aboutsummaryrefslogtreecommitdiffhomepage
path: root/doc/AsciiQuickReference.txt
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2009-02-18 10:27:18 +0000
committerGravatar Gael Guennebaud <g.gael@free.fr>2009-02-18 10:27:18 +0000
commit23f543ee5e3a2fb7f0955b6e03ffcc3781de5827 (patch)
tree4ec04faaf66cf6615129d4277ee656575e500dce /doc/AsciiQuickReference.txt
parent21161d8bcffbb89e699215ed62f950a96325a75a (diff)
add the ASCII quick reference made by Kier
Diffstat (limited to 'doc/AsciiQuickReference.txt')
-rw-r--r--doc/AsciiQuickReference.txt151
1 files changed, 151 insertions, 0 deletions
diff --git a/doc/AsciiQuickReference.txt b/doc/AsciiQuickReference.txt
new file mode 100644
index 000000000..f51f1e206
--- /dev/null
+++ b/doc/AsciiQuickReference.txt
@@ -0,0 +1,151 @@
+ Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d.
+ Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols.
+ Matrix<double, Dynamic, Dynamic> C; // Full dynamic. Same as MatrixXd.
+ Matrix<double, 3, 3, RowMajor> E; // Row major; default is column-major.
+ Matrix3f P, Q, R; // 3x3 float matrix.
+ Vector3f x, y, z; // 3x1 float matrix.
+ RowVector3f a, b, c; // 1x3 float matrix.
+ double s;
+
+ A.resize(4, 4); // Runtime error if assertions are on.
+ B.resize(4, 9); // Runtime error if assertions are on.
+ A.resize(3, 3); // Ok; size didn't change.
+ B.resize(3, 9); // Ok; only dynamic cols changed.
+
+ A << 1, 2, 3, // Initialize A. The elements can also be
+ 4, 5, 6, // matrices, which are stacked along cols
+ 7, 8, 9; // and then the rows are stacked.
+ B << A, A, A; // B is three horizontally stacked A's.
+ A.fill(10); // Fill A with all 10's.
+ A.setRandom(); // Fill A with uniform random numbers in (-1, 1).
+ // Requires #include <Eigen/Array>.
+ A.setIdentity(); // Fill A with the identity.
+
+ // Matrix slicing and blocks. All expressions listed here are read/write.
+ // Templated size versions are faster. Note that Matlab is 1-based (a size N
+ // vector is x(1)...x(N)).
+ // Eigen // Matlab
+ x.start(n) // x(1:n)
+ x.start<n>() // x(1:n)
+ x.end(n) // N = rows(x); x(N - n: N)
+ x.end<n>() // N = rows(x); x(N - n: N)
+ x.segment(i, n) // x(i+1 : i+n)
+ x.segment<n>(i) // x(i+1 : i+n)
+ P.block(i, j, rows, cols) // P(i+1 : i+rows, j+1 : j+cols)
+ P.block<rows, cols>(i, j) // P(i+1 : i+rows, j+1 : j+cols)
+ P.corner(TopLeft, rows, cols) // P(1:rows, 1:cols)
+ P.corner(TopRight, rows, cols) // [m n]=size(P); P(1:rows, n-cols+1:n)
+ P.corner(BottomLeft, rows, cols) // [m n]=size(P); P(m-rows+1:m, 1:cols)
+ P.corner(BottomRight, rows, cols) // [m n]=size(P); P(m-rows+1:m, n-cols+1:n)
+ P.corner<rows,cols>(TopLeft) // P(1:rows, 1:cols)
+ P.corner<rows,cols>(TopRight) // [m n]=size(P); P(1:rows, n-cols+1:n)
+ P.corner<rows,cols>(BottomLeft) // [m n]=size(P); P(m-rows+1:m, 1:cols)
+ P.corner<rows,cols>(BottomRight) // [m n]=size(P); P(m-rows+1:m, n-cols+1:n)
+ P.minor(i, j) // Something nasty.
+
+ // Of particular note is Eigen's swap function which is highly optimized.
+ // Eigen // Matlab
+ R.row(i) = P.col(j); // R(i, :) = P(:, i)
+ R.col(j1).swap(mat1.col(j2)); // R(:, [j1 j2]) = R(:, [j2, j1])
+
+ // Views, transpose, etc; all read-write except for .adjoint().
+ // Eigen // Matlab
+ R.adjoint() // conj(R')
+ R.transpose() // R'
+ R.diagonal() // diag(R)
+ x.asDiagonal() // diag(x)
+
+ // All the same as Matlab, but matlab doesn't have *= style operators.
+ // Matrix-vector. Matrix-matrix. Matrix-scalar.
+ y = M*x; R = P*Q; R = P*s;
+ a = b*M; R = P - Q; R = s*P;
+ a *= M; R = P + Q; R = P/s;
+ R *= Q; R = s*P;
+ R += Q; R *= s;
+ R -= Q; R /= s;
+
+ // Vectorized operations on each element independently
+ // (most require #include <Eigen/Array>)
+ // Eigen // Matlab
+ R = P.cwise() * Q; // R = P .* Q
+ R = P.cwise() / Q; // R = P ./ Q
+ R = P.cwise() + s; // R = P + s
+ R = P.cwise() - s; // R = P - s
+ R.cwise() += s; // R = R + s
+ R.cwise() -= s; // R = R - s
+ R.cwise() *= s; // R = R * s
+ R.cwise() /= s; // R = R / s
+ R.cwise() < Q; // R < Q
+ R.cwise() <= Q; // R <= Q
+ R.cwise().inverse(); // 1 ./ P
+ R.cwise().sin() // sin(P)
+ R.cwise().cos() // cos(P)
+ R.cwise().pow(s) // P .^ s
+ R.cwise().square() // P .^ 2
+ R.cwise().cube() // P .^ 3
+ R.cwise().sqrt() // sqrt(P)
+ R.cwise().exp() // exp(P)
+ R.cwise().log() // log(P)
+ R.cwise().max(P) // max(R, P)
+ R.cwise().min(P) // min(R, P)
+ R.cwise().abs() // abs(P)
+ R.cwise().abs2() // abs(P.^2)
+ (R.cwise() < s).select(P,Q); // (R < s ? P : Q)
+
+ // Reductions.
+ int r, c;
+ // Eigen // Matlab
+ R.minCoeff() // min(R(:))
+ R.maxCoeff() // max(R(:))
+ s = R.minCoeff(&r, &c) // [aa, bb] = min(R); [cc, dd] = min(aa);
+ // r = bb(dd); c = dd; s = cc
+ s = R.maxCoeff(&r, &c) // [aa, bb] = max(R); [cc, dd] = max(aa);
+ // row = bb(dd); col = dd; s = cc
+ R.sum() // sum(R(:))
+ R.colwise.sum() // sum(R)
+ R.rowwise.sum() // sum(R, 2) or sum(R')'
+ R.trace() // trace(R)
+ R.all() // all(R(:))
+ R.colwise().all() // all(R)
+ R.rowwise().all() // all(R, 2)
+ R.any() // any(R(:))
+ R.colwise().any() // any(R)
+ R.rowwise().any() // any(R, 2)
+
+ // Dot products, norms, etc.
+ // Eigen // Matlab
+ x.norm() // norm(x). Note that norm(R) doesn't work in Eigen.
+ x.squaredNorm() // dot(x, x) Note the equivalence is not true for complex
+ x.dot(y) // dot(x, y)
+ x.cross(y) // cross(x, y) Requires #include <Eigen/Geometry>
+
+ // Eigen can map existing memory into Eigen matrices.
+ float array[3];
+ Map<Vector3f>(array, 3).fill(10);
+ int data[4] = 1, 2, 3, 4;
+ Matrix2i mat2x2(data);
+ MatrixXi mat2x2 = Map<Matrix2i>(data);
+ MatrixXi mat2x2 = Map<MatrixXi>(data, 2, 2);
+
+ // Solve Ax = b. Result stored in x. Matlab: x = A \ b.
+ bool solved;
+ solved = A.ldlt().solve(b, &x)); // A symmetric p.s.d.
+ solved = A.llt() .solve(b, &x)); // A symmetric p.d.
+ solved = A.lu() .solve(b, &x)); // Stable and fast.
+ solved = A.qr() .solve(b, &x)); // No pivoting.
+ solved = A.svd() .solve(b, &x)); // Most stable, slowest.
+ // .ldlt() -> .matrixL() and .matrixD()
+ // .llt() -> .matrixL()
+ // .lu() -> .matrixL() and .matrixU()
+ // .qr() -> .matrixQ() and .matrixR()
+ // .svd() -> .matrixU(), .singularValues(), and .matrixV()
+
+ // Eigenvalue problems
+ // Eigen // Matlab
+ A.eigenvalues(); // eig(A);
+ EigenSolver<Matrix3d> eig(A); // [vec val] = eig(A)
+ eig.eigenvalues(); // diag(val)
+ eig.eigenvectors(); // vec
+
+__________
+Main author: Keir Mierle \ No newline at end of file