aboutsummaryrefslogtreecommitdiffhomepage
path: root/lapack/svd.cpp
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2014-10-17 15:31:11 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2014-10-17 15:31:11 +0200
commit8472e697ca606e2ea1a67cc2dfa175757666cc02 (patch)
tree047276b0b975ce116b1f5f756ad0cfb61bf753d0 /lapack/svd.cpp
parentc566cfe2ba0aad4ef054a55b402209980a90d994 (diff)
Add lapack interface to JacobiSVD and BDCSVD
Diffstat (limited to 'lapack/svd.cpp')
-rw-r--r--lapack/svd.cpp138
1 files changed, 138 insertions, 0 deletions
diff --git a/lapack/svd.cpp b/lapack/svd.cpp
new file mode 100644
index 000000000..ecac3bab1
--- /dev/null
+++ b/lapack/svd.cpp
@@ -0,0 +1,138 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
+//
+// This Source Code Form is subject to the terms of the Mozilla
+// Public License v. 2.0. If a copy of the MPL was not distributed
+// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
+
+#include "lapack_common.h"
+#include <Eigen/SVD>
+#include <unsupported/Eigen/BDCSVD>
+
+// computes the singular values/vectors a general M-by-N matrix A using divide-and-conquer
+EIGEN_LAPACK_FUNC(gesdd,(char *jobz, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork,
+ EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int * /*iwork*/, int *info))
+{
+ // TODO exploit the work buffer
+ bool query_size = *lwork==-1;
+ int diag_size = (std::min)(*m,*n);
+
+ *info = 0;
+ if(*jobz!='A' && *jobz!='S' && *jobz!='O' && *jobz!='N') *info = -1;
+ else if(*m<0) *info = -2;
+ else if(*n<0) *info = -3;
+ else if(*lda<std::max(1,*m)) *info = -5;
+ else if(*lda<std::max(1,*m)) *info = -8;
+ else if(*ldu <1 || (*jobz=='A' && *ldu <*m)
+ || (*jobz=='O' && *m<*n && *ldu<*m)) *info = -8;
+ else if(*ldvt<1 || (*jobz=='A' && *ldvt<*n)
+ || (*jobz=='S' && *ldvt<diag_size)
+ || (*jobz=='O' && *m>=*n && *ldvt<*n)) *info = -10;
+
+ if(*info!=0)
+ {
+ int e = -*info;
+ return xerbla_(SCALAR_SUFFIX_UP"GESDD ", &e, 6);
+ }
+
+ if(query_size)
+ {
+ *lwork = 0;
+ return 0;
+ }
+
+ if(*n==0 || *m==0)
+ return 0;
+
+ PlainMatrixType mat(*m,*n);
+ mat = matrix(a,*m,*n,*lda);
+
+ int option = *jobz=='A' ? ComputeFullU|ComputeFullV
+ : *jobz=='S' ? ComputeThinU|ComputeThinV
+ : *jobz=='O' ? ComputeThinU|ComputeThinV
+ : 0;
+
+ BDCSVD<PlainMatrixType> svd(mat,option);
+
+ make_vector(s,diag_size) = svd.singularValues().head(diag_size);
+
+ if(*jobz=='A')
+ {
+ matrix(u,*m,*m,*ldu) = svd.matrixU();
+ matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
+ }
+ else if(*jobz=='S')
+ {
+ matrix(u,*m,diag_size,*ldu) = svd.matrixU();
+ matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint();
+ }
+ else if(*jobz=='O' && *m>=*n)
+ {
+ matrix(a,*m,*n,*lda) = svd.matrixU();
+ matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
+ }
+ else if(*jobz=='O')
+ {
+ matrix(u,*m,*m,*ldu) = svd.matrixU();
+ matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint();
+ }
+
+ return 0;
+}
+
+// computes the singular values/vectors a general M-by-N matrix A using two sided jacobi algorithm
+EIGEN_LAPACK_FUNC(gesvd,(char *jobu, char *jobv, int *m, int* n, Scalar* a, int *lda, RealScalar *s, Scalar *u, int *ldu, Scalar *vt, int *ldvt, Scalar* /*work*/, int* lwork,
+ EIGEN_LAPACK_ARG_IF_COMPLEX(RealScalar */*rwork*/) int *info))
+{
+ // TODO exploit the work buffer
+ bool query_size = *lwork==-1;
+ int diag_size = (std::min)(*m,*n);
+
+ *info = 0;
+ if( *jobu!='A' && *jobu!='S' && *jobu!='O' && *jobu!='N') *info = -1;
+ else if((*jobv!='A' && *jobv!='S' && *jobv!='O' && *jobv!='N')
+ || (*jobu=='O' && *jobv=='O')) *info = -2;
+ else if(*m<0) *info = -3;
+ else if(*n<0) *info = -4;
+ else if(*lda<std::max(1,*m)) *info = -6;
+ else if(*ldu <1 || ((*jobu=='A' || *jobu=='S') && *ldu<*m)) *info = -9;
+ else if(*ldvt<1 || (*jobv=='A' && *ldvt<*n)
+ || (*jobv=='S' && *ldvt<diag_size)) *info = -11;
+
+ if(*info!=0)
+ {
+ int e = -*info;
+ return xerbla_(SCALAR_SUFFIX_UP"GESVD ", &e, 6);
+ }
+
+ if(query_size)
+ {
+ *lwork = 0;
+ return 0;
+ }
+
+ if(*n==0 || *m==0)
+ return 0;
+
+ PlainMatrixType mat(*m,*n);
+ mat = matrix(a,*m,*n,*lda);
+
+ int option = (*jobu=='A' ? ComputeFullU : *jobu=='S' || *jobu=='O' ? ComputeThinU : 0)
+ | (*jobv=='A' ? ComputeFullV : *jobv=='S' || *jobv=='O' ? ComputeThinV : 0);
+
+ JacobiSVD<PlainMatrixType> svd(mat,option);
+
+ make_vector(s,diag_size) = svd.singularValues().head(diag_size);
+
+ if(*jobu=='A') matrix(u,*m,*m,*ldu) = svd.matrixU();
+ else if(*jobu=='S') matrix(u,*m,diag_size,*ldu) = svd.matrixU();
+ else if(*jobu=='O') matrix(a,*m,diag_size,*lda) = svd.matrixU();
+
+ if(*jobv=='A') matrix(vt,*n,*n,*ldvt) = svd.matrixV().adjoint();
+ else if(*jobv=='S') matrix(vt,diag_size,*n,*ldvt) = svd.matrixV().adjoint();
+ else if(*jobv=='O') matrix(a,diag_size,*n,*lda) = svd.matrixV().adjoint();
+
+ return 0;
+}