f,Vector4f>(), nthreads, in, out) );
+
+ CALL_SUBTEST( run_and_compare_to_cuda(diagonal<Matrix3f,Vector3f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_cuda(diagonal<Matrix4f,Vector4f>(), nthreads, in, out) );
+
+ CALL_SUBTEST( run_and_compare_to_cuda(matrix_inverse<Matrix2f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_cuda(matrix_inverse<Matrix3f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_cuda(matrix_inverse<Matrix4f>(), nthreads, in, out) );
+
+ CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues_direct<Matrix3f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues_direct<Matrix2f>(), nthreads, in, out) );
+ CALL_SUBTEST( run_and_compare_to_cuda(eigenvalues<Matrix4f>(), nthreads, in, out) );
+
+}