aboutsummaryrefslogtreecommitdiffhomepage
path: root/blas
diff options
context:
space:
mode:
authorGravatar Benoit Steiner <benoit.steiner.goog@gmail.com>2015-02-06 05:25:03 -0800
committerGravatar Benoit Steiner <benoit.steiner.goog@gmail.com>2015-02-06 05:25:03 -0800
commitc739102ef9a52fcb194dcc77f785aa55879987e4 (patch)
tree22d19d1df4cb20baea532fa1ce13208329ff53e3 /blas
parent2559fa9b0f20ea138cfb019d441ad1757221568d (diff)
parenta8f2c6eec788c5cccc6beb9b5837544ea98a7154 (diff)
Pulled the latest changes from the trunk
Diffstat (limited to 'blas')
-rw-r--r--blas/CMakeLists.txt27
-rw-r--r--blas/chbmv.f310
-rw-r--r--blas/chpmv.f272
-rw-r--r--blas/ctbmv.f366
-rw-r--r--blas/drotm.f147
-rw-r--r--blas/drotmg.f206
-rw-r--r--blas/dsbmv.f304
-rw-r--r--blas/dspmv.f265
-rw-r--r--blas/dtbmv.f335
-rw-r--r--blas/f2c/chbmv.c487
-rw-r--r--blas/f2c/chpmv.c438
-rw-r--r--blas/f2c/complexdots.c84
-rw-r--r--blas/f2c/ctbmv.c647
-rw-r--r--blas/f2c/d_cnjg.c6
-rw-r--r--blas/f2c/datatypes.h24
-rw-r--r--blas/f2c/drotm.c215
-rw-r--r--blas/f2c/drotmg.c293
-rw-r--r--blas/f2c/dsbmv.c366
-rw-r--r--blas/f2c/dspmv.c316
-rw-r--r--blas/f2c/dtbmv.c428
-rw-r--r--blas/f2c/lsame.c117
-rw-r--r--blas/f2c/r_cnjg.c6
-rw-r--r--blas/f2c/srotm.c216
-rw-r--r--blas/f2c/srotmg.c295
-rw-r--r--blas/f2c/ssbmv.c368
-rw-r--r--blas/f2c/sspmv.c316
-rw-r--r--blas/f2c/stbmv.c428
-rw-r--r--blas/f2c/zhbmv.c488
-rw-r--r--blas/f2c/zhpmv.c438
-rw-r--r--blas/f2c/ztbmv.c647
-rw-r--r--blas/fortran/complexdots.f (renamed from blas/complexdots.f)0
-rw-r--r--blas/lsame.f85
-rw-r--r--blas/srotm.f148
-rw-r--r--blas/srotmg.f208
-rw-r--r--blas/ssbmv.f306
-rw-r--r--blas/sspmv.f265
-rw-r--r--blas/stbmv.f335
-rw-r--r--blas/zhbmv.f310
-rw-r--r--blas/zhpmv.f272
-rw-r--r--blas/ztbmv.f366
40 files changed, 6634 insertions, 4516 deletions
diff --git a/blas/CMakeLists.txt b/blas/CMakeLists.txt
index a9bc05137..d0efb4188 100644
--- a/blas/CMakeLists.txt
+++ b/blas/CMakeLists.txt
@@ -14,23 +14,18 @@ endif()
add_custom_target(blas)
-set(EigenBlas_SRCS single.cpp double.cpp complex_single.cpp complex_double.cpp xerbla.cpp)
-
-if(EIGEN_Fortran_COMPILER_WORKS)
-
-set(EigenBlas_SRCS ${EigenBlas_SRCS}
- complexdots.f
- srotm.f srotmg.f drotm.f drotmg.f
- lsame.f dspmv.f ssbmv.f
- chbmv.f sspmv.f
- zhbmv.f chpmv.f dsbmv.f
- zhpmv.f
- dtbmv.f stbmv.f ctbmv.f ztbmv.f
-)
+set(EigenBlas_SRCS single.cpp double.cpp complex_single.cpp complex_double.cpp xerbla.cpp
+ f2c/srotm.c f2c/srotmg.c f2c/drotm.c f2c/drotmg.c
+ f2c/lsame.c f2c/dspmv.c f2c/ssbmv.c f2c/chbmv.c
+ f2c/sspmv.c f2c/zhbmv.c f2c/chpmv.c f2c/dsbmv.c
+ f2c/zhpmv.c f2c/dtbmv.c f2c/stbmv.c f2c/ctbmv.c
+ f2c/ztbmv.c f2c/d_cnjg.c f2c/r_cnjg.c
+ )
+
+if (EIGEN_Fortran_COMPILER_WORKS)
+ set(EigenBlas_SRCS ${EigenBlas_SRCS} fortran/complexdots.f)
else()
-
-message(WARNING " No fortran compiler has been detected, the blas build will be incomplete.")
-
+ set(EigenBlas_SRCS ${EigenBlas_SRCS} f2c/complexdots.c)
endif()
add_library(eigen_blas_static ${EigenBlas_SRCS})
diff --git a/blas/chbmv.f b/blas/chbmv.f
deleted file mode 100644
index 1b1c330ea..000000000
--- a/blas/chbmv.f
+++ /dev/null
@@ -1,310 +0,0 @@
- SUBROUTINE CHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
-* .. Scalar Arguments ..
- COMPLEX ALPHA,BETA
- INTEGER INCX,INCY,K,LDA,N
- CHARACTER UPLO
-* ..
-* .. Array Arguments ..
- COMPLEX A(LDA,*),X(*),Y(*)
-* ..
-*
-* Purpose
-* =======
-*
-* CHBMV performs the matrix-vector operation
-*
-* y := alpha*A*x + beta*y,
-*
-* where alpha and beta are scalars, x and y are n element vectors and
-* A is an n by n hermitian band matrix, with k super-diagonals.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the upper or lower
-* triangular part of the band matrix A is being supplied as
-* follows:
-*
-* UPLO = 'U' or 'u' The upper triangular part of A is
-* being supplied.
-*
-* UPLO = 'L' or 'l' The lower triangular part of A is
-* being supplied.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* K - INTEGER.
-* On entry, K specifies the number of super-diagonals of the
-* matrix A. K must satisfy 0 .le. K.
-* Unchanged on exit.
-*
-* ALPHA - COMPLEX .
-* On entry, ALPHA specifies the scalar alpha.
-* Unchanged on exit.
-*
-* A - COMPLEX array of DIMENSION ( LDA, n ).
-* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
-* by n part of the array A must contain the upper triangular
-* band part of the hermitian matrix, supplied column by
-* column, with the leading diagonal of the matrix in row
-* ( k + 1 ) of the array, the first super-diagonal starting at
-* position 2 in row k, and so on. The top left k by k triangle
-* of the array A is not referenced.
-* The following program segment will transfer the upper
-* triangular part of a hermitian band matrix from conventional
-* full matrix storage to band storage:
-*
-* DO 20, J = 1, N
-* M = K + 1 - J
-* DO 10, I = MAX( 1, J - K ), J
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
-* by n part of the array A must contain the lower triangular
-* band part of the hermitian matrix, supplied column by
-* column, with the leading diagonal of the matrix in row 1 of
-* the array, the first sub-diagonal starting at position 1 in
-* row 2, and so on. The bottom right k by k triangle of the
-* array A is not referenced.
-* The following program segment will transfer the lower
-* triangular part of a hermitian band matrix from conventional
-* full matrix storage to band storage:
-*
-* DO 20, J = 1, N
-* M = 1 - J
-* DO 10, I = J, MIN( N, J + K )
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Note that the imaginary parts of the diagonal elements need
-* not be set and are assumed to be zero.
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( k + 1 ).
-* Unchanged on exit.
-*
-* X - COMPLEX array of DIMENSION at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the
-* vector x.
-* Unchanged on exit.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* BETA - COMPLEX .
-* On entry, BETA specifies the scalar beta.
-* Unchanged on exit.
-*
-* Y - COMPLEX array of DIMENSION at least
-* ( 1 + ( n - 1 )*abs( INCY ) ).
-* Before entry, the incremented array Y must contain the
-* vector y. On exit, Y is overwritten by the updated vector y.
-*
-* INCY - INTEGER.
-* On entry, INCY specifies the increment for the elements of
-* Y. INCY must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- COMPLEX ONE
- PARAMETER (ONE= (1.0E+0,0.0E+0))
- COMPLEX ZERO
- PARAMETER (ZERO= (0.0E+0,0.0E+0))
-* ..
-* .. Local Scalars ..
- COMPLEX TEMP1,TEMP2
- INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC CONJG,MAX,MIN,REAL
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (N.LT.0) THEN
- INFO = 2
- ELSE IF (K.LT.0) THEN
- INFO = 3
- ELSE IF (LDA.LT. (K+1)) THEN
- INFO = 6
- ELSE IF (INCX.EQ.0) THEN
- INFO = 8
- ELSE IF (INCY.EQ.0) THEN
- INFO = 11
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('CHBMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
-*
-* Set up the start points in X and Y.
-*
- IF (INCX.GT.0) THEN
- KX = 1
- ELSE
- KX = 1 - (N-1)*INCX
- END IF
- IF (INCY.GT.0) THEN
- KY = 1
- ELSE
- KY = 1 - (N-1)*INCY
- END IF
-*
-* Start the operations. In this version the elements of the array A
-* are accessed sequentially with one pass through A.
-*
-* First form y := beta*y.
-*
- IF (BETA.NE.ONE) THEN
- IF (INCY.EQ.1) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 10 I = 1,N
- Y(I) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1,N
- Y(I) = BETA*Y(I)
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF (BETA.EQ.ZERO) THEN
- DO 30 I = 1,N
- Y(IY) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1,N
- Y(IY) = BETA*Y(IY)
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF (ALPHA.EQ.ZERO) RETURN
- IF (LSAME(UPLO,'U')) THEN
-*
-* Form y when upper triangle of A is stored.
-*
- KPLUS1 = K + 1
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 60 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- L = KPLUS1 - J
- DO 50 I = MAX(1,J-K),J - 1
- Y(I) = Y(I) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
- 50 CONTINUE
- Y(J) = Y(J) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- IX = KX
- IY = KY
- L = KPLUS1 - J
- DO 70 I = MAX(1,J-K),J - 1
- Y(IY) = Y(IY) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y(JY) = Y(JY) + TEMP1*REAL(A(KPLUS1,J)) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- IF (J.GT.K) THEN
- KX = KX + INCX
- KY = KY + INCY
- END IF
- 80 CONTINUE
- END IF
- ELSE
-*
-* Form y when lower triangle of A is stored.
-*
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 100 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- Y(J) = Y(J) + TEMP1*REAL(A(1,J))
- L = 1 - J
- DO 90 I = J + 1,MIN(N,J+K)
- Y(I) = Y(I) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(I)
- 90 CONTINUE
- Y(J) = Y(J) + ALPHA*TEMP2
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- Y(JY) = Y(JY) + TEMP1*REAL(A(1,J))
- L = 1 - J
- IX = JX
- IY = JY
- DO 110 I = J + 1,MIN(N,J+K)
- IX = IX + INCX
- IY = IY + INCY
- Y(IY) = Y(IY) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + CONJG(A(L+I,J))*X(IX)
- 110 CONTINUE
- Y(JY) = Y(JY) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 120 CONTINUE
- END IF
- END IF
-*
- RETURN
-*
-* End of CHBMV .
-*
- END
diff --git a/blas/chpmv.f b/blas/chpmv.f
deleted file mode 100644
index 158be5a7b..000000000
--- a/blas/chpmv.f
+++ /dev/null
@@ -1,272 +0,0 @@
- SUBROUTINE CHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
-* .. Scalar Arguments ..
- COMPLEX ALPHA,BETA
- INTEGER INCX,INCY,N
- CHARACTER UPLO
-* ..
-* .. Array Arguments ..
- COMPLEX AP(*),X(*),Y(*)
-* ..
-*
-* Purpose
-* =======
-*
-* CHPMV performs the matrix-vector operation
-*
-* y := alpha*A*x + beta*y,
-*
-* where alpha and beta are scalars, x and y are n element vectors and
-* A is an n by n hermitian matrix, supplied in packed form.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the upper or lower
-* triangular part of the matrix A is supplied in the packed
-* array AP as follows:
-*
-* UPLO = 'U' or 'u' The upper triangular part of A is
-* supplied in AP.
-*
-* UPLO = 'L' or 'l' The lower triangular part of A is
-* supplied in AP.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* ALPHA - COMPLEX .
-* On entry, ALPHA specifies the scalar alpha.
-* Unchanged on exit.
-*
-* AP - COMPLEX array of DIMENSION at least
-* ( ( n*( n + 1 ) )/2 ).
-* Before entry with UPLO = 'U' or 'u', the array AP must
-* contain the upper triangular part of the hermitian matrix
-* packed sequentially, column by column, so that AP( 1 )
-* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
-* and a( 2, 2 ) respectively, and so on.
-* Before entry with UPLO = 'L' or 'l', the array AP must
-* contain the lower triangular part of the hermitian matrix
-* packed sequentially, column by column, so that AP( 1 )
-* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
-* and a( 3, 1 ) respectively, and so on.
-* Note that the imaginary parts of the diagonal elements need
-* not be set and are assumed to be zero.
-* Unchanged on exit.
-*
-* X - COMPLEX array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element vector x.
-* Unchanged on exit.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* BETA - COMPLEX .
-* On entry, BETA specifies the scalar beta. When BETA is
-* supplied as zero then Y need not be set on input.
-* Unchanged on exit.
-*
-* Y - COMPLEX array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCY ) ).
-* Before entry, the incremented array Y must contain the n
-* element vector y. On exit, Y is overwritten by the updated
-* vector y.
-*
-* INCY - INTEGER.
-* On entry, INCY specifies the increment for the elements of
-* Y. INCY must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- COMPLEX ONE
- PARAMETER (ONE= (1.0E+0,0.0E+0))
- COMPLEX ZERO
- PARAMETER (ZERO= (0.0E+0,0.0E+0))
-* ..
-* .. Local Scalars ..
- COMPLEX TEMP1,TEMP2
- INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC CONJG,REAL
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (N.LT.0) THEN
- INFO = 2
- ELSE IF (INCX.EQ.0) THEN
- INFO = 6
- ELSE IF (INCY.EQ.0) THEN
- INFO = 9
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('CHPMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
-*
-* Set up the start points in X and Y.
-*
- IF (INCX.GT.0) THEN
- KX = 1
- ELSE
- KX = 1 - (N-1)*INCX
- END IF
- IF (INCY.GT.0) THEN
- KY = 1
- ELSE
- KY = 1 - (N-1)*INCY
- END IF
-*
-* Start the operations. In this version the elements of the array AP
-* are accessed sequentially with one pass through AP.
-*
-* First form y := beta*y.
-*
- IF (BETA.NE.ONE) THEN
- IF (INCY.EQ.1) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 10 I = 1,N
- Y(I) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1,N
- Y(I) = BETA*Y(I)
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF (BETA.EQ.ZERO) THEN
- DO 30 I = 1,N
- Y(IY) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1,N
- Y(IY) = BETA*Y(IY)
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF (ALPHA.EQ.ZERO) RETURN
- KK = 1
- IF (LSAME(UPLO,'U')) THEN
-*
-* Form y when AP contains the upper triangle.
-*
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 60 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- K = KK
- DO 50 I = 1,J - 1
- Y(I) = Y(I) + TEMP1*AP(K)
- TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
- K = K + 1
- 50 CONTINUE
- Y(J) = Y(J) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
- KK = KK + J
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- IX = KX
- IY = KY
- DO 70 K = KK,KK + J - 2
- Y(IY) = Y(IY) + TEMP1*AP(K)
- TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y(JY) = Y(JY) + TEMP1*REAL(AP(KK+J-1)) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + J
- 80 CONTINUE
- END IF
- ELSE
-*
-* Form y when AP contains the lower triangle.
-*
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 100 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- Y(J) = Y(J) + TEMP1*REAL(AP(KK))
- K = KK + 1
- DO 90 I = J + 1,N
- Y(I) = Y(I) + TEMP1*AP(K)
- TEMP2 = TEMP2 + CONJG(AP(K))*X(I)
- K = K + 1
- 90 CONTINUE
- Y(J) = Y(J) + ALPHA*TEMP2
- KK = KK + (N-J+1)
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- Y(JY) = Y(JY) + TEMP1*REAL(AP(KK))
- IX = JX
- IY = JY
- DO 110 K = KK + 1,KK + N - J
- IX = IX + INCX
- IY = IY + INCY
- Y(IY) = Y(IY) + TEMP1*AP(K)
- TEMP2 = TEMP2 + CONJG(AP(K))*X(IX)
- 110 CONTINUE
- Y(JY) = Y(JY) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + (N-J+1)
- 120 CONTINUE
- END IF
- END IF
-*
- RETURN
-*
-* End of CHPMV .
-*
- END
diff --git a/blas/ctbmv.f b/blas/ctbmv.f
deleted file mode 100644
index 5a879fa01..000000000
--- a/blas/ctbmv.f
+++ /dev/null
@@ -1,366 +0,0 @@
- SUBROUTINE CTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
-* .. Scalar Arguments ..
- INTEGER INCX,K,LDA,N
- CHARACTER DIAG,TRANS,UPLO
-* ..
-* .. Array Arguments ..
- COMPLEX A(LDA,*),X(*)
-* ..
-*
-* Purpose
-* =======
-*
-* CTBMV performs one of the matrix-vector operations
-*
-* x := A*x, or x := A'*x, or x := conjg( A' )*x,
-*
-* where x is an n element vector and A is an n by n unit, or non-unit,
-* upper or lower triangular band matrix, with ( k + 1 ) diagonals.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the matrix is an upper or
-* lower triangular matrix as follows:
-*
-* UPLO = 'U' or 'u' A is an upper triangular matrix.
-*
-* UPLO = 'L' or 'l' A is a lower triangular matrix.
-*
-* Unchanged on exit.
-*
-* TRANS - CHARACTER*1.
-* On entry, TRANS specifies the operation to be performed as
-* follows:
-*
-* TRANS = 'N' or 'n' x := A*x.
-*
-* TRANS = 'T' or 't' x := A'*x.
-*
-* TRANS = 'C' or 'c' x := conjg( A' )*x.
-*
-* Unchanged on exit.
-*
-* DIAG - CHARACTER*1.
-* On entry, DIAG specifies whether or not A is unit
-* triangular as follows:
-*
-* DIAG = 'U' or 'u' A is assumed to be unit triangular.
-*
-* DIAG = 'N' or 'n' A is not assumed to be unit
-* triangular.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* K - INTEGER.
-* On entry with UPLO = 'U' or 'u', K specifies the number of
-* super-diagonals of the matrix A.
-* On entry with UPLO = 'L' or 'l', K specifies the number of
-* sub-diagonals of the matrix A.
-* K must satisfy 0 .le. K.
-* Unchanged on exit.
-*
-* A - COMPLEX array of DIMENSION ( LDA, n ).
-* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
-* by n part of the array A must contain the upper triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row
-* ( k + 1 ) of the array, the first super-diagonal starting at
-* position 2 in row k, and so on. The top left k by k triangle
-* of the array A is not referenced.
-* The following program segment will transfer an upper
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = K + 1 - J
-* DO 10, I = MAX( 1, J - K ), J
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
-* by n part of the array A must contain the lower triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row 1 of
-* the array, the first sub-diagonal starting at position 1 in
-* row 2, and so on. The bottom right k by k triangle of the
-* array A is not referenced.
-* The following program segment will transfer a lower
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = 1 - J
-* DO 10, I = J, MIN( N, J + K )
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Note that when DIAG = 'U' or 'u' the elements of the array A
-* corresponding to the diagonal elements of the matrix are not
-* referenced, but are assumed to be unity.
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( k + 1 ).
-* Unchanged on exit.
-*
-* X - COMPLEX array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element vector x. On exit, X is overwritten with the
-* tranformed vector x.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- COMPLEX ZERO
- PARAMETER (ZERO= (0.0E+0,0.0E+0))
-* ..
-* .. Local Scalars ..
- COMPLEX TEMP
- INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
- LOGICAL NOCONJ,NOUNIT
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC CONJG,MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 2
- ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
- INFO = 3
- ELSE IF (N.LT.0) THEN
- INFO = 4
- ELSE IF (K.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT. (K+1)) THEN
- INFO = 7
- ELSE IF (INCX.EQ.0) THEN
- INFO = 9
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('CTBMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF (N.EQ.0) RETURN
-*
- NOCONJ = LSAME(TRANS,'T')
- NOUNIT = LSAME(DIAG,'N')
-*
-* Set up the start point in X if the increment is not unity. This
-* will be ( N - 1 )*INCX too small for descending loops.
-*
- IF (INCX.LE.0) THEN
- KX = 1 - (N-1)*INCX
- ELSE IF (INCX.NE.1) THEN
- KX = 1
- END IF
-*
-* Start the operations. In this version the elements of A are
-* accessed sequentially with one pass through A.
-*
- IF (LSAME(TRANS,'N')) THEN
-*
-* Form x := A*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 20 J = 1,N
- IF (X(J).NE.ZERO) THEN
- TEMP = X(J)
- L = KPLUS1 - J
- DO 10 I = MAX(1,J-K),J - 1
- X(I) = X(I) + TEMP*A(L+I,J)
- 10 CONTINUE
- IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
- END IF
- 20 CONTINUE
- ELSE
- JX = KX
- DO 40 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = X(JX)
- IX = KX
- L = KPLUS1 - J
- DO 30 I = MAX(1,J-K),J - 1
- X(IX) = X(IX) + TEMP*A(L+I,J)
- IX = IX + INCX
- 30 CONTINUE
- IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
- END IF
- JX = JX + INCX
- IF (J.GT.K) KX = KX + INCX
- 40 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 60 J = N,1,-1
- IF (X(J).NE.ZERO) THEN
- TEMP = X(J)
- L = 1 - J
- DO 50 I = MIN(N,J+K),J + 1,-1
- X(I) = X(I) + TEMP*A(L+I,J)
- 50 CONTINUE
- IF (NOUNIT) X(J) = X(J)*A(1,J)
- END IF
- 60 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 80 J = N,1,-1
- IF (X(JX).NE.ZERO) THEN
- TEMP = X(JX)
- IX = KX
- L = 1 - J
- DO 70 I = MIN(N,J+K),J + 1,-1
- X(IX) = X(IX) + TEMP*A(L+I,J)
- IX = IX - INCX
- 70 CONTINUE
- IF (NOUNIT) X(JX) = X(JX)*A(1,J)
- END IF
- JX = JX - INCX
- IF ((N-J).GE.K) KX = KX - INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
-*
-* Form x := A'*x or x := conjg( A' )*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 110 J = N,1,-1
- TEMP = X(J)
- L = KPLUS1 - J
- IF (NOCONJ) THEN
- IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
- DO 90 I = J - 1,MAX(1,J-K),-1
- TEMP = TEMP + A(L+I,J)*X(I)
- 90 CONTINUE
- ELSE
- IF (NOUNIT) TEMP = TEMP*CONJG(A(KPLUS1,J))
- DO 100 I = J - 1,MAX(1,J-K),-1
- TEMP = TEMP + CONJG(A(L+I,J))*X(I)
- 100 CONTINUE
- END IF
- X(J) = TEMP
- 110 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 140 J = N,1,-1
- TEMP = X(JX)
- KX = KX - INCX
- IX = KX
- L = KPLUS1 - J
- IF (NOCONJ) THEN
- IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
- DO 120 I = J - 1,MAX(1,J-K),-1
- TEMP = TEMP + A(L+I,J)*X(IX)
- IX = IX - INCX
- 120 CONTINUE
- ELSE
- IF (NOUNIT) TEMP = TEMP*CONJG(A(KPLUS1,J))
- DO 130 I = J - 1,MAX(1,J-K),-1
- TEMP = TEMP + CONJG(A(L+I,J))*X(IX)
- IX = IX - INCX
- 130 CONTINUE
- END IF
- X(JX) = TEMP
- JX = JX - INCX
- 140 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 170 J = 1,N
- TEMP = X(J)
- L = 1 - J
- IF (NOCONJ) THEN
- IF (NOUNIT) TEMP = TEMP*A(1,J)
- DO 150 I = J + 1,MIN(N,J+K)
- TEMP = TEMP + A(L+I,J)*X(I)
- 150 CONTINUE
- ELSE
- IF (NOUNIT) TEMP = TEMP*CONJG(A(1,J))
- DO 160 I = J + 1,MIN(N,J+K)
- TEMP = TEMP + CONJG(A(L+I,J))*X(I)
- 160 CONTINUE
- END IF
- X(J) = TEMP
- 170 CONTINUE
- ELSE
- JX = KX
- DO 200 J = 1,N
- TEMP = X(JX)
- KX = KX + INCX
- IX = KX
- L = 1 - J
- IF (NOCONJ) THEN
- IF (NOUNIT) TEMP = TEMP*A(1,J)
- DO 180 I = J + 1,MIN(N,J+K)
- TEMP = TEMP + A(L+I,J)*X(IX)
- IX = IX + INCX
- 180 CONTINUE
- ELSE
- IF (NOUNIT) TEMP = TEMP*CONJG(A(1,J))
- DO 190 I = J + 1,MIN(N,J+K)
- TEMP = TEMP + CONJG(A(L+I,J))*X(IX)
- IX = IX + INCX
- 190 CONTINUE
- END IF
- X(JX) = TEMP
- JX = JX + INCX
- 200 CONTINUE
- END IF
- END IF
- END IF
-*
- RETURN
-*
-* End of CTBMV .
-*
- END
diff --git a/blas/drotm.f b/blas/drotm.f
deleted file mode 100644
index 63a3b1134..000000000
--- a/blas/drotm.f
+++ /dev/null
@@ -1,147 +0,0 @@
- SUBROUTINE DROTM(N,DX,INCX,DY,INCY,DPARAM)
-* .. Scalar Arguments ..
- INTEGER INCX,INCY,N
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION DPARAM(5),DX(*),DY(*)
-* ..
-*
-* Purpose
-* =======
-*
-* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX
-*
-* (DX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF DX ARE IN
-* (DY**T)
-*
-* DX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE
-* LX = (-INCX)*N, AND SIMILARLY FOR SY USING LY AND INCY.
-* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS..
-*
-* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0
-*
-* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0)
-* H=( ) ( ) ( ) ( )
-* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0).
-* SEE DROTMG FOR A DESCRIPTION OF DATA STORAGE IN DPARAM.
-*
-* Arguments
-* =========
-*
-* N (input) INTEGER
-* number of elements in input vector(s)
-*
-* DX (input/output) DOUBLE PRECISION array, dimension N
-* double precision vector with N elements
-*
-* INCX (input) INTEGER
-* storage spacing between elements of DX
-*
-* DY (input/output) DOUBLE PRECISION array, dimension N
-* double precision vector with N elements
-*
-* INCY (input) INTEGER
-* storage spacing between elements of DY
-*
-* DPARAM (input/output) DOUBLE PRECISION array, dimension 5
-* DPARAM(1)=DFLAG
-* DPARAM(2)=DH11
-* DPARAM(3)=DH21
-* DPARAM(4)=DH12
-* DPARAM(5)=DH22
-*
-* =====================================================================
-*
-* .. Local Scalars ..
- DOUBLE PRECISION DFLAG,DH11,DH12,DH21,DH22,TWO,W,Z,ZERO
- INTEGER I,KX,KY,NSTEPS
-* ..
-* .. Data statements ..
- DATA ZERO,TWO/0.D0,2.D0/
-* ..
-*
- DFLAG = DPARAM(1)
- IF (N.LE.0 .OR. (DFLAG+TWO.EQ.ZERO)) GO TO 140
- IF (.NOT. (INCX.EQ.INCY.AND.INCX.GT.0)) GO TO 70
-*
- NSTEPS = N*INCX
- IF (DFLAG) 50,10,30
- 10 CONTINUE
- DH12 = DPARAM(4)
- DH21 = DPARAM(3)
- DO 20 I = 1,NSTEPS,INCX
- W = DX(I)
- Z = DY(I)
- DX(I) = W + Z*DH12
- DY(I) = W*DH21 + Z
- 20 CONTINUE
- GO TO 140
- 30 CONTINUE
- DH11 = DPARAM(2)
- DH22 = DPARAM(5)
- DO 40 I = 1,NSTEPS,INCX
- W = DX(I)
- Z = DY(I)
- DX(I) = W*DH11 + Z
- DY(I) = -W + DH22*Z
- 40 CONTINUE
- GO TO 140
- 50 CONTINUE
- DH11 = DPARAM(2)
- DH12 = DPARAM(4)
- DH21 = DPARAM(3)
- DH22 = DPARAM(5)
- DO 60 I = 1,NSTEPS,INCX
- W = DX(I)
- Z = DY(I)
- DX(I) = W*DH11 + Z*DH12
- DY(I) = W*DH21 + Z*DH22
- 60 CONTINUE
- GO TO 140
- 70 CONTINUE
- KX = 1
- KY = 1
- IF (INCX.LT.0) KX = 1 + (1-N)*INCX
- IF (INCY.LT.0) KY = 1 + (1-N)*INCY
-*
- IF (DFLAG) 120,80,100
- 80 CONTINUE
- DH12 = DPARAM(4)
- DH21 = DPARAM(3)
- DO 90 I = 1,N
- W = DX(KX)
- Z = DY(KY)
- DX(KX) = W + Z*DH12
- DY(KY) = W*DH21 + Z
- KX = KX + INCX
- KY = KY + INCY
- 90 CONTINUE
- GO TO 140
- 100 CONTINUE
- DH11 = DPARAM(2)
- DH22 = DPARAM(5)
- DO 110 I = 1,N
- W = DX(KX)
- Z = DY(KY)
- DX(KX) = W*DH11 + Z
- DY(KY) = -W + DH22*Z
- KX = KX + INCX
- KY = KY + INCY
- 110 CONTINUE
- GO TO 140
- 120 CONTINUE
- DH11 = DPARAM(2)
- DH12 = DPARAM(4)
- DH21 = DPARAM(3)
- DH22 = DPARAM(5)
- DO 130 I = 1,N
- W = DX(KX)
- Z = DY(KY)
- DX(KX) = W*DH11 + Z*DH12
- DY(KY) = W*DH21 + Z*DH22
- KX = KX + INCX
- KY = KY + INCY
- 130 CONTINUE
- 140 CONTINUE
- RETURN
- END
diff --git a/blas/drotmg.f b/blas/drotmg.f
deleted file mode 100644
index 3ae647b08..000000000
--- a/blas/drotmg.f
+++ /dev/null
@@ -1,206 +0,0 @@
- SUBROUTINE DROTMG(DD1,DD2,DX1,DY1,DPARAM)
-* .. Scalar Arguments ..
- DOUBLE PRECISION DD1,DD2,DX1,DY1
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION DPARAM(5)
-* ..
-*
-* Purpose
-* =======
-*
-* CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS
-* THE SECOND COMPONENT OF THE 2-VECTOR (DSQRT(DD1)*DX1,DSQRT(DD2)*
-* DY2)**T.
-* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS..
-*
-* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0
-*
-* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0)
-* H=( ) ( ) ( ) ( )
-* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0).
-* LOCATIONS 2-4 OF DPARAM CONTAIN DH11, DH21, DH12, AND DH22
-* RESPECTIVELY. (VALUES OF 1.D0, -1.D0, OR 0.D0 IMPLIED BY THE
-* VALUE OF DPARAM(1) ARE NOT STORED IN DPARAM.)
-*
-* THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE
-* INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE
-* OF DD1 AND DD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM.
-*
-*
-* Arguments
-* =========
-*
-* DD1 (input/output) DOUBLE PRECISION
-*
-* DD2 (input/output) DOUBLE PRECISION
-*
-* DX1 (input/output) DOUBLE PRECISION
-*
-* DY1 (input) DOUBLE PRECISION
-*
-* DPARAM (input/output) DOUBLE PRECISION array, dimension 5
-* DPARAM(1)=DFLAG
-* DPARAM(2)=DH11
-* DPARAM(3)=DH21
-* DPARAM(4)=DH12
-* DPARAM(5)=DH22
-*
-* =====================================================================
-*
-* .. Local Scalars ..
- DOUBLE PRECISION DFLAG,DH11,DH12,DH21,DH22,DP1,DP2,DQ1,DQ2,DTEMP,
- + DU,GAM,GAMSQ,ONE,RGAMSQ,TWO,ZERO
- INTEGER IGO
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC DABS
-* ..
-* .. Data statements ..
-*
- DATA ZERO,ONE,TWO/0.D0,1.D0,2.D0/
- DATA GAM,GAMSQ,RGAMSQ/4096.D0,16777216.D0,5.9604645D-8/
-* ..
-
- IF (.NOT.DD1.LT.ZERO) GO TO 10
-* GO ZERO-H-D-AND-DX1..
- GO TO 60
- 10 CONTINUE
-* CASE-DD1-NONNEGATIVE
- DP2 = DD2*DY1
- IF (.NOT.DP2.EQ.ZERO) GO TO 20
- DFLAG = -TWO
- GO TO 260
-* REGULAR-CASE..
- 20 CONTINUE
- DP1 = DD1*DX1
- DQ2 = DP2*DY1
- DQ1 = DP1*DX1
-*
- IF (.NOT.DABS(DQ1).GT.DABS(DQ2)) GO TO 40
- DH21 = -DY1/DX1
- DH12 = DP2/DP1
-*
- DU = ONE - DH12*DH21
-*
- IF (.NOT.DU.LE.ZERO) GO TO 30
-* GO ZERO-H-D-AND-DX1..
- GO TO 60
- 30 CONTINUE
- DFLAG = ZERO
- DD1 = DD1/DU
- DD2 = DD2/DU
- DX1 = DX1*DU
-* GO SCALE-CHECK..
- GO TO 100
- 40 CONTINUE
- IF (.NOT.DQ2.LT.ZERO) GO TO 50
-* GO ZERO-H-D-AND-DX1..
- GO TO 60
- 50 CONTINUE
- DFLAG = ONE
- DH11 = DP1/DP2
- DH22 = DX1/DY1
- DU = ONE + DH11*DH22
- DTEMP = DD2/DU
- DD2 = DD1/DU
- DD1 = DTEMP
- DX1 = DY1*DU
-* GO SCALE-CHECK
- GO TO 100
-* PROCEDURE..ZERO-H-D-AND-DX1..
- 60 CONTINUE
- DFLAG = -ONE
- DH11 = ZERO
- DH12 = ZERO
- DH21 = ZERO
- DH22 = ZERO
-*
- DD1 = ZERO
- DD2 = ZERO
- DX1 = ZERO
-* RETURN..
- GO TO 220
-* PROCEDURE..FIX-H..
- 70 CONTINUE
- IF (.NOT.DFLAG.GE.ZERO) GO TO 90
-*
- IF (.NOT.DFLAG.EQ.ZERO) GO TO 80
- DH11 = ONE
- DH22 = ONE
- DFLAG = -ONE
- GO TO 90
- 80 CONTINUE
- DH21 = -ONE
- DH12 = ONE
- DFLAG = -ONE
- 90 CONTINUE
- GO TO IGO(120,150,180,210)
-* PROCEDURE..SCALE-CHECK
- 100 CONTINUE
- 110 CONTINUE
- IF (.NOT.DD1.LE.RGAMSQ) GO TO 130
- IF (DD1.EQ.ZERO) GO TO 160
- ASSIGN 120 TO IGO
-* FIX-H..
- GO TO 70
- 120 CONTINUE
- DD1 = DD1*GAM**2
- DX1 = DX1/GAM
- DH11 = DH11/GAM
- DH12 = DH12/GAM
- GO TO 110
- 130 CONTINUE
- 140 CONTINUE
- IF (.NOT.DD1.GE.GAMSQ) GO TO 160
- ASSIGN 150 TO IGO
-* FIX-H..
- GO TO 70
- 150 CONTINUE
- DD1 = DD1/GAM**2
- DX1 = DX1*GAM
- DH11 = DH11*GAM
- DH12 = DH12*GAM
- GO TO 140
- 160 CONTINUE
- 170 CONTINUE
- IF (.NOT.DABS(DD2).LE.RGAMSQ) GO TO 190
- IF (DD2.EQ.ZERO) GO TO 220
- ASSIGN 180 TO IGO
-* FIX-H..
- GO TO 70
- 180 CONTINUE
- DD2 = DD2*GAM**2
- DH21 = DH21/GAM
- DH22 = DH22/GAM
- GO TO 170
- 190 CONTINUE
- 200 CONTINUE
- IF (.NOT.DABS(DD2).GE.GAMSQ) GO TO 220
- ASSIGN 210 TO IGO
-* FIX-H..
- GO TO 70
- 210 CONTINUE
- DD2 = DD2/GAM**2
- DH21 = DH21*GAM
- DH22 = DH22*GAM
- GO TO 200
- 220 CONTINUE
- IF (DFLAG) 250,230,240
- 230 CONTINUE
- DPARAM(3) = DH21
- DPARAM(4) = DH12
- GO TO 260
- 240 CONTINUE
- DPARAM(2) = DH11
- DPARAM(5) = DH22
- GO TO 260
- 250 CONTINUE
- DPARAM(2) = DH11
- DPARAM(3) = DH21
- DPARAM(4) = DH12
- DPARAM(5) = DH22
- 260 CONTINUE
- DPARAM(1) = DFLAG
- RETURN
- END
diff --git a/blas/dsbmv.f b/blas/dsbmv.f
deleted file mode 100644
index 8c82d1fa1..000000000
--- a/blas/dsbmv.f
+++ /dev/null
@@ -1,304 +0,0 @@
- SUBROUTINE DSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
-* .. Scalar Arguments ..
- DOUBLE PRECISION ALPHA,BETA
- INTEGER INCX,INCY,K,LDA,N
- CHARACTER UPLO
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A(LDA,*),X(*),Y(*)
-* ..
-*
-* Purpose
-* =======
-*
-* DSBMV performs the matrix-vector operation
-*
-* y := alpha*A*x + beta*y,
-*
-* where alpha and beta are scalars, x and y are n element vectors and
-* A is an n by n symmetric band matrix, with k super-diagonals.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the upper or lower
-* triangular part of the band matrix A is being supplied as
-* follows:
-*
-* UPLO = 'U' or 'u' The upper triangular part of A is
-* being supplied.
-*
-* UPLO = 'L' or 'l' The lower triangular part of A is
-* being supplied.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* K - INTEGER.
-* On entry, K specifies the number of super-diagonals of the
-* matrix A. K must satisfy 0 .le. K.
-* Unchanged on exit.
-*
-* ALPHA - DOUBLE PRECISION.
-* On entry, ALPHA specifies the scalar alpha.
-* Unchanged on exit.
-*
-* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
-* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
-* by n part of the array A must contain the upper triangular
-* band part of the symmetric matrix, supplied column by
-* column, with the leading diagonal of the matrix in row
-* ( k + 1 ) of the array, the first super-diagonal starting at
-* position 2 in row k, and so on. The top left k by k triangle
-* of the array A is not referenced.
-* The following program segment will transfer the upper
-* triangular part of a symmetric band matrix from conventional
-* full matrix storage to band storage:
-*
-* DO 20, J = 1, N
-* M = K + 1 - J
-* DO 10, I = MAX( 1, J - K ), J
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
-* by n part of the array A must contain the lower triangular
-* band part of the symmetric matrix, supplied column by
-* column, with the leading diagonal of the matrix in row 1 of
-* the array, the first sub-diagonal starting at position 1 in
-* row 2, and so on. The bottom right k by k triangle of the
-* array A is not referenced.
-* The following program segment will transfer the lower
-* triangular part of a symmetric band matrix from conventional
-* full matrix storage to band storage:
-*
-* DO 20, J = 1, N
-* M = 1 - J
-* DO 10, I = J, MIN( N, J + K )
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( k + 1 ).
-* Unchanged on exit.
-*
-* X - DOUBLE PRECISION array of DIMENSION at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the
-* vector x.
-* Unchanged on exit.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* BETA - DOUBLE PRECISION.
-* On entry, BETA specifies the scalar beta.
-* Unchanged on exit.
-*
-* Y - DOUBLE PRECISION array of DIMENSION at least
-* ( 1 + ( n - 1 )*abs( INCY ) ).
-* Before entry, the incremented array Y must contain the
-* vector y. On exit, Y is overwritten by the updated vector y.
-*
-* INCY - INTEGER.
-* On entry, INCY specifies the increment for the elements of
-* Y. INCY must not be zero.
-* Unchanged on exit.
-*
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ONE,ZERO
- PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
-* ..
-* .. Local Scalars ..
- DOUBLE PRECISION TEMP1,TEMP2
- INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (N.LT.0) THEN
- INFO = 2
- ELSE IF (K.LT.0) THEN
- INFO = 3
- ELSE IF (LDA.LT. (K+1)) THEN
- INFO = 6
- ELSE IF (INCX.EQ.0) THEN
- INFO = 8
- ELSE IF (INCY.EQ.0) THEN
- INFO = 11
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('DSBMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
-*
-* Set up the start points in X and Y.
-*
- IF (INCX.GT.0) THEN
- KX = 1
- ELSE
- KX = 1 - (N-1)*INCX
- END IF
- IF (INCY.GT.0) THEN
- KY = 1
- ELSE
- KY = 1 - (N-1)*INCY
- END IF
-*
-* Start the operations. In this version the elements of the array A
-* are accessed sequentially with one pass through A.
-*
-* First form y := beta*y.
-*
- IF (BETA.NE.ONE) THEN
- IF (INCY.EQ.1) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 10 I = 1,N
- Y(I) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1,N
- Y(I) = BETA*Y(I)
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF (BETA.EQ.ZERO) THEN
- DO 30 I = 1,N
- Y(IY) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1,N
- Y(IY) = BETA*Y(IY)
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF (ALPHA.EQ.ZERO) RETURN
- IF (LSAME(UPLO,'U')) THEN
-*
-* Form y when upper triangle of A is stored.
-*
- KPLUS1 = K + 1
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 60 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- L = KPLUS1 - J
- DO 50 I = MAX(1,J-K),J - 1
- Y(I) = Y(I) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + A(L+I,J)*X(I)
- 50 CONTINUE
- Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- IX = KX
- IY = KY
- L = KPLUS1 - J
- DO 70 I = MAX(1,J-K),J - 1
- Y(IY) = Y(IY) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + A(L+I,J)*X(IX)
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- IF (J.GT.K) THEN
- KX = KX + INCX
- KY = KY + INCY
- END IF
- 80 CONTINUE
- END IF
- ELSE
-*
-* Form y when lower triangle of A is stored.
-*
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 100 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- Y(J) = Y(J) + TEMP1*A(1,J)
- L = 1 - J
- DO 90 I = J + 1,MIN(N,J+K)
- Y(I) = Y(I) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + A(L+I,J)*X(I)
- 90 CONTINUE
- Y(J) = Y(J) + ALPHA*TEMP2
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- Y(JY) = Y(JY) + TEMP1*A(1,J)
- L = 1 - J
- IX = JX
- IY = JY
- DO 110 I = J + 1,MIN(N,J+K)
- IX = IX + INCX
- IY = IY + INCY
- Y(IY) = Y(IY) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + A(L+I,J)*X(IX)
- 110 CONTINUE
- Y(JY) = Y(JY) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 120 CONTINUE
- END IF
- END IF
-*
- RETURN
-*
-* End of DSBMV .
-*
- END
diff --git a/blas/dspmv.f b/blas/dspmv.f
deleted file mode 100644
index f6e121e76..000000000
--- a/blas/dspmv.f
+++ /dev/null
@@ -1,265 +0,0 @@
- SUBROUTINE DSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
-* .. Scalar Arguments ..
- DOUBLE PRECISION ALPHA,BETA
- INTEGER INCX,INCY,N
- CHARACTER UPLO
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION AP(*),X(*),Y(*)
-* ..
-*
-* Purpose
-* =======
-*
-* DSPMV performs the matrix-vector operation
-*
-* y := alpha*A*x + beta*y,
-*
-* where alpha and beta are scalars, x and y are n element vectors and
-* A is an n by n symmetric matrix, supplied in packed form.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the upper or lower
-* triangular part of the matrix A is supplied in the packed
-* array AP as follows:
-*
-* UPLO = 'U' or 'u' The upper triangular part of A is
-* supplied in AP.
-*
-* UPLO = 'L' or 'l' The lower triangular part of A is
-* supplied in AP.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* ALPHA - DOUBLE PRECISION.
-* On entry, ALPHA specifies the scalar alpha.
-* Unchanged on exit.
-*
-* AP - DOUBLE PRECISION array of DIMENSION at least
-* ( ( n*( n + 1 ) )/2 ).
-* Before entry with UPLO = 'U' or 'u', the array AP must
-* contain the upper triangular part of the symmetric matrix
-* packed sequentially, column by column, so that AP( 1 )
-* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
-* and a( 2, 2 ) respectively, and so on.
-* Before entry with UPLO = 'L' or 'l', the array AP must
-* contain the lower triangular part of the symmetric matrix
-* packed sequentially, column by column, so that AP( 1 )
-* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
-* and a( 3, 1 ) respectively, and so on.
-* Unchanged on exit.
-*
-* X - DOUBLE PRECISION array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element vector x.
-* Unchanged on exit.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* BETA - DOUBLE PRECISION.
-* On entry, BETA specifies the scalar beta. When BETA is
-* supplied as zero then Y need not be set on input.
-* Unchanged on exit.
-*
-* Y - DOUBLE PRECISION array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCY ) ).
-* Before entry, the incremented array Y must contain the n
-* element vector y. On exit, Y is overwritten by the updated
-* vector y.
-*
-* INCY - INTEGER.
-* On entry, INCY specifies the increment for the elements of
-* Y. INCY must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ONE,ZERO
- PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
-* ..
-* .. Local Scalars ..
- DOUBLE PRECISION TEMP1,TEMP2
- INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (N.LT.0) THEN
- INFO = 2
- ELSE IF (INCX.EQ.0) THEN
- INFO = 6
- ELSE IF (INCY.EQ.0) THEN
- INFO = 9
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('DSPMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
-*
-* Set up the start points in X and Y.
-*
- IF (INCX.GT.0) THEN
- KX = 1
- ELSE
- KX = 1 - (N-1)*INCX
- END IF
- IF (INCY.GT.0) THEN
- KY = 1
- ELSE
- KY = 1 - (N-1)*INCY
- END IF
-*
-* Start the operations. In this version the elements of the array AP
-* are accessed sequentially with one pass through AP.
-*
-* First form y := beta*y.
-*
- IF (BETA.NE.ONE) THEN
- IF (INCY.EQ.1) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 10 I = 1,N
- Y(I) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1,N
- Y(I) = BETA*Y(I)
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF (BETA.EQ.ZERO) THEN
- DO 30 I = 1,N
- Y(IY) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1,N
- Y(IY) = BETA*Y(IY)
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF (ALPHA.EQ.ZERO) RETURN
- KK = 1
- IF (LSAME(UPLO,'U')) THEN
-*
-* Form y when AP contains the upper triangle.
-*
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 60 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- K = KK
- DO 50 I = 1,J - 1
- Y(I) = Y(I) + TEMP1*AP(K)
- TEMP2 = TEMP2 + AP(K)*X(I)
- K = K + 1
- 50 CONTINUE
- Y(J) = Y(J) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
- KK = KK + J
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- IX = KX
- IY = KY
- DO 70 K = KK,KK + J - 2
- Y(IY) = Y(IY) + TEMP1*AP(K)
- TEMP2 = TEMP2 + AP(K)*X(IX)
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y(JY) = Y(JY) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + J
- 80 CONTINUE
- END IF
- ELSE
-*
-* Form y when AP contains the lower triangle.
-*
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 100 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- Y(J) = Y(J) + TEMP1*AP(KK)
- K = KK + 1
- DO 90 I = J + 1,N
- Y(I) = Y(I) + TEMP1*AP(K)
- TEMP2 = TEMP2 + AP(K)*X(I)
- K = K + 1
- 90 CONTINUE
- Y(J) = Y(J) + ALPHA*TEMP2
- KK = KK + (N-J+1)
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- Y(JY) = Y(JY) + TEMP1*AP(KK)
- IX = JX
- IY = JY
- DO 110 K = KK + 1,KK + N - J
- IX = IX + INCX
- IY = IY + INCY
- Y(IY) = Y(IY) + TEMP1*AP(K)
- TEMP2 = TEMP2 + AP(K)*X(IX)
- 110 CONTINUE
- Y(JY) = Y(JY) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + (N-J+1)
- 120 CONTINUE
- END IF
- END IF
-*
- RETURN
-*
-* End of DSPMV .
-*
- END
diff --git a/blas/dtbmv.f b/blas/dtbmv.f
deleted file mode 100644
index a87ffdeae..000000000
--- a/blas/dtbmv.f
+++ /dev/null
@@ -1,335 +0,0 @@
- SUBROUTINE DTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
-* .. Scalar Arguments ..
- INTEGER INCX,K,LDA,N
- CHARACTER DIAG,TRANS,UPLO
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A(LDA,*),X(*)
-* ..
-*
-* Purpose
-* =======
-*
-* DTBMV performs one of the matrix-vector operations
-*
-* x := A*x, or x := A'*x,
-*
-* where x is an n element vector and A is an n by n unit, or non-unit,
-* upper or lower triangular band matrix, with ( k + 1 ) diagonals.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the matrix is an upper or
-* lower triangular matrix as follows:
-*
-* UPLO = 'U' or 'u' A is an upper triangular matrix.
-*
-* UPLO = 'L' or 'l' A is a lower triangular matrix.
-*
-* Unchanged on exit.
-*
-* TRANS - CHARACTER*1.
-* On entry, TRANS specifies the operation to be performed as
-* follows:
-*
-* TRANS = 'N' or 'n' x := A*x.
-*
-* TRANS = 'T' or 't' x := A'*x.
-*
-* TRANS = 'C' or 'c' x := A'*x.
-*
-* Unchanged on exit.
-*
-* DIAG - CHARACTER*1.
-* On entry, DIAG specifies whether or not A is unit
-* triangular as follows:
-*
-* DIAG = 'U' or 'u' A is assumed to be unit triangular.
-*
-* DIAG = 'N' or 'n' A is not assumed to be unit
-* triangular.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* K - INTEGER.
-* On entry with UPLO = 'U' or 'u', K specifies the number of
-* super-diagonals of the matrix A.
-* On entry with UPLO = 'L' or 'l', K specifies the number of
-* sub-diagonals of the matrix A.
-* K must satisfy 0 .le. K.
-* Unchanged on exit.
-*
-* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
-* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
-* by n part of the array A must contain the upper triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row
-* ( k + 1 ) of the array, the first super-diagonal starting at
-* position 2 in row k, and so on. The top left k by k triangle
-* of the array A is not referenced.
-* The following program segment will transfer an upper
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = K + 1 - J
-* DO 10, I = MAX( 1, J - K ), J
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
-* by n part of the array A must contain the lower triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row 1 of
-* the array, the first sub-diagonal starting at position 1 in
-* row 2, and so on. The bottom right k by k triangle of the
-* array A is not referenced.
-* The following program segment will transfer a lower
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = 1 - J
-* DO 10, I = J, MIN( N, J + K )
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Note that when DIAG = 'U' or 'u' the elements of the array A
-* corresponding to the diagonal elements of the matrix are not
-* referenced, but are assumed to be unity.
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( k + 1 ).
-* Unchanged on exit.
-*
-* X - DOUBLE PRECISION array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element vector x. On exit, X is overwritten with the
-* tranformed vector x.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER (ZERO=0.0D+0)
-* ..
-* .. Local Scalars ..
- DOUBLE PRECISION TEMP
- INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
- LOGICAL NOUNIT
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 2
- ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
- INFO = 3
- ELSE IF (N.LT.0) THEN
- INFO = 4
- ELSE IF (K.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT. (K+1)) THEN
- INFO = 7
- ELSE IF (INCX.EQ.0) THEN
- INFO = 9
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('DTBMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF (N.EQ.0) RETURN
-*
- NOUNIT = LSAME(DIAG,'N')
-*
-* Set up the start point in X if the increment is not unity. This
-* will be ( N - 1 )*INCX too small for descending loops.
-*
- IF (INCX.LE.0) THEN
- KX = 1 - (N-1)*INCX
- ELSE IF (INCX.NE.1) THEN
- KX = 1
- END IF
-*
-* Start the operations. In this version the elements of A are
-* accessed sequentially with one pass through A.
-*
- IF (LSAME(TRANS,'N')) THEN
-*
-* Form x := A*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 20 J = 1,N
- IF (X(J).NE.ZERO) THEN
- TEMP = X(J)
- L = KPLUS1 - J
- DO 10 I = MAX(1,J-K),J - 1
- X(I) = X(I) + TEMP*A(L+I,J)
- 10 CONTINUE
- IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
- END IF
- 20 CONTINUE
- ELSE
- JX = KX
- DO 40 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = X(JX)
- IX = KX
- L = KPLUS1 - J
- DO 30 I = MAX(1,J-K),J - 1
- X(IX) = X(IX) + TEMP*A(L+I,J)
- IX = IX + INCX
- 30 CONTINUE
- IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
- END IF
- JX = JX + INCX
- IF (J.GT.K) KX = KX + INCX
- 40 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 60 J = N,1,-1
- IF (X(J).NE.ZERO) THEN
- TEMP = X(J)
- L = 1 - J
- DO 50 I = MIN(N,J+K),J + 1,-1
- X(I) = X(I) + TEMP*A(L+I,J)
- 50 CONTINUE
- IF (NOUNIT) X(J) = X(J)*A(1,J)
- END IF
- 60 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 80 J = N,1,-1
- IF (X(JX).NE.ZERO) THEN
- TEMP = X(JX)
- IX = KX
- L = 1 - J
- DO 70 I = MIN(N,J+K),J + 1,-1
- X(IX) = X(IX) + TEMP*A(L+I,J)
- IX = IX - INCX
- 70 CONTINUE
- IF (NOUNIT) X(JX) = X(JX)*A(1,J)
- END IF
- JX = JX - INCX
- IF ((N-J).GE.K) KX = KX - INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
-*
-* Form x := A'*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 100 J = N,1,-1
- TEMP = X(J)
- L = KPLUS1 - J
- IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
- DO 90 I = J - 1,MAX(1,J-K),-1
- TEMP = TEMP + A(L+I,J)*X(I)
- 90 CONTINUE
- X(J) = TEMP
- 100 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 120 J = N,1,-1
- TEMP = X(JX)
- KX = KX - INCX
- IX = KX
- L = KPLUS1 - J
- IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
- DO 110 I = J - 1,MAX(1,J-K),-1
- TEMP = TEMP + A(L+I,J)*X(IX)
- IX = IX - INCX
- 110 CONTINUE
- X(JX) = TEMP
- JX = JX - INCX
- 120 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 140 J = 1,N
- TEMP = X(J)
- L = 1 - J
- IF (NOUNIT) TEMP = TEMP*A(1,J)
- DO 130 I = J + 1,MIN(N,J+K)
- TEMP = TEMP + A(L+I,J)*X(I)
- 130 CONTINUE
- X(J) = TEMP
- 140 CONTINUE
- ELSE
- JX = KX
- DO 160 J = 1,N
- TEMP = X(JX)
- KX = KX + INCX
- IX = KX
- L = 1 - J
- IF (NOUNIT) TEMP = TEMP*A(1,J)
- DO 150 I = J + 1,MIN(N,J+K)
- TEMP = TEMP + A(L+I,J)*X(IX)
- IX = IX + INCX
- 150 CONTINUE
- X(JX) = TEMP
- JX = JX + INCX
- 160 CONTINUE
- END IF
- END IF
- END IF
-*
- RETURN
-*
-* End of DTBMV .
-*
- END
diff --git a/blas/f2c/chbmv.c b/blas/f2c/chbmv.c
new file mode 100644
index 000000000..f218fe3f5
--- /dev/null
+++ b/blas/f2c/chbmv.c
@@ -0,0 +1,487 @@
+/* chbmv.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int chbmv_(char *uplo, integer *n, integer *k, complex *
+ alpha, complex *a, integer *lda, complex *x, integer *incx, complex *
+ beta, complex *y, integer *incy, ftnlen uplo_len)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ real r__1;
+ complex q__1, q__2, q__3, q__4;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
+ complex temp1, temp2;
+ extern logical lsame_(char *, char *, ftnlen, ftnlen);
+ integer kplus1;
+ extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CHBMV performs the matrix-vector operation */
+
+/* y := alpha*A*x + beta*y, */
+
+/* where alpha and beta are scalars, x and y are n element vectors and */
+/* A is an n by n hermitian band matrix, with k super-diagonals. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the upper or lower */
+/* triangular part of the band matrix A is being supplied as */
+/* follows: */
+
+/* UPLO = 'U' or 'u' The upper triangular part of A is */
+/* being supplied. */
+
+/* UPLO = 'L' or 'l' The lower triangular part of A is */
+/* being supplied. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix A. */
+/* N must be at least zero. */
+/* Unchanged on exit. */
+
+/* K - INTEGER. */
+/* On entry, K specifies the number of super-diagonals of the */
+/* matrix A. K must satisfy 0 .le. K. */
+/* Unchanged on exit. */
+
+/* ALPHA - COMPLEX . */
+/* On entry, ALPHA specifies the scalar alpha. */
+/* Unchanged on exit. */
+
+/* A - COMPLEX array of DIMENSION ( LDA, n ). */
+/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
+/* by n part of the array A must contain the upper triangular */
+/* band part of the hermitian matrix, supplied column by */
+/* column, with the leading diagonal of the matrix in row */
+/* ( k + 1 ) of the array, the first super-diagonal starting at */
+/* position 2 in row k, and so on. The top left k by k triangle */
+/* of the array A is not referenced. */
+/* The following program segment will transfer the upper */
+/* triangular part of a hermitian band matrix from conventional */
+/* full matrix storage to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = K + 1 - J */
+/* DO 10, I = MAX( 1, J - K ), J */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
+/* by n part of the array A must contain the lower triangular */
+/* band part of the hermitian matrix, supplied column by */
+/* column, with the leading diagonal of the matrix in row 1 of */
+/* the array, the first sub-diagonal starting at position 1 in */
+/* row 2, and so on. The bottom right k by k triangle of the */
+/* array A is not referenced. */
+/* The following program segment will transfer the lower */
+/* triangular part of a hermitian band matrix from conventional */
+/* full matrix storage to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = 1 - J */
+/* DO 10, I = J, MIN( N, J + K ) */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Note that the imaginary parts of the diagonal elements need */
+/* not be set and are assumed to be zero. */
+/* Unchanged on exit. */
+
+/* LDA - INTEGER. */
+/* On entry, LDA specifies the first dimension of A as declared */
+/* in the calling (sub) program. LDA must be at least */
+/* ( k + 1 ). */
+/* Unchanged on exit. */
+
+/* X - COMPLEX array of DIMENSION at least */
+/* ( 1 + ( n - 1 )*abs( INCX ) ). */
+/* Before entry, the incremented array X must contain the */
+/* vector x. */
+/* Unchanged on exit. */
+
+/* INCX - INTEGER. */
+/* On entry, INCX specifies the increment for the elements of */
+/* X. INCX must not be zero. */
+/* Unchanged on exit. */
+
+/* BETA - COMPLEX . */
+/* On entry, BETA specifies the scalar beta. */
+/* Unchanged on exit. */
+
+/* Y - COMPLEX array of DIMENSION at least */
+/* ( 1 + ( n - 1 )*abs( INCY ) ). */
+/* Before entry, the incremented array Y must contain the */
+/* vector y. On exit, Y is overwritten by the updated vector y. */
+
+/* INCY - INTEGER. */
+/* On entry, INCY specifies the increment for the elements of */
+/* Y. INCY must not be zero. */
+/* Unchanged on exit. */
+
+/* Further Details */
+/* =============== */
+
+/* Level 2 Blas routine. */
+
+/* -- Written on 22-October-1986. */
+/* Jack Dongarra, Argonne National Lab. */
+/* Jeremy Du Croz, Nag Central Office. */
+/* Sven Hammarling, Nag Central Office. */
+/* Richard Hanson, Sandia National Labs. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+ --y;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+ ftnlen)1, (ftnlen)1)) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*k < 0) {
+ info = 3;
+ } else if (*lda < *k + 1) {
+ info = 6;
+ } else if (*incx == 0) {
+ info = 8;
+ } else if (*incy == 0) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("CHBMV ", &info, (ftnlen)6);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f &&
+ beta->i == 0.f))) {
+ return 0;
+ }
+
+/* Set up the start points in X and Y. */
+
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+
+/* Start the operations. In this version the elements of the array A */
+/* are accessed sequentially with one pass through A. */
+
+/* First form y := beta*y. */
+
+ if (beta->r != 1.f || beta->i != 0.f) {
+ if (*incy == 1) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ y[i__2].r = 0.f, y[i__2].i = 0.f;
+/* L10: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ y[i__2].r = 0.f, y[i__2].i = 0.f;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ i__3 = iy;
+ q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (alpha->r == 0.f && alpha->i == 0.f) {
+ return 0;
+ }
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+
+/* Form y when upper triangle of A is stored. */
+
+ kplus1 = *k + 1;
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ temp2.r = 0.f, temp2.i = 0.f;
+ l = kplus1 - j;
+/* Computing MAX */
+ i__2 = 1, i__3 = j - *k;
+ i__4 = j - 1;
+ for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ i__5 = l + i__ + j * a_dim1;
+ q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
+ i__2 = i__;
+ q__2.r = q__3.r * x[i__2].r - q__3.i * x[i__2].i, q__2.i =
+ q__3.r * x[i__2].i + q__3.i * x[i__2].r;
+ q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+ temp2.r = q__1.r, temp2.i = q__1.i;
+/* L50: */
+ }
+ i__4 = j;
+ i__2 = j;
+ i__3 = kplus1 + j * a_dim1;
+ r__1 = a[i__3].r;
+ q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
+ q__2.r = y[i__2].r + q__3.r, q__2.i = y[i__2].i + q__3.i;
+ q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
+ y[i__4].r = q__1.r, y[i__4].i = q__1.i;
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__4 = jx;
+ q__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, q__1.i =
+ alpha->r * x[i__4].i + alpha->i * x[i__4].r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ temp2.r = 0.f, temp2.i = 0.f;
+ ix = kx;
+ iy = ky;
+ l = kplus1 - j;
+/* Computing MAX */
+ i__4 = 1, i__2 = j - *k;
+ i__3 = j - 1;
+ for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
+ i__4 = iy;
+ i__2 = iy;
+ i__5 = l + i__ + j * a_dim1;
+ q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
+ y[i__4].r = q__1.r, y[i__4].i = q__1.i;
+ r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
+ i__4 = ix;
+ q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
+ q__3.r * x[i__4].i + q__3.i * x[i__4].r;
+ q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+ temp2.r = q__1.r, temp2.i = q__1.i;
+ ix += *incx;
+ iy += *incy;
+/* L70: */
+ }
+ i__3 = jy;
+ i__4 = jy;
+ i__2 = kplus1 + j * a_dim1;
+ r__1 = a[i__2].r;
+ q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
+ q__2.r = y[i__4].r + q__3.r, q__2.i = y[i__4].i + q__3.i;
+ q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+ jx += *incx;
+ jy += *incy;
+ if (j > *k) {
+ kx += *incx;
+ ky += *incy;
+ }
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y when lower triangle of A is stored. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__3 = j;
+ q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i =
+ alpha->r * x[i__3].i + alpha->i * x[i__3].r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ temp2.r = 0.f, temp2.i = 0.f;
+ i__3 = j;
+ i__4 = j;
+ i__2 = j * a_dim1 + 1;
+ r__1 = a[i__2].r;
+ q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
+ q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+ l = 1 - j;
+/* Computing MIN */
+ i__4 = *n, i__2 = j + *k;
+ i__3 = min(i__4,i__2);
+ for (i__ = j + 1; i__ <= i__3; ++i__) {
+ i__4 = i__;
+ i__2 = i__;
+ i__5 = l + i__ + j * a_dim1;
+ q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
+ y[i__4].r = q__1.r, y[i__4].i = q__1.i;
+ r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
+ i__4 = i__;
+ q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
+ q__3.r * x[i__4].i + q__3.i * x[i__4].r;
+ q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+ temp2.r = q__1.r, temp2.i = q__1.i;
+/* L90: */
+ }
+ i__3 = j;
+ i__4 = j;
+ q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+/* L100: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__3 = jx;
+ q__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, q__1.i =
+ alpha->r * x[i__3].i + alpha->i * x[i__3].r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ temp2.r = 0.f, temp2.i = 0.f;
+ i__3 = jy;
+ i__4 = jy;
+ i__2 = j * a_dim1 + 1;
+ r__1 = a[i__2].r;
+ q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
+ q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+ l = 1 - j;
+ ix = jx;
+ iy = jy;
+/* Computing MIN */
+ i__4 = *n, i__2 = j + *k;
+ i__3 = min(i__4,i__2);
+ for (i__ = j + 1; i__ <= i__3; ++i__) {
+ ix += *incx;
+ iy += *incy;
+ i__4 = iy;
+ i__2 = iy;
+ i__5 = l + i__ + j * a_dim1;
+ q__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ q__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ q__1.r = y[i__2].r + q__2.r, q__1.i = y[i__2].i + q__2.i;
+ y[i__4].r = q__1.r, y[i__4].i = q__1.i;
+ r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
+ i__4 = ix;
+ q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i, q__2.i =
+ q__3.r * x[i__4].i + q__3.i * x[i__4].r;
+ q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+ temp2.r = q__1.r, temp2.i = q__1.i;
+/* L110: */
+ }
+ i__3 = jy;
+ i__4 = jy;
+ q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+ jx += *incx;
+ jy += *incy;
+/* L120: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CHBMV . */
+
+} /* chbmv_ */
+
diff --git a/blas/f2c/chpmv.c b/blas/f2c/chpmv.c
new file mode 100644
index 000000000..65bab1c7f
--- /dev/null
+++ b/blas/f2c/chpmv.c
@@ -0,0 +1,438 @@
+/* chpmv.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int chpmv_(char *uplo, integer *n, complex *alpha, complex *
+ ap, complex *x, integer *incx, complex *beta, complex *y, integer *
+ incy, ftnlen uplo_len)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3, i__4, i__5;
+ real r__1;
+ complex q__1, q__2, q__3, q__4;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
+ complex temp1, temp2;
+ extern logical lsame_(char *, char *, ftnlen, ftnlen);
+ extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CHPMV performs the matrix-vector operation */
+
+/* y := alpha*A*x + beta*y, */
+
+/* where alpha and beta are scalars, x and y are n element vectors and */
+/* A is an n by n hermitian matrix, supplied in packed form. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the upper or lower */
+/* triangular part of the matrix A is supplied in the packed */
+/* array AP as follows: */
+
+/* UPLO = 'U' or 'u' The upper triangular part of A is */
+/* supplied in AP. */
+
+/* UPLO = 'L' or 'l' The lower triangular part of A is */
+/* supplied in AP. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix A. */
+/* N must be at least zero. */
+/* Unchanged on exit. */
+
+/* ALPHA - COMPLEX . */
+/* On entry, ALPHA specifies the scalar alpha. */
+/* Unchanged on exit. */
+
+/* AP - COMPLEX array of DIMENSION at least */
+/* ( ( n*( n + 1 ) )/2 ). */
+/* Before entry with UPLO = 'U' or 'u', the array AP must */
+/* contain the upper triangular part of the hermitian matrix */
+/* packed sequentially, column by column, so that AP( 1 ) */
+/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
+/* and a( 2, 2 ) respectively, and so on. */
+/* Before entry with UPLO = 'L' or 'l', the array AP must */
+/* contain the lower triangular part of the hermitian matrix */
+/* packed sequentially, column by column, so that AP( 1 ) */
+/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
+/* and a( 3, 1 ) respectively, and so on. */
+/* Note that the imaginary parts of the diagonal elements need */
+/* not be set and are assumed to be zero. */
+/* Unchanged on exit. */
+
+/* X - COMPLEX array of dimension at least */
+/* ( 1 + ( n - 1 )*abs( INCX ) ). */
+/* Before entry, the incremented array X must contain the n */
+/* element vector x. */
+/* Unchanged on exit. */
+
+/* INCX - INTEGER. */
+/* On entry, INCX specifies the increment for the elements of */
+/* X. INCX must not be zero. */
+/* Unchanged on exit. */
+
+/* BETA - COMPLEX . */
+/* On entry, BETA specifies the scalar beta. When BETA is */
+/* supplied as zero then Y need not be set on input. */
+/* Unchanged on exit. */
+
+/* Y - COMPLEX array of dimension at least */
+/* ( 1 + ( n - 1 )*abs( INCY ) ). */
+/* Before entry, the incremented array Y must contain the n */
+/* element vector y. On exit, Y is overwritten by the updated */
+/* vector y. */
+
+/* INCY - INTEGER. */
+/* On entry, INCY specifies the increment for the elements of */
+/* Y. INCY must not be zero. */
+/* Unchanged on exit. */
+
+/* Further Details */
+/* =============== */
+
+/* Level 2 Blas routine. */
+
+/* -- Written on 22-October-1986. */
+/* Jack Dongarra, Argonne National Lab. */
+/* Jeremy Du Croz, Nag Central Office. */
+/* Sven Hammarling, Nag Central Office. */
+/* Richard Hanson, Sandia National Labs. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --y;
+ --x;
+ --ap;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+ ftnlen)1, (ftnlen)1)) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*incx == 0) {
+ info = 6;
+ } else if (*incy == 0) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("CHPMV ", &info, (ftnlen)6);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0 || (alpha->r == 0.f && alpha->i == 0.f && (beta->r == 1.f &&
+ beta->i == 0.f))) {
+ return 0;
+ }
+
+/* Set up the start points in X and Y. */
+
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+
+/* Start the operations. In this version the elements of the array AP */
+/* are accessed sequentially with one pass through AP. */
+
+/* First form y := beta*y. */
+
+ if (beta->r != 1.f || beta->i != 0.f) {
+ if (*incy == 1) {
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ y[i__2].r = 0.f, y[i__2].i = 0.f;
+/* L10: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (beta->r == 0.f && beta->i == 0.f) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ y[i__2].r = 0.f, y[i__2].i = 0.f;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ i__3 = iy;
+ q__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ q__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (alpha->r == 0.f && alpha->i == 0.f) {
+ return 0;
+ }
+ kk = 1;
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+
+/* Form y when AP contains the upper triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ temp2.r = 0.f, temp2.i = 0.f;
+ k = kk;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = k;
+ q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
+ q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
+ .r;
+ q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+ r_cnjg(&q__3, &ap[k]);
+ i__3 = i__;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
+ q__3.r * x[i__3].i + q__3.i * x[i__3].r;
+ q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+ temp2.r = q__1.r, temp2.i = q__1.i;
+ ++k;
+/* L50: */
+ }
+ i__2 = j;
+ i__3 = j;
+ i__4 = kk + j - 1;
+ r__1 = ap[i__4].r;
+ q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
+ q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
+ q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ kk += j;
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ temp2.r = 0.f, temp2.i = 0.f;
+ ix = kx;
+ iy = ky;
+ i__2 = kk + j - 2;
+ for (k = kk; k <= i__2; ++k) {
+ i__3 = iy;
+ i__4 = iy;
+ i__5 = k;
+ q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
+ q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
+ .r;
+ q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+ r_cnjg(&q__3, &ap[k]);
+ i__3 = ix;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
+ q__3.r * x[i__3].i + q__3.i * x[i__3].r;
+ q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+ temp2.r = q__1.r, temp2.i = q__1.i;
+ ix += *incx;
+ iy += *incy;
+/* L70: */
+ }
+ i__2 = jy;
+ i__3 = jy;
+ i__4 = kk + j - 1;
+ r__1 = ap[i__4].r;
+ q__3.r = r__1 * temp1.r, q__3.i = r__1 * temp1.i;
+ q__2.r = y[i__3].r + q__3.r, q__2.i = y[i__3].i + q__3.i;
+ q__4.r = alpha->r * temp2.r - alpha->i * temp2.i, q__4.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ jx += *incx;
+ jy += *incy;
+ kk += j;
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y when AP contains the lower triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ temp2.r = 0.f, temp2.i = 0.f;
+ i__2 = j;
+ i__3 = j;
+ i__4 = kk;
+ r__1 = ap[i__4].r;
+ q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
+ q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ k = kk + 1;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = k;
+ q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
+ q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
+ .r;
+ q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+ r_cnjg(&q__3, &ap[k]);
+ i__3 = i__;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
+ q__3.r * x[i__3].i + q__3.i * x[i__3].r;
+ q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+ temp2.r = q__1.r, temp2.i = q__1.i;
+ ++k;
+/* L90: */
+ }
+ i__2 = j;
+ i__3 = j;
+ q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ kk += *n - j + 1;
+/* L100: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, q__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = q__1.r, temp1.i = q__1.i;
+ temp2.r = 0.f, temp2.i = 0.f;
+ i__2 = jy;
+ i__3 = jy;
+ i__4 = kk;
+ r__1 = ap[i__4].r;
+ q__2.r = r__1 * temp1.r, q__2.i = r__1 * temp1.i;
+ q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ ix = jx;
+ iy = jy;
+ i__2 = kk + *n - j;
+ for (k = kk + 1; k <= i__2; ++k) {
+ ix += *incx;
+ iy += *incy;
+ i__3 = iy;
+ i__4 = iy;
+ i__5 = k;
+ q__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
+ q__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
+ .r;
+ q__1.r = y[i__4].r + q__2.r, q__1.i = y[i__4].i + q__2.i;
+ y[i__3].r = q__1.r, y[i__3].i = q__1.i;
+ r_cnjg(&q__3, &ap[k]);
+ i__3 = ix;
+ q__2.r = q__3.r * x[i__3].r - q__3.i * x[i__3].i, q__2.i =
+ q__3.r * x[i__3].i + q__3.i * x[i__3].r;
+ q__1.r = temp2.r + q__2.r, q__1.i = temp2.i + q__2.i;
+ temp2.r = q__1.r, temp2.i = q__1.i;
+/* L110: */
+ }
+ i__2 = jy;
+ i__3 = jy;
+ q__2.r = alpha->r * temp2.r - alpha->i * temp2.i, q__2.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ q__1.r = y[i__3].r + q__2.r, q__1.i = y[i__3].i + q__2.i;
+ y[i__2].r = q__1.r, y[i__2].i = q__1.i;
+ jx += *incx;
+ jy += *incy;
+ kk += *n - j + 1;
+/* L120: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CHPMV . */
+
+} /* chpmv_ */
+
diff --git a/blas/f2c/complexdots.c b/blas/f2c/complexdots.c
new file mode 100644
index 000000000..a856a231c
--- /dev/null
+++ b/blas/f2c/complexdots.c
@@ -0,0 +1,84 @@
+/* This file has been modified to use the standard gfortran calling
+ convention, rather than the f2c calling convention.
+
+ It does not require -ff2c when compiled with gfortran.
+*/
+
+/* complexdots.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+complex cdotc_(integer *n, complex *cx, integer
+ *incx, complex *cy, integer *incy)
+{
+ complex res;
+ extern /* Subroutine */ int cdotcw_(integer *, complex *, integer *,
+ complex *, integer *, complex *);
+
+ /* Parameter adjustments */
+ --cy;
+ --cx;
+
+ /* Function Body */
+ cdotcw_(n, &cx[1], incx, &cy[1], incy, &res);
+ return res;
+} /* cdotc_ */
+
+complex cdotu_(integer *n, complex *cx, integer
+ *incx, complex *cy, integer *incy)
+{
+ complex res;
+ extern /* Subroutine */ int cdotuw_(integer *, complex *, integer *,
+ complex *, integer *, complex *);
+
+ /* Parameter adjustments */
+ --cy;
+ --cx;
+
+ /* Function Body */
+ cdotuw_(n, &cx[1], incx, &cy[1], incy, &res);
+ return res;
+} /* cdotu_ */
+
+doublecomplex zdotc_(integer *n, doublecomplex *cx, integer *incx,
+ doublecomplex *cy, integer *incy)
+{
+ doublecomplex res;
+ extern /* Subroutine */ int zdotcw_(integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *, doublecomplex *);
+
+ /* Parameter adjustments */
+ --cy;
+ --cx;
+
+ /* Function Body */
+ zdotcw_(n, &cx[1], incx, &cy[1], incy, &res);
+ return res;
+} /* zdotc_ */
+
+doublecomplex zdotu_(integer *n, doublecomplex *cx, integer *incx,
+ doublecomplex *cy, integer *incy)
+{
+ doublecomplex res;
+ extern /* Subroutine */ int zdotuw_(integer *, doublecomplex *, integer *,
+ doublecomplex *, integer *, doublecomplex *);
+
+ /* Parameter adjustments */
+ --cy;
+ --cx;
+
+ /* Function Body */
+ zdotuw_(n, &cx[1], incx, &cy[1], incy, &res);
+ return res;
+} /* zdotu_ */
+
diff --git a/blas/f2c/ctbmv.c b/blas/f2c/ctbmv.c
new file mode 100644
index 000000000..790fd581f
--- /dev/null
+++ b/blas/f2c/ctbmv.c
@@ -0,0 +1,647 @@
+/* ctbmv.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int ctbmv_(char *uplo, char *trans, char *diag, integer *n,
+ integer *k, complex *a, integer *lda, complex *x, integer *incx,
+ ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ complex q__1, q__2, q__3;
+
+ /* Builtin functions */
+ void r_cnjg(complex *, complex *);
+
+ /* Local variables */
+ integer i__, j, l, ix, jx, kx, info;
+ complex temp;
+ extern logical lsame_(char *, char *, ftnlen, ftnlen);
+ integer kplus1;
+ extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+ logical noconj, nounit;
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CTBMV performs one of the matrix-vector operations */
+
+/* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
+
+/* where x is an n element vector and A is an n by n unit, or non-unit, */
+/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the matrix is an upper or */
+/* lower triangular matrix as follows: */
+
+/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
+
+/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
+
+/* Unchanged on exit. */
+
+/* TRANS - CHARACTER*1. */
+/* On entry, TRANS specifies the operation to be performed as */
+/* follows: */
+
+/* TRANS = 'N' or 'n' x := A*x. */
+
+/* TRANS = 'T' or 't' x := A'*x. */
+
+/* TRANS = 'C' or 'c' x := conjg( A' )*x. */
+
+/* Unchanged on exit. */
+
+/* DIAG - CHARACTER*1. */
+/* On entry, DIAG specifies whether or not A is unit */
+/* triangular as follows: */
+
+/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
+
+/* DIAG = 'N' or 'n' A is not assumed to be unit */
+/* triangular. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix A. */
+/* N must be at least zero. */
+/* Unchanged on exit. */
+
+/* K - INTEGER. */
+/* On entry with UPLO = 'U' or 'u', K specifies the number of */
+/* super-diagonals of the matrix A. */
+/* On entry with UPLO = 'L' or 'l', K specifies the number of */
+/* sub-diagonals of the matrix A. */
+/* K must satisfy 0 .le. K. */
+/* Unchanged on exit. */
+
+/* A - COMPLEX array of DIMENSION ( LDA, n ). */
+/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
+/* by n part of the array A must contain the upper triangular */
+/* band part of the matrix of coefficients, supplied column by */
+/* column, with the leading diagonal of the matrix in row */
+/* ( k + 1 ) of the array, the first super-diagonal starting at */
+/* position 2 in row k, and so on. The top left k by k triangle */
+/* of the array A is not referenced. */
+/* The following program segment will transfer an upper */
+/* triangular band matrix from conventional full matrix storage */
+/* to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = K + 1 - J */
+/* DO 10, I = MAX( 1, J - K ), J */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
+/* by n part of the array A must contain the lower triangular */
+/* band part of the matrix of coefficients, supplied column by */
+/* column, with the leading diagonal of the matrix in row 1 of */
+/* the array, the first sub-diagonal starting at position 1 in */
+/* row 2, and so on. The bottom right k by k triangle of the */
+/* array A is not referenced. */
+/* The following program segment will transfer a lower */
+/* triangular band matrix from conventional full matrix storage */
+/* to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = 1 - J */
+/* DO 10, I = J, MIN( N, J + K ) */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Note that when DIAG = 'U' or 'u' the elements of the array A */
+/* corresponding to the diagonal elements of the matrix are not */
+/* referenced, but are assumed to be unity. */
+/* Unchanged on exit. */
+
+/* LDA - INTEGER. */
+/* On entry, LDA specifies the first dimension of A as declared */
+/* in the calling (sub) program. LDA must be at least */
+/* ( k + 1 ). */
+/* Unchanged on exit. */
+
+/* X - COMPLEX array of dimension at least */
+/* ( 1 + ( n - 1 )*abs( INCX ) ). */
+/* Before entry, the incremented array X must contain the n */
+/* element vector x. On exit, X is overwritten with the */
+/* tranformed vector x. */
+
+/* INCX - INTEGER. */
+/* On entry, INCX specifies the increment for the elements of */
+/* X. INCX must not be zero. */
+/* Unchanged on exit. */
+
+/* Further Details */
+/* =============== */
+
+/* Level 2 Blas routine. */
+
+/* -- Written on 22-October-1986. */
+/* Jack Dongarra, Argonne National Lab. */
+/* Jeremy Du Croz, Nag Central Office. */
+/* Sven Hammarling, Nag Central Office. */
+/* Richard Hanson, Sandia National Labs. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+ ftnlen)1, (ftnlen)1)) {
+ info = 1;
+ } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
+ "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
+ ftnlen)1)) {
+ info = 2;
+ } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
+ "N", (ftnlen)1, (ftnlen)1)) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*k < 0) {
+ info = 5;
+ } else if (*lda < *k + 1) {
+ info = 7;
+ } else if (*incx == 0) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("CTBMV ", &info, (ftnlen)6);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
+ nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
+
+/* Set up the start point in X if the increment is not unity. This */
+/* will be ( N - 1 )*INCX too small for descending loops. */
+
+ if (*incx <= 0) {
+ kx = 1 - (*n - 1) * *incx;
+ } else if (*incx != 1) {
+ kx = 1;
+ }
+
+/* Start the operations. In this version the elements of A are */
+/* accessed sequentially with one pass through A. */
+
+ if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
+
+/* Form x := A*x. */
+
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+ kplus1 = *k + 1;
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
+ i__2 = j;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ l = kplus1 - j;
+/* Computing MAX */
+ i__2 = 1, i__3 = j - *k;
+ i__4 = j - 1;
+ for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ i__5 = l + i__ + j * a_dim1;
+ q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ q__2.i = temp.r * a[i__5].i + temp.i * a[
+ i__5].r;
+ q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
+ q__2.i;
+ x[i__2].r = q__1.r, x[i__2].i = q__1.i;
+/* L10: */
+ }
+ if (nounit) {
+ i__4 = j;
+ i__2 = j;
+ i__3 = kplus1 + j * a_dim1;
+ q__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
+ i__3].i, q__1.i = x[i__2].r * a[i__3].i +
+ x[i__2].i * a[i__3].r;
+ x[i__4].r = q__1.r, x[i__4].i = q__1.i;
+ }
+ }
+/* L20: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__4 = jx;
+ if (x[i__4].r != 0.f || x[i__4].i != 0.f) {
+ i__4 = jx;
+ temp.r = x[i__4].r, temp.i = x[i__4].i;
+ ix = kx;
+ l = kplus1 - j;
+/* Computing MAX */
+ i__4 = 1, i__2 = j - *k;
+ i__3 = j - 1;
+ for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
+ i__4 = ix;
+ i__2 = ix;
+ i__5 = l + i__ + j * a_dim1;
+ q__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ q__2.i = temp.r * a[i__5].i + temp.i * a[
+ i__5].r;
+ q__1.r = x[i__2].r + q__2.r, q__1.i = x[i__2].i +
+ q__2.i;
+ x[i__4].r = q__1.r, x[i__4].i = q__1.i;
+ ix += *incx;
+/* L30: */
+ }
+ if (nounit) {
+ i__3 = jx;
+ i__4 = jx;
+ i__2 = kplus1 + j * a_dim1;
+ q__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[
+ i__2].i, q__1.i = x[i__4].r * a[i__2].i +
+ x[i__4].i * a[i__2].r;
+ x[i__3].r = q__1.r, x[i__3].i = q__1.i;
+ }
+ }
+ jx += *incx;
+ if (j > *k) {
+ kx += *incx;
+ }
+/* L40: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__1 = j;
+ if (x[i__1].r != 0.f || x[i__1].i != 0.f) {
+ i__1 = j;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ l = 1 - j;
+/* Computing MIN */
+ i__1 = *n, i__3 = j + *k;
+ i__4 = j + 1;
+ for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
+ i__1 = i__;
+ i__3 = i__;
+ i__2 = l + i__ + j * a_dim1;
+ q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
+ q__2.i = temp.r * a[i__2].i + temp.i * a[
+ i__2].r;
+ q__1.r = x[i__3].r + q__2.r, q__1.i = x[i__3].i +
+ q__2.i;
+ x[i__1].r = q__1.r, x[i__1].i = q__1.i;
+/* L50: */
+ }
+ if (nounit) {
+ i__4 = j;
+ i__1 = j;
+ i__3 = j * a_dim1 + 1;
+ q__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[
+ i__3].i, q__1.i = x[i__1].r * a[i__3].i +
+ x[i__1].i * a[i__3].r;
+ x[i__4].r = q__1.r, x[i__4].i = q__1.i;
+ }
+ }
+/* L60: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ i__4 = jx;
+ if (x[i__4].r != 0.f || x[i__4].i != 0.f) {
+ i__4 = jx;
+ temp.r = x[i__4].r, temp.i = x[i__4].i;
+ ix = kx;
+ l = 1 - j;
+/* Computing MIN */
+ i__4 = *n, i__1 = j + *k;
+ i__3 = j + 1;
+ for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
+ i__4 = ix;
+ i__1 = ix;
+ i__2 = l + i__ + j * a_dim1;
+ q__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
+ q__2.i = temp.r * a[i__2].i + temp.i * a[
+ i__2].r;
+ q__1.r = x[i__1].r + q__2.r, q__1.i = x[i__1].i +
+ q__2.i;
+ x[i__4].r = q__1.r, x[i__4].i = q__1.i;
+ ix -= *incx;
+/* L70: */
+ }
+ if (nounit) {
+ i__3 = jx;
+ i__4 = jx;
+ i__1 = j * a_dim1 + 1;
+ q__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[
+ i__1].i, q__1.i = x[i__4].r * a[i__1].i +
+ x[i__4].i * a[i__1].r;
+ x[i__3].r = q__1.r, x[i__3].i = q__1.i;
+ }
+ }
+ jx -= *incx;
+ if (*n - j >= *k) {
+ kx -= *incx;
+ }
+/* L80: */
+ }
+ }
+ }
+ } else {
+
+/* Form x := A'*x or x := conjg( A' )*x. */
+
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+ kplus1 = *k + 1;
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__3 = j;
+ temp.r = x[i__3].r, temp.i = x[i__3].i;
+ l = kplus1 - j;
+ if (noconj) {
+ if (nounit) {
+ i__3 = kplus1 + j * a_dim1;
+ q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
+ q__1.i = temp.r * a[i__3].i + temp.i * a[
+ i__3].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+/* Computing MAX */
+ i__4 = 1, i__1 = j - *k;
+ i__3 = max(i__4,i__1);
+ for (i__ = j - 1; i__ >= i__3; --i__) {
+ i__4 = l + i__ + j * a_dim1;
+ i__1 = i__;
+ q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
+ i__1].i, q__2.i = a[i__4].r * x[i__1].i +
+ a[i__4].i * x[i__1].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L90: */
+ }
+ } else {
+ if (nounit) {
+ r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
+ q__1.r = temp.r * q__2.r - temp.i * q__2.i,
+ q__1.i = temp.r * q__2.i + temp.i *
+ q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+/* Computing MAX */
+ i__4 = 1, i__1 = j - *k;
+ i__3 = max(i__4,i__1);
+ for (i__ = j - 1; i__ >= i__3; --i__) {
+ r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
+ i__4 = i__;
+ q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
+ q__2.i = q__3.r * x[i__4].i + q__3.i * x[
+ i__4].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L100: */
+ }
+ }
+ i__3 = j;
+ x[i__3].r = temp.r, x[i__3].i = temp.i;
+/* L110: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ i__3 = jx;
+ temp.r = x[i__3].r, temp.i = x[i__3].i;
+ kx -= *incx;
+ ix = kx;
+ l = kplus1 - j;
+ if (noconj) {
+ if (nounit) {
+ i__3 = kplus1 + j * a_dim1;
+ q__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
+ q__1.i = temp.r * a[i__3].i + temp.i * a[
+ i__3].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+/* Computing MAX */
+ i__4 = 1, i__1 = j - *k;
+ i__3 = max(i__4,i__1);
+ for (i__ = j - 1; i__ >= i__3; --i__) {
+ i__4 = l + i__ + j * a_dim1;
+ i__1 = ix;
+ q__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
+ i__1].i, q__2.i = a[i__4].r * x[i__1].i +
+ a[i__4].i * x[i__1].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix -= *incx;
+/* L120: */
+ }
+ } else {
+ if (nounit) {
+ r_cnjg(&q__2, &a[kplus1 + j * a_dim1]);
+ q__1.r = temp.r * q__2.r - temp.i * q__2.i,
+ q__1.i = temp.r * q__2.i + temp.i *
+ q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+/* Computing MAX */
+ i__4 = 1, i__1 = j - *k;
+ i__3 = max(i__4,i__1);
+ for (i__ = j - 1; i__ >= i__3; --i__) {
+ r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
+ i__4 = ix;
+ q__2.r = q__3.r * x[i__4].r - q__3.i * x[i__4].i,
+ q__2.i = q__3.r * x[i__4].i + q__3.i * x[
+ i__4].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix -= *incx;
+/* L130: */
+ }
+ }
+ i__3 = jx;
+ x[i__3].r = temp.r, x[i__3].i = temp.i;
+ jx -= *incx;
+/* L140: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ i__3 = *n;
+ for (j = 1; j <= i__3; ++j) {
+ i__4 = j;
+ temp.r = x[i__4].r, temp.i = x[i__4].i;
+ l = 1 - j;
+ if (noconj) {
+ if (nounit) {
+ i__4 = j * a_dim1 + 1;
+ q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
+ q__1.i = temp.r * a[i__4].i + temp.i * a[
+ i__4].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+/* Computing MIN */
+ i__1 = *n, i__2 = j + *k;
+ i__4 = min(i__1,i__2);
+ for (i__ = j + 1; i__ <= i__4; ++i__) {
+ i__1 = l + i__ + j * a_dim1;
+ i__2 = i__;
+ q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
+ i__2].i, q__2.i = a[i__1].r * x[i__2].i +
+ a[i__1].i * x[i__2].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L150: */
+ }
+ } else {
+ if (nounit) {
+ r_cnjg(&q__2, &a[j * a_dim1 + 1]);
+ q__1.r = temp.r * q__2.r - temp.i * q__2.i,
+ q__1.i = temp.r * q__2.i + temp.i *
+ q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+/* Computing MIN */
+ i__1 = *n, i__2 = j + *k;
+ i__4 = min(i__1,i__2);
+ for (i__ = j + 1; i__ <= i__4; ++i__) {
+ r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
+ i__1 = i__;
+ q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
+ q__2.i = q__3.r * x[i__1].i + q__3.i * x[
+ i__1].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+/* L160: */
+ }
+ }
+ i__4 = j;
+ x[i__4].r = temp.r, x[i__4].i = temp.i;
+/* L170: */
+ }
+ } else {
+ jx = kx;
+ i__3 = *n;
+ for (j = 1; j <= i__3; ++j) {
+ i__4 = jx;
+ temp.r = x[i__4].r, temp.i = x[i__4].i;
+ kx += *incx;
+ ix = kx;
+ l = 1 - j;
+ if (noconj) {
+ if (nounit) {
+ i__4 = j * a_dim1 + 1;
+ q__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
+ q__1.i = temp.r * a[i__4].i + temp.i * a[
+ i__4].r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+/* Computing MIN */
+ i__1 = *n, i__2 = j + *k;
+ i__4 = min(i__1,i__2);
+ for (i__ = j + 1; i__ <= i__4; ++i__) {
+ i__1 = l + i__ + j * a_dim1;
+ i__2 = ix;
+ q__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
+ i__2].i, q__2.i = a[i__1].r * x[i__2].i +
+ a[i__1].i * x[i__2].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix += *incx;
+/* L180: */
+ }
+ } else {
+ if (nounit) {
+ r_cnjg(&q__2, &a[j * a_dim1 + 1]);
+ q__1.r = temp.r * q__2.r - temp.i * q__2.i,
+ q__1.i = temp.r * q__2.i + temp.i *
+ q__2.r;
+ temp.r = q__1.r, temp.i = q__1.i;
+ }
+/* Computing MIN */
+ i__1 = *n, i__2 = j + *k;
+ i__4 = min(i__1,i__2);
+ for (i__ = j + 1; i__ <= i__4; ++i__) {
+ r_cnjg(&q__3, &a[l + i__ + j * a_dim1]);
+ i__1 = ix;
+ q__2.r = q__3.r * x[i__1].r - q__3.i * x[i__1].i,
+ q__2.i = q__3.r * x[i__1].i + q__3.i * x[
+ i__1].r;
+ q__1.r = temp.r + q__2.r, q__1.i = temp.i +
+ q__2.i;
+ temp.r = q__1.r, temp.i = q__1.i;
+ ix += *incx;
+/* L190: */
+ }
+ }
+ i__4 = jx;
+ x[i__4].r = temp.r, x[i__4].i = temp.i;
+ jx += *incx;
+/* L200: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of CTBMV . */
+
+} /* ctbmv_ */
+
diff --git a/blas/f2c/d_cnjg.c b/blas/f2c/d_cnjg.c
new file mode 100644
index 000000000..623090c6b
--- /dev/null
+++ b/blas/f2c/d_cnjg.c
@@ -0,0 +1,6 @@
+#include "datatypes.h"
+
+void d_cnjg(doublecomplex *r, doublecomplex *z) {
+ r->r = z->r;
+ r->i = -(z->i);
+}
diff --git a/blas/f2c/datatypes.h b/blas/f2c/datatypes.h
new file mode 100644
index 000000000..63232b246
--- /dev/null
+++ b/blas/f2c/datatypes.h
@@ -0,0 +1,24 @@
+/* This contains a limited subset of the typedefs exposed by f2c
+ for use by the Eigen BLAS C-only implementation.
+*/
+
+#ifndef __EIGEN_DATATYPES_H__
+#define __EIGEN_DATATYPES_H__
+
+typedef int integer;
+typedef unsigned int uinteger;
+typedef float real;
+typedef double doublereal;
+typedef struct { real r, i; } complex;
+typedef struct { doublereal r, i; } doublecomplex;
+typedef int ftnlen;
+typedef int logical;
+
+#define abs(x) ((x) >= 0 ? (x) : -(x))
+#define dabs(x) (doublereal)abs(x)
+#define min(a,b) ((a) <= (b) ? (a) : (b))
+#define max(a,b) ((a) >= (b) ? (a) : (b))
+#define dmin(a,b) (doublereal)min(a,b)
+#define dmax(a,b) (doublereal)max(a,b)
+
+#endif
diff --git a/blas/f2c/drotm.c b/blas/f2c/drotm.c
new file mode 100644
index 000000000..17a779b74
--- /dev/null
+++ b/blas/f2c/drotm.c
@@ -0,0 +1,215 @@
+/* drotm.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int drotm_(integer *n, doublereal *dx, integer *incx,
+ doublereal *dy, integer *incy, doublereal *dparam)
+{
+ /* Initialized data */
+
+ static doublereal zero = 0.;
+ static doublereal two = 2.;
+
+ /* System generated locals */
+ integer i__1, i__2;
+
+ /* Local variables */
+ integer i__;
+ doublereal w, z__;
+ integer kx, ky;
+ doublereal dh11, dh12, dh21, dh22, dflag;
+ integer nsteps;
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX */
+
+/* (DX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF DX ARE IN */
+/* (DY**T) */
+
+/* DX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE */
+/* LX = (-INCX)*N, AND SIMILARLY FOR SY USING LY AND INCY. */
+/* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
+
+/* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 */
+
+/* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) */
+/* H=( ) ( ) ( ) ( ) */
+/* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). */
+/* SEE DROTMG FOR A DESCRIPTION OF DATA STORAGE IN DPARAM. */
+
+/* Arguments */
+/* ========= */
+
+/* N (input) INTEGER */
+/* number of elements in input vector(s) */
+
+/* DX (input/output) DOUBLE PRECISION array, dimension N */
+/* double precision vector with N elements */
+
+/* INCX (input) INTEGER */
+/* storage spacing between elements of DX */
+
+/* DY (input/output) DOUBLE PRECISION array, dimension N */
+/* double precision vector with N elements */
+
+/* INCY (input) INTEGER */
+/* storage spacing between elements of DY */
+
+/* DPARAM (input/output) DOUBLE PRECISION array, dimension 5 */
+/* DPARAM(1)=DFLAG */
+/* DPARAM(2)=DH11 */
+/* DPARAM(3)=DH21 */
+/* DPARAM(4)=DH12 */
+/* DPARAM(5)=DH22 */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. Data statements .. */
+ /* Parameter adjustments */
+ --dparam;
+ --dy;
+ --dx;
+
+ /* Function Body */
+/* .. */
+
+ dflag = dparam[1];
+ if (*n <= 0 || dflag + two == zero) {
+ goto L140;
+ }
+ if (! (*incx == *incy && *incx > 0)) {
+ goto L70;
+ }
+
+ nsteps = *n * *incx;
+ if (dflag < 0.) {
+ goto L50;
+ } else if (dflag == 0) {
+ goto L10;
+ } else {
+ goto L30;
+ }
+L10:
+ dh12 = dparam[4];
+ dh21 = dparam[3];
+ i__1 = nsteps;
+ i__2 = *incx;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+ w = dx[i__];
+ z__ = dy[i__];
+ dx[i__] = w + z__ * dh12;
+ dy[i__] = w * dh21 + z__;
+/* L20: */
+ }
+ goto L140;
+L30:
+ dh11 = dparam[2];
+ dh22 = dparam[5];
+ i__2 = nsteps;
+ i__1 = *incx;
+ for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
+ w = dx[i__];
+ z__ = dy[i__];
+ dx[i__] = w * dh11 + z__;
+ dy[i__] = -w + dh22 * z__;
+/* L40: */
+ }
+ goto L140;
+L50:
+ dh11 = dparam[2];
+ dh12 = dparam[4];
+ dh21 = dparam[3];
+ dh22 = dparam[5];
+ i__1 = nsteps;
+ i__2 = *incx;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+ w = dx[i__];
+ z__ = dy[i__];
+ dx[i__] = w * dh11 + z__ * dh12;
+ dy[i__] = w * dh21 + z__ * dh22;
+/* L60: */
+ }
+ goto L140;
+L70:
+ kx = 1;
+ ky = 1;
+ if (*incx < 0) {
+ kx = (1 - *n) * *incx + 1;
+ }
+ if (*incy < 0) {
+ ky = (1 - *n) * *incy + 1;
+ }
+
+ if (dflag < 0.) {
+ goto L120;
+ } else if (dflag == 0) {
+ goto L80;
+ } else {
+ goto L100;
+ }
+L80:
+ dh12 = dparam[4];
+ dh21 = dparam[3];
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ w = dx[kx];
+ z__ = dy[ky];
+ dx[kx] = w + z__ * dh12;
+ dy[ky] = w * dh21 + z__;
+ kx += *incx;
+ ky += *incy;
+/* L90: */
+ }
+ goto L140;
+L100:
+ dh11 = dparam[2];
+ dh22 = dparam[5];
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ w = dx[kx];
+ z__ = dy[ky];
+ dx[kx] = w * dh11 + z__;
+ dy[ky] = -w + dh22 * z__;
+ kx += *incx;
+ ky += *incy;
+/* L110: */
+ }
+ goto L140;
+L120:
+ dh11 = dparam[2];
+ dh12 = dparam[4];
+ dh21 = dparam[3];
+ dh22 = dparam[5];
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ w = dx[kx];
+ z__ = dy[ky];
+ dx[kx] = w * dh11 + z__ * dh12;
+ dy[ky] = w * dh21 + z__ * dh22;
+ kx += *incx;
+ ky += *incy;
+/* L130: */
+ }
+L140:
+ return 0;
+} /* drotm_ */
+
diff --git a/blas/f2c/drotmg.c b/blas/f2c/drotmg.c
new file mode 100644
index 000000000..a63eb1083
--- /dev/null
+++ b/blas/f2c/drotmg.c
@@ -0,0 +1,293 @@
+/* drotmg.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int drotmg_(doublereal *dd1, doublereal *dd2, doublereal *
+ dx1, doublereal *dy1, doublereal *dparam)
+{
+ /* Initialized data */
+
+ static doublereal zero = 0.;
+ static doublereal one = 1.;
+ static doublereal two = 2.;
+ static doublereal gam = 4096.;
+ static doublereal gamsq = 16777216.;
+ static doublereal rgamsq = 5.9604645e-8;
+
+ /* Format strings */
+ static char fmt_120[] = "";
+ static char fmt_150[] = "";
+ static char fmt_180[] = "";
+ static char fmt_210[] = "";
+
+ /* System generated locals */
+ doublereal d__1;
+
+ /* Local variables */
+ doublereal du, dp1, dp2, dq1, dq2, dh11, dh12, dh21, dh22;
+ integer igo;
+ doublereal dflag, dtemp;
+
+ /* Assigned format variables */
+ static char *igo_fmt;
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS */
+/* THE SECOND COMPONENT OF THE 2-VECTOR (DSQRT(DD1)*DX1,DSQRT(DD2)* */
+/* DY2)**T. */
+/* WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
+
+/* DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 */
+
+/* (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) */
+/* H=( ) ( ) ( ) ( ) */
+/* (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). */
+/* LOCATIONS 2-4 OF DPARAM CONTAIN DH11, DH21, DH12, AND DH22 */
+/* RESPECTIVELY. (VALUES OF 1.D0, -1.D0, OR 0.D0 IMPLIED BY THE */
+/* VALUE OF DPARAM(1) ARE NOT STORED IN DPARAM.) */
+
+/* THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE */
+/* INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE */
+/* OF DD1 AND DD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. */
+
+
+/* Arguments */
+/* ========= */
+
+/* DD1 (input/output) DOUBLE PRECISION */
+
+/* DD2 (input/output) DOUBLE PRECISION */
+
+/* DX1 (input/output) DOUBLE PRECISION */
+
+/* DY1 (input) DOUBLE PRECISION */
+
+/* DPARAM (input/output) DOUBLE PRECISION array, dimension 5 */
+/* DPARAM(1)=DFLAG */
+/* DPARAM(2)=DH11 */
+/* DPARAM(3)=DH21 */
+/* DPARAM(4)=DH12 */
+/* DPARAM(5)=DH22 */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Data statements .. */
+
+ /* Parameter adjustments */
+ --dparam;
+
+ /* Function Body */
+/* .. */
+ if (! (*dd1 < zero)) {
+ goto L10;
+ }
+/* GO ZERO-H-D-AND-DX1.. */
+ goto L60;
+L10:
+/* CASE-DD1-NONNEGATIVE */
+ dp2 = *dd2 * *dy1;
+ if (! (dp2 == zero)) {
+ goto L20;
+ }
+ dflag = -two;
+ goto L260;
+/* REGULAR-CASE.. */
+L20:
+ dp1 = *dd1 * *dx1;
+ dq2 = dp2 * *dy1;
+ dq1 = dp1 * *dx1;
+
+ if (! (abs(dq1) > abs(dq2))) {
+ goto L40;
+ }
+ dh21 = -(*dy1) / *dx1;
+ dh12 = dp2 / dp1;
+
+ du = one - dh12 * dh21;
+
+ if (! (du <= zero)) {
+ goto L30;
+ }
+/* GO ZERO-H-D-AND-DX1.. */
+ goto L60;
+L30:
+ dflag = zero;
+ *dd1 /= du;
+ *dd2 /= du;
+ *dx1 *= du;
+/* GO SCALE-CHECK.. */
+ goto L100;
+L40:
+ if (! (dq2 < zero)) {
+ goto L50;
+ }
+/* GO ZERO-H-D-AND-DX1.. */
+ goto L60;
+L50:
+ dflag = one;
+ dh11 = dp1 / dp2;
+ dh22 = *dx1 / *dy1;
+ du = one + dh11 * dh22;
+ dtemp = *dd2 / du;
+ *dd2 = *dd1 / du;
+ *dd1 = dtemp;
+ *dx1 = *dy1 * du;
+/* GO SCALE-CHECK */
+ goto L100;
+/* PROCEDURE..ZERO-H-D-AND-DX1.. */
+L60:
+ dflag = -one;
+ dh11 = zero;
+ dh12 = zero;
+ dh21 = zero;
+ dh22 = zero;
+
+ *dd1 = zero;
+ *dd2 = zero;
+ *dx1 = zero;
+/* RETURN.. */
+ goto L220;
+/* PROCEDURE..FIX-H.. */
+L70:
+ if (! (dflag >= zero)) {
+ goto L90;
+ }
+
+ if (! (dflag == zero)) {
+ goto L80;
+ }
+ dh11 = one;
+ dh22 = one;
+ dflag = -one;
+ goto L90;
+L80:
+ dh21 = -one;
+ dh12 = one;
+ dflag = -one;
+L90:
+ switch (igo) {
+ case 0: goto L120;
+ case 1: goto L150;
+ case 2: goto L180;
+ case 3: goto L210;
+ }
+/* PROCEDURE..SCALE-CHECK */
+L100:
+L110:
+ if (! (*dd1 <= rgamsq)) {
+ goto L130;
+ }
+ if (*dd1 == zero) {
+ goto L160;
+ }
+ igo = 0;
+ igo_fmt = fmt_120;
+/* FIX-H.. */
+ goto L70;
+L120:
+/* Computing 2nd power */
+ d__1 = gam;
+ *dd1 *= d__1 * d__1;
+ *dx1 /= gam;
+ dh11 /= gam;
+ dh12 /= gam;
+ goto L110;
+L130:
+L140:
+ if (! (*dd1 >= gamsq)) {
+ goto L160;
+ }
+ igo = 1;
+ igo_fmt = fmt_150;
+/* FIX-H.. */
+ goto L70;
+L150:
+/* Computing 2nd power */
+ d__1 = gam;
+ *dd1 /= d__1 * d__1;
+ *dx1 *= gam;
+ dh11 *= gam;
+ dh12 *= gam;
+ goto L140;
+L160:
+L170:
+ if (! (abs(*dd2) <= rgamsq)) {
+ goto L190;
+ }
+ if (*dd2 == zero) {
+ goto L220;
+ }
+ igo = 2;
+ igo_fmt = fmt_180;
+/* FIX-H.. */
+ goto L70;
+L180:
+/* Computing 2nd power */
+ d__1 = gam;
+ *dd2 *= d__1 * d__1;
+ dh21 /= gam;
+ dh22 /= gam;
+ goto L170;
+L190:
+L200:
+ if (! (abs(*dd2) >= gamsq)) {
+ goto L220;
+ }
+ igo = 3;
+ igo_fmt = fmt_210;
+/* FIX-H.. */
+ goto L70;
+L210:
+/* Computing 2nd power */
+ d__1 = gam;
+ *dd2 /= d__1 * d__1;
+ dh21 *= gam;
+ dh22 *= gam;
+ goto L200;
+L220:
+ if (dflag < 0.) {
+ goto L250;
+ } else if (dflag == 0) {
+ goto L230;
+ } else {
+ goto L240;
+ }
+L230:
+ dparam[3] = dh21;
+ dparam[4] = dh12;
+ goto L260;
+L240:
+ dparam[2] = dh11;
+ dparam[5] = dh22;
+ goto L260;
+L250:
+ dparam[2] = dh11;
+ dparam[3] = dh21;
+ dparam[4] = dh12;
+ dparam[5] = dh22;
+L260:
+ dparam[1] = dflag;
+ return 0;
+} /* drotmg_ */
+
diff --git a/blas/f2c/dsbmv.c b/blas/f2c/dsbmv.c
new file mode 100644
index 000000000..c6b4b21d6
--- /dev/null
+++ b/blas/f2c/dsbmv.c
@@ -0,0 +1,366 @@
+/* dsbmv.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int dsbmv_(char *uplo, integer *n, integer *k, doublereal *
+ alpha, doublereal *a, integer *lda, doublereal *x, integer *incx,
+ doublereal *beta, doublereal *y, integer *incy, ftnlen uplo_len)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+
+ /* Local variables */
+ integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
+ doublereal temp1, temp2;
+ extern logical lsame_(char *, char *, ftnlen, ftnlen);
+ integer kplus1;
+ extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DSBMV performs the matrix-vector operation */
+
+/* y := alpha*A*x + beta*y, */
+
+/* where alpha and beta are scalars, x and y are n element vectors and */
+/* A is an n by n symmetric band matrix, with k super-diagonals. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the upper or lower */
+/* triangular part of the band matrix A is being supplied as */
+/* follows: */
+
+/* UPLO = 'U' or 'u' The upper triangular part of A is */
+/* being supplied. */
+
+/* UPLO = 'L' or 'l' The lower triangular part of A is */
+/* being supplied. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix A. */
+/* N must be at least zero. */
+/* Unchanged on exit. */
+
+/* K - INTEGER. */
+/* On entry, K specifies the number of super-diagonals of the */
+/* matrix A. K must satisfy 0 .le. K. */
+/* Unchanged on exit. */
+
+/* ALPHA - DOUBLE PRECISION. */
+/* On entry, ALPHA specifies the scalar alpha. */
+/* Unchanged on exit. */
+
+/* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
+/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
+/* by n part of the array A must contain the upper triangular */
+/* band part of the symmetric matrix, supplied column by */
+/* column, with the leading diagonal of the matrix in row */
+/* ( k + 1 ) of the array, the first super-diagonal starting at */
+/* position 2 in row k, and so on. The top left k by k triangle */
+/* of the array A is not referenced. */
+/* The following program segment will transfer the upper */
+/* triangular part of a symmetric band matrix from conventional */
+/* full matrix storage to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = K + 1 - J */
+/* DO 10, I = MAX( 1, J - K ), J */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
+/* by n part of the array A must contain the lower triangular */
+/* band part of the symmetric matrix, supplied column by */
+/* column, with the leading diagonal of the matrix in row 1 of */
+/* the array, the first sub-diagonal starting at position 1 in */
+/* row 2, and so on. The bottom right k by k triangle of the */
+/* array A is not referenced. */
+/* The following program segment will transfer the lower */
+/* triangular part of a symmetric band matrix from conventional */
+/* full matrix storage to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = 1 - J */
+/* DO 10, I = J, MIN( N, J + K ) */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Unchanged on exit. */
+
+/* LDA - INTEGER. */
+/* On entry, LDA specifies the first dimension of A as declared */
+/* in the calling (sub) program. LDA must be at least */
+/* ( k + 1 ). */
+/* Unchanged on exit. */
+
+/* X - DOUBLE PRECISION array of DIMENSION at least */
+/* ( 1 + ( n - 1 )*abs( INCX ) ). */
+/* Before entry, the incremented array X must contain the */
+/* vector x. */
+/* Unchanged on exit. */
+
+/* INCX - INTEGER. */
+/* On entry, INCX specifies the increment for the elements of */
+/* X. INCX must not be zero. */
+/* Unchanged on exit. */
+
+/* BETA - DOUBLE PRECISION. */
+/* On entry, BETA specifies the scalar beta. */
+/* Unchanged on exit. */
+
+/* Y - DOUBLE PRECISION array of DIMENSION at least */
+/* ( 1 + ( n - 1 )*abs( INCY ) ). */
+/* Before entry, the incremented array Y must contain the */
+/* vector y. On exit, Y is overwritten by the updated vector y. */
+
+/* INCY - INTEGER. */
+/* On entry, INCY specifies the increment for the elements of */
+/* Y. INCY must not be zero. */
+/* Unchanged on exit. */
+
+
+/* Level 2 Blas routine. */
+
+/* -- Written on 22-October-1986. */
+/* Jack Dongarra, Argonne National Lab. */
+/* Jeremy Du Croz, Nag Central Office. */
+/* Sven Hammarling, Nag Central Office. */
+/* Richard Hanson, Sandia National Labs. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+ --y;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+ ftnlen)1, (ftnlen)1)) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*k < 0) {
+ info = 3;
+ } else if (*lda < *k + 1) {
+ info = 6;
+ } else if (*incx == 0) {
+ info = 8;
+ } else if (*incy == 0) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("DSBMV ", &info, (ftnlen)6);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0 || (*alpha == 0. && *beta == 1.)) {
+ return 0;
+ }
+
+/* Set up the start points in X and Y. */
+
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+
+/* Start the operations. In this version the elements of the array A */
+/* are accessed sequentially with one pass through A. */
+
+/* First form y := beta*y. */
+
+ if (*beta != 1.) {
+ if (*incy == 1) {
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = 0.;
+/* L10: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = *beta * y[i__];
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = 0.;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = *beta * y[iy];
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (*alpha == 0.) {
+ return 0;
+ }
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+
+/* Form y when upper triangle of A is stored. */
+
+ kplus1 = *k + 1;
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[j];
+ temp2 = 0.;
+ l = kplus1 - j;
+/* Computing MAX */
+ i__2 = 1, i__3 = j - *k;
+ i__4 = j - 1;
+ for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
+ y[i__] += temp1 * a[l + i__ + j * a_dim1];
+ temp2 += a[l + i__ + j * a_dim1] * x[i__];
+/* L50: */
+ }
+ y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[jx];
+ temp2 = 0.;
+ ix = kx;
+ iy = ky;
+ l = kplus1 - j;
+/* Computing MAX */
+ i__4 = 1, i__2 = j - *k;
+ i__3 = j - 1;
+ for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
+ y[iy] += temp1 * a[l + i__ + j * a_dim1];
+ temp2 += a[l + i__ + j * a_dim1] * x[ix];
+ ix += *incx;
+ iy += *incy;
+/* L70: */
+ }
+ y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha *
+ temp2;
+ jx += *incx;
+ jy += *incy;
+ if (j > *k) {
+ kx += *incx;
+ ky += *incy;
+ }
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y when lower triangle of A is stored. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[j];
+ temp2 = 0.;
+ y[j] += temp1 * a[j * a_dim1 + 1];
+ l = 1 - j;
+/* Computing MIN */
+ i__4 = *n, i__2 = j + *k;
+ i__3 = min(i__4,i__2);
+ for (i__ = j + 1; i__ <= i__3; ++i__) {
+ y[i__] += temp1 * a[l + i__ + j * a_dim1];
+ temp2 += a[l + i__ + j * a_dim1] * x[i__];
+/* L90: */
+ }
+ y[j] += *alpha * temp2;
+/* L100: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[jx];
+ temp2 = 0.;
+ y[jy] += temp1 * a[j * a_dim1 + 1];
+ l = 1 - j;
+ ix = jx;
+ iy = jy;
+/* Computing MIN */
+ i__4 = *n, i__2 = j + *k;
+ i__3 = min(i__4,i__2);
+ for (i__ = j + 1; i__ <= i__3; ++i__) {
+ ix += *incx;
+ iy += *incy;
+ y[iy] += temp1 * a[l + i__ + j * a_dim1];
+ temp2 += a[l + i__ + j * a_dim1] * x[ix];
+/* L110: */
+ }
+ y[jy] += *alpha * temp2;
+ jx += *incx;
+ jy += *incy;
+/* L120: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DSBMV . */
+
+} /* dsbmv_ */
+
diff --git a/blas/f2c/dspmv.c b/blas/f2c/dspmv.c
new file mode 100644
index 000000000..0b4e92d5c
--- /dev/null
+++ b/blas/f2c/dspmv.c
@@ -0,0 +1,316 @@
+/* dspmv.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int dspmv_(char *uplo, integer *n, doublereal *alpha,
+ doublereal *ap, doublereal *x, integer *incx, doublereal *beta,
+ doublereal *y, integer *incy, ftnlen uplo_len)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+
+ /* Local variables */
+ integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
+ doublereal temp1, temp2;
+ extern logical lsame_(char *, char *, ftnlen, ftnlen);
+ extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DSPMV performs the matrix-vector operation */
+
+/* y := alpha*A*x + beta*y, */
+
+/* where alpha and beta are scalars, x and y are n element vectors and */
+/* A is an n by n symmetric matrix, supplied in packed form. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the upper or lower */
+/* triangular part of the matrix A is supplied in the packed */
+/* array AP as follows: */
+
+/* UPLO = 'U' or 'u' The upper triangular part of A is */
+/* supplied in AP. */
+
+/* UPLO = 'L' or 'l' The lower triangular part of A is */
+/* supplied in AP. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix A. */
+/* N must be at least zero. */
+/* Unchanged on exit. */
+
+/* ALPHA - DOUBLE PRECISION. */
+/* On entry, ALPHA specifies the scalar alpha. */
+/* Unchanged on exit. */
+
+/* AP - DOUBLE PRECISION array of DIMENSION at least */
+/* ( ( n*( n + 1 ) )/2 ). */
+/* Before entry with UPLO = 'U' or 'u', the array AP must */
+/* contain the upper triangular part of the symmetric matrix */
+/* packed sequentially, column by column, so that AP( 1 ) */
+/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
+/* and a( 2, 2 ) respectively, and so on. */
+/* Before entry with UPLO = 'L' or 'l', the array AP must */
+/* contain the lower triangular part of the symmetric matrix */
+/* packed sequentially, column by column, so that AP( 1 ) */
+/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
+/* and a( 3, 1 ) respectively, and so on. */
+/* Unchanged on exit. */
+
+/* X - DOUBLE PRECISION array of dimension at least */
+/* ( 1 + ( n - 1 )*abs( INCX ) ). */
+/* Before entry, the incremented array X must contain the n */
+/* element vector x. */
+/* Unchanged on exit. */
+
+/* INCX - INTEGER. */
+/* On entry, INCX specifies the increment for the elements of */
+/* X. INCX must not be zero. */
+/* Unchanged on exit. */
+
+/* BETA - DOUBLE PRECISION. */
+/* On entry, BETA specifies the scalar beta. When BETA is */
+/* supplied as zero then Y need not be set on input. */
+/* Unchanged on exit. */
+
+/* Y - DOUBLE PRECISION array of dimension at least */
+/* ( 1 + ( n - 1 )*abs( INCY ) ). */
+/* Before entry, the incremented array Y must contain the n */
+/* element vector y. On exit, Y is overwritten by the updated */
+/* vector y. */
+
+/* INCY - INTEGER. */
+/* On entry, INCY specifies the increment for the elements of */
+/* Y. INCY must not be zero. */
+/* Unchanged on exit. */
+
+/* Further Details */
+/* =============== */
+
+/* Level 2 Blas routine. */
+
+/* -- Written on 22-October-1986. */
+/* Jack Dongarra, Argonne National Lab. */
+/* Jeremy Du Croz, Nag Central Office. */
+/* Sven Hammarling, Nag Central Office. */
+/* Richard Hanson, Sandia National Labs. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --y;
+ --x;
+ --ap;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+ ftnlen)1, (ftnlen)1)) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*incx == 0) {
+ info = 6;
+ } else if (*incy == 0) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("DSPMV ", &info, (ftnlen)6);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0 || (*alpha == 0. && *beta == 1.)) {
+ return 0;
+ }
+
+/* Set up the start points in X and Y. */
+
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+
+/* Start the operations. In this version the elements of the array AP */
+/* are accessed sequentially with one pass through AP. */
+
+/* First form y := beta*y. */
+
+ if (*beta != 1.) {
+ if (*incy == 1) {
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = 0.;
+/* L10: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = *beta * y[i__];
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (*beta == 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = 0.;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = *beta * y[iy];
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (*alpha == 0.) {
+ return 0;
+ }
+ kk = 1;
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+
+/* Form y when AP contains the upper triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[j];
+ temp2 = 0.;
+ k = kk;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ y[i__] += temp1 * ap[k];
+ temp2 += ap[k] * x[i__];
+ ++k;
+/* L50: */
+ }
+ y[j] = y[j] + temp1 * ap[kk + j - 1] + *alpha * temp2;
+ kk += j;
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[jx];
+ temp2 = 0.;
+ ix = kx;
+ iy = ky;
+ i__2 = kk + j - 2;
+ for (k = kk; k <= i__2; ++k) {
+ y[iy] += temp1 * ap[k];
+ temp2 += ap[k] * x[ix];
+ ix += *incx;
+ iy += *incy;
+/* L70: */
+ }
+ y[jy] = y[jy] + temp1 * ap[kk + j - 1] + *alpha * temp2;
+ jx += *incx;
+ jy += *incy;
+ kk += j;
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y when AP contains the lower triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[j];
+ temp2 = 0.;
+ y[j] += temp1 * ap[kk];
+ k = kk + 1;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ y[i__] += temp1 * ap[k];
+ temp2 += ap[k] * x[i__];
+ ++k;
+/* L90: */
+ }
+ y[j] += *alpha * temp2;
+ kk += *n - j + 1;
+/* L100: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[jx];
+ temp2 = 0.;
+ y[jy] += temp1 * ap[kk];
+ ix = jx;
+ iy = jy;
+ i__2 = kk + *n - j;
+ for (k = kk + 1; k <= i__2; ++k) {
+ ix += *incx;
+ iy += *incy;
+ y[iy] += temp1 * ap[k];
+ temp2 += ap[k] * x[ix];
+/* L110: */
+ }
+ y[jy] += *alpha * temp2;
+ jx += *incx;
+ jy += *incy;
+ kk += *n - j + 1;
+/* L120: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DSPMV . */
+
+} /* dspmv_ */
+
diff --git a/blas/f2c/dtbmv.c b/blas/f2c/dtbmv.c
new file mode 100644
index 000000000..fdf73ebb5
--- /dev/null
+++ b/blas/f2c/dtbmv.c
@@ -0,0 +1,428 @@
+/* dtbmv.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int dtbmv_(char *uplo, char *trans, char *diag, integer *n,
+ integer *k, doublereal *a, integer *lda, doublereal *x, integer *incx,
+ ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+
+ /* Local variables */
+ integer i__, j, l, ix, jx, kx, info;
+ doublereal temp;
+ extern logical lsame_(char *, char *, ftnlen, ftnlen);
+ integer kplus1;
+ extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+ logical nounit;
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DTBMV performs one of the matrix-vector operations */
+
+/* x := A*x, or x := A'*x, */
+
+/* where x is an n element vector and A is an n by n unit, or non-unit, */
+/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the matrix is an upper or */
+/* lower triangular matrix as follows: */
+
+/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
+
+/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
+
+/* Unchanged on exit. */
+
+/* TRANS - CHARACTER*1. */
+/* On entry, TRANS specifies the operation to be performed as */
+/* follows: */
+
+/* TRANS = 'N' or 'n' x := A*x. */
+
+/* TRANS = 'T' or 't' x := A'*x. */
+
+/* TRANS = 'C' or 'c' x := A'*x. */
+
+/* Unchanged on exit. */
+
+/* DIAG - CHARACTER*1. */
+/* On entry, DIAG specifies whether or not A is unit */
+/* triangular as follows: */
+
+/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
+
+/* DIAG = 'N' or 'n' A is not assumed to be unit */
+/* triangular. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix A. */
+/* N must be at least zero. */
+/* Unchanged on exit. */
+
+/* K - INTEGER. */
+/* On entry with UPLO = 'U' or 'u', K specifies the number of */
+/* super-diagonals of the matrix A. */
+/* On entry with UPLO = 'L' or 'l', K specifies the number of */
+/* sub-diagonals of the matrix A. */
+/* K must satisfy 0 .le. K. */
+/* Unchanged on exit. */
+
+/* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). */
+/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
+/* by n part of the array A must contain the upper triangular */
+/* band part of the matrix of coefficients, supplied column by */
+/* column, with the leading diagonal of the matrix in row */
+/* ( k + 1 ) of the array, the first super-diagonal starting at */
+/* position 2 in row k, and so on. The top left k by k triangle */
+/* of the array A is not referenced. */
+/* The following program segment will transfer an upper */
+/* triangular band matrix from conventional full matrix storage */
+/* to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = K + 1 - J */
+/* DO 10, I = MAX( 1, J - K ), J */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
+/* by n part of the array A must contain the lower triangular */
+/* band part of the matrix of coefficients, supplied column by */
+/* column, with the leading diagonal of the matrix in row 1 of */
+/* the array, the first sub-diagonal starting at position 1 in */
+/* row 2, and so on. The bottom right k by k triangle of the */
+/* array A is not referenced. */
+/* The following program segment will transfer a lower */
+/* triangular band matrix from conventional full matrix storage */
+/* to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = 1 - J */
+/* DO 10, I = J, MIN( N, J + K ) */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Note that when DIAG = 'U' or 'u' the elements of the array A */
+/* corresponding to the diagonal elements of the matrix are not */
+/* referenced, but are assumed to be unity. */
+/* Unchanged on exit. */
+
+/* LDA - INTEGER. */
+/* On entry, LDA specifies the first dimension of A as declared */
+/* in the calling (sub) program. LDA must be at least */
+/* ( k + 1 ). */
+/* Unchanged on exit. */
+
+/* X - DOUBLE PRECISION array of dimension at least */
+/* ( 1 + ( n - 1 )*abs( INCX ) ). */
+/* Before entry, the incremented array X must contain the n */
+/* element vector x. On exit, X is overwritten with the */
+/* tranformed vector x. */
+
+/* INCX - INTEGER. */
+/* On entry, INCX specifies the increment for the elements of */
+/* X. INCX must not be zero. */
+/* Unchanged on exit. */
+
+/* Further Details */
+/* =============== */
+
+/* Level 2 Blas routine. */
+
+/* -- Written on 22-October-1986. */
+/* Jack Dongarra, Argonne National Lab. */
+/* Jeremy Du Croz, Nag Central Office. */
+/* Sven Hammarling, Nag Central Office. */
+/* Richard Hanson, Sandia National Labs. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+ ftnlen)1, (ftnlen)1)) {
+ info = 1;
+ } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
+ "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
+ ftnlen)1)) {
+ info = 2;
+ } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
+ "N", (ftnlen)1, (ftnlen)1)) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*k < 0) {
+ info = 5;
+ } else if (*lda < *k + 1) {
+ info = 7;
+ } else if (*incx == 0) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("DTBMV ", &info, (ftnlen)6);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
+
+/* Set up the start point in X if the increment is not unity. This */
+/* will be ( N - 1 )*INCX too small for descending loops. */
+
+ if (*incx <= 0) {
+ kx = 1 - (*n - 1) * *incx;
+ } else if (*incx != 1) {
+ kx = 1;
+ }
+
+/* Start the operations. In this version the elements of A are */
+/* accessed sequentially with one pass through A. */
+
+ if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
+
+/* Form x := A*x. */
+
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+ kplus1 = *k + 1;
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (x[j] != 0.) {
+ temp = x[j];
+ l = kplus1 - j;
+/* Computing MAX */
+ i__2 = 1, i__3 = j - *k;
+ i__4 = j - 1;
+ for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
+ x[i__] += temp * a[l + i__ + j * a_dim1];
+/* L10: */
+ }
+ if (nounit) {
+ x[j] *= a[kplus1 + j * a_dim1];
+ }
+ }
+/* L20: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (x[jx] != 0.) {
+ temp = x[jx];
+ ix = kx;
+ l = kplus1 - j;
+/* Computing MAX */
+ i__4 = 1, i__2 = j - *k;
+ i__3 = j - 1;
+ for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
+ x[ix] += temp * a[l + i__ + j * a_dim1];
+ ix += *incx;
+/* L30: */
+ }
+ if (nounit) {
+ x[jx] *= a[kplus1 + j * a_dim1];
+ }
+ }
+ jx += *incx;
+ if (j > *k) {
+ kx += *incx;
+ }
+/* L40: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ if (x[j] != 0.) {
+ temp = x[j];
+ l = 1 - j;
+/* Computing MIN */
+ i__1 = *n, i__3 = j + *k;
+ i__4 = j + 1;
+ for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
+ x[i__] += temp * a[l + i__ + j * a_dim1];
+/* L50: */
+ }
+ if (nounit) {
+ x[j] *= a[j * a_dim1 + 1];
+ }
+ }
+/* L60: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ if (x[jx] != 0.) {
+ temp = x[jx];
+ ix = kx;
+ l = 1 - j;
+/* Computing MIN */
+ i__4 = *n, i__1 = j + *k;
+ i__3 = j + 1;
+ for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
+ x[ix] += temp * a[l + i__ + j * a_dim1];
+ ix -= *incx;
+/* L70: */
+ }
+ if (nounit) {
+ x[jx] *= a[j * a_dim1 + 1];
+ }
+ }
+ jx -= *incx;
+ if (*n - j >= *k) {
+ kx -= *incx;
+ }
+/* L80: */
+ }
+ }
+ }
+ } else {
+
+/* Form x := A'*x. */
+
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+ kplus1 = *k + 1;
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ temp = x[j];
+ l = kplus1 - j;
+ if (nounit) {
+ temp *= a[kplus1 + j * a_dim1];
+ }
+/* Computing MAX */
+ i__4 = 1, i__1 = j - *k;
+ i__3 = max(i__4,i__1);
+ for (i__ = j - 1; i__ >= i__3; --i__) {
+ temp += a[l + i__ + j * a_dim1] * x[i__];
+/* L90: */
+ }
+ x[j] = temp;
+/* L100: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ temp = x[jx];
+ kx -= *incx;
+ ix = kx;
+ l = kplus1 - j;
+ if (nounit) {
+ temp *= a[kplus1 + j * a_dim1];
+ }
+/* Computing MAX */
+ i__4 = 1, i__1 = j - *k;
+ i__3 = max(i__4,i__1);
+ for (i__ = j - 1; i__ >= i__3; --i__) {
+ temp += a[l + i__ + j * a_dim1] * x[ix];
+ ix -= *incx;
+/* L110: */
+ }
+ x[jx] = temp;
+ jx -= *incx;
+/* L120: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ i__3 = *n;
+ for (j = 1; j <= i__3; ++j) {
+ temp = x[j];
+ l = 1 - j;
+ if (nounit) {
+ temp *= a[j * a_dim1 + 1];
+ }
+/* Computing MIN */
+ i__1 = *n, i__2 = j + *k;
+ i__4 = min(i__1,i__2);
+ for (i__ = j + 1; i__ <= i__4; ++i__) {
+ temp += a[l + i__ + j * a_dim1] * x[i__];
+/* L130: */
+ }
+ x[j] = temp;
+/* L140: */
+ }
+ } else {
+ jx = kx;
+ i__3 = *n;
+ for (j = 1; j <= i__3; ++j) {
+ temp = x[jx];
+ kx += *incx;
+ ix = kx;
+ l = 1 - j;
+ if (nounit) {
+ temp *= a[j * a_dim1 + 1];
+ }
+/* Computing MIN */
+ i__1 = *n, i__2 = j + *k;
+ i__4 = min(i__1,i__2);
+ for (i__ = j + 1; i__ <= i__4; ++i__) {
+ temp += a[l + i__ + j * a_dim1] * x[ix];
+ ix += *incx;
+/* L150: */
+ }
+ x[jx] = temp;
+ jx += *incx;
+/* L160: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DTBMV . */
+
+} /* dtbmv_ */
+
diff --git a/blas/f2c/lsame.c b/blas/f2c/lsame.c
new file mode 100644
index 000000000..46324d916
--- /dev/null
+++ b/blas/f2c/lsame.c
@@ -0,0 +1,117 @@
+/* lsame.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+logical lsame_(char *ca, char *cb, ftnlen ca_len, ftnlen cb_len)
+{
+ /* System generated locals */
+ logical ret_val;
+
+ /* Local variables */
+ integer inta, intb, zcode;
+
+
+/* -- LAPACK auxiliary routine (version 3.1) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* LSAME returns .TRUE. if CA is the same letter as CB regardless of */
+/* case. */
+
+/* Arguments */
+/* ========= */
+
+/* CA (input) CHARACTER*1 */
+
+/* CB (input) CHARACTER*1 */
+/* CA and CB specify the single characters to be compared. */
+
+/* ===================================================================== */
+
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+
+/* Test if the characters are equal */
+
+ ret_val = *(unsigned char *)ca == *(unsigned char *)cb;
+ if (ret_val) {
+ return ret_val;
+ }
+
+/* Now test for equivalence if both characters are alphabetic. */
+
+ zcode = 'Z';
+
+/* Use 'Z' rather than 'A' so that ASCII can be detected on Prime */
+/* machines, on which ICHAR returns a value with bit 8 set. */
+/* ICHAR('A') on Prime machines returns 193 which is the same as */
+/* ICHAR('A') on an EBCDIC machine. */
+
+ inta = *(unsigned char *)ca;
+ intb = *(unsigned char *)cb;
+
+ if (zcode == 90 || zcode == 122) {
+
+/* ASCII is assumed - ZCODE is the ASCII code of either lower or */
+/* upper case 'Z'. */
+
+ if (inta >= 97 && inta <= 122) {
+ inta += -32;
+ }
+ if (intb >= 97 && intb <= 122) {
+ intb += -32;
+ }
+
+ } else if (zcode == 233 || zcode == 169) {
+
+/* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or */
+/* upper case 'Z'. */
+
+ if ((inta >= 129 && inta <= 137) || (inta >= 145 && inta <= 153) ||
+ (inta >= 162 && inta <= 169)) {
+ inta += 64;
+ }
+ if ((intb >= 129 && intb <= 137) || (intb >= 145 && intb <= 153) ||
+ (intb >= 162 && intb <= 169)) {
+ intb += 64;
+ }
+
+ } else if (zcode == 218 || zcode == 250) {
+
+/* ASCII is assumed, on Prime machines - ZCODE is the ASCII code */
+/* plus 128 of either lower or upper case 'Z'. */
+
+ if (inta >= 225 && inta <= 250) {
+ inta += -32;
+ }
+ if (intb >= 225 && intb <= 250) {
+ intb += -32;
+ }
+ }
+ ret_val = inta == intb;
+
+/* RETURN */
+
+/* End of LSAME */
+
+ return ret_val;
+} /* lsame_ */
+
diff --git a/blas/f2c/r_cnjg.c b/blas/f2c/r_cnjg.c
new file mode 100644
index 000000000..c08182f88
--- /dev/null
+++ b/blas/f2c/r_cnjg.c
@@ -0,0 +1,6 @@
+#include "datatypes.h"
+
+void r_cnjg(complex *r, complex *z) {
+ r->r = z->r;
+ r->i = -(z->i);
+}
diff --git a/blas/f2c/srotm.c b/blas/f2c/srotm.c
new file mode 100644
index 000000000..bd5944a99
--- /dev/null
+++ b/blas/f2c/srotm.c
@@ -0,0 +1,216 @@
+/* srotm.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int srotm_(integer *n, real *sx, integer *incx, real *sy,
+ integer *incy, real *sparam)
+{
+ /* Initialized data */
+
+ static real zero = 0.f;
+ static real two = 2.f;
+
+ /* System generated locals */
+ integer i__1, i__2;
+
+ /* Local variables */
+ integer i__;
+ real w, z__;
+ integer kx, ky;
+ real sh11, sh12, sh21, sh22, sflag;
+ integer nsteps;
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX */
+
+/* (SX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF SX ARE IN */
+/* (DX**T) */
+
+/* SX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE */
+/* LX = (-INCX)*N, AND SIMILARLY FOR SY USING USING LY AND INCY. */
+/* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
+
+/* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 */
+
+/* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) */
+/* H=( ) ( ) ( ) ( ) */
+/* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). */
+/* SEE SROTMG FOR A DESCRIPTION OF DATA STORAGE IN SPARAM. */
+
+
+/* Arguments */
+/* ========= */
+
+/* N (input) INTEGER */
+/* number of elements in input vector(s) */
+
+/* SX (input/output) REAL array, dimension N */
+/* double precision vector with N elements */
+
+/* INCX (input) INTEGER */
+/* storage spacing between elements of SX */
+
+/* SY (input/output) REAL array, dimension N */
+/* double precision vector with N elements */
+
+/* INCY (input) INTEGER */
+/* storage spacing between elements of SY */
+
+/* SPARAM (input/output) REAL array, dimension 5 */
+/* SPARAM(1)=SFLAG */
+/* SPARAM(2)=SH11 */
+/* SPARAM(3)=SH21 */
+/* SPARAM(4)=SH12 */
+/* SPARAM(5)=SH22 */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. Data statements .. */
+ /* Parameter adjustments */
+ --sparam;
+ --sy;
+ --sx;
+
+ /* Function Body */
+/* .. */
+
+ sflag = sparam[1];
+ if (*n <= 0 || sflag + two == zero) {
+ goto L140;
+ }
+ if (! (*incx == *incy && *incx > 0)) {
+ goto L70;
+ }
+
+ nsteps = *n * *incx;
+ if (sflag < 0.f) {
+ goto L50;
+ } else if (sflag == 0) {
+ goto L10;
+ } else {
+ goto L30;
+ }
+L10:
+ sh12 = sparam[4];
+ sh21 = sparam[3];
+ i__1 = nsteps;
+ i__2 = *incx;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+ w = sx[i__];
+ z__ = sy[i__];
+ sx[i__] = w + z__ * sh12;
+ sy[i__] = w * sh21 + z__;
+/* L20: */
+ }
+ goto L140;
+L30:
+ sh11 = sparam[2];
+ sh22 = sparam[5];
+ i__2 = nsteps;
+ i__1 = *incx;
+ for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1) {
+ w = sx[i__];
+ z__ = sy[i__];
+ sx[i__] = w * sh11 + z__;
+ sy[i__] = -w + sh22 * z__;
+/* L40: */
+ }
+ goto L140;
+L50:
+ sh11 = sparam[2];
+ sh12 = sparam[4];
+ sh21 = sparam[3];
+ sh22 = sparam[5];
+ i__1 = nsteps;
+ i__2 = *incx;
+ for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
+ w = sx[i__];
+ z__ = sy[i__];
+ sx[i__] = w * sh11 + z__ * sh12;
+ sy[i__] = w * sh21 + z__ * sh22;
+/* L60: */
+ }
+ goto L140;
+L70:
+ kx = 1;
+ ky = 1;
+ if (*incx < 0) {
+ kx = (1 - *n) * *incx + 1;
+ }
+ if (*incy < 0) {
+ ky = (1 - *n) * *incy + 1;
+ }
+
+ if (sflag < 0.f) {
+ goto L120;
+ } else if (sflag == 0) {
+ goto L80;
+ } else {
+ goto L100;
+ }
+L80:
+ sh12 = sparam[4];
+ sh21 = sparam[3];
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ w = sx[kx];
+ z__ = sy[ky];
+ sx[kx] = w + z__ * sh12;
+ sy[ky] = w * sh21 + z__;
+ kx += *incx;
+ ky += *incy;
+/* L90: */
+ }
+ goto L140;
+L100:
+ sh11 = sparam[2];
+ sh22 = sparam[5];
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ w = sx[kx];
+ z__ = sy[ky];
+ sx[kx] = w * sh11 + z__;
+ sy[ky] = -w + sh22 * z__;
+ kx += *incx;
+ ky += *incy;
+/* L110: */
+ }
+ goto L140;
+L120:
+ sh11 = sparam[2];
+ sh12 = sparam[4];
+ sh21 = sparam[3];
+ sh22 = sparam[5];
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ w = sx[kx];
+ z__ = sy[ky];
+ sx[kx] = w * sh11 + z__ * sh12;
+ sy[ky] = w * sh21 + z__ * sh22;
+ kx += *incx;
+ ky += *incy;
+/* L130: */
+ }
+L140:
+ return 0;
+} /* srotm_ */
+
diff --git a/blas/f2c/srotmg.c b/blas/f2c/srotmg.c
new file mode 100644
index 000000000..75f789fe2
--- /dev/null
+++ b/blas/f2c/srotmg.c
@@ -0,0 +1,295 @@
+/* srotmg.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int srotmg_(real *sd1, real *sd2, real *sx1, real *sy1, real
+ *sparam)
+{
+ /* Initialized data */
+
+ static real zero = 0.f;
+ static real one = 1.f;
+ static real two = 2.f;
+ static real gam = 4096.f;
+ static real gamsq = 16777200.f;
+ static real rgamsq = 5.96046e-8f;
+
+ /* Format strings */
+ static char fmt_120[] = "";
+ static char fmt_150[] = "";
+ static char fmt_180[] = "";
+ static char fmt_210[] = "";
+
+ /* System generated locals */
+ real r__1;
+
+ /* Local variables */
+ real su, sp1, sp2, sq1, sq2, sh11, sh12, sh21, sh22;
+ integer igo;
+ real sflag, stemp;
+
+ /* Assigned format variables */
+ static char *igo_fmt;
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS */
+/* THE SECOND COMPONENT OF THE 2-VECTOR (SQRT(SD1)*SX1,SQRT(SD2)* */
+/* SY2)**T. */
+/* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. */
+
+/* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 */
+
+/* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) */
+/* H=( ) ( ) ( ) ( ) */
+/* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). */
+/* LOCATIONS 2-4 OF SPARAM CONTAIN SH11,SH21,SH12, AND SH22 */
+/* RESPECTIVELY. (VALUES OF 1.E0, -1.E0, OR 0.E0 IMPLIED BY THE */
+/* VALUE OF SPARAM(1) ARE NOT STORED IN SPARAM.) */
+
+/* THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE */
+/* INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE */
+/* OF SD1 AND SD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. */
+
+
+/* Arguments */
+/* ========= */
+
+
+/* SD1 (input/output) REAL */
+
+/* SD2 (input/output) REAL */
+
+/* SX1 (input/output) REAL */
+
+/* SY1 (input) REAL */
+
+
+/* SPARAM (input/output) REAL array, dimension 5 */
+/* SPARAM(1)=SFLAG */
+/* SPARAM(2)=SH11 */
+/* SPARAM(3)=SH21 */
+/* SPARAM(4)=SH12 */
+/* SPARAM(5)=SH22 */
+
+/* ===================================================================== */
+
+/* .. Local Scalars .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Data statements .. */
+
+ /* Parameter adjustments */
+ --sparam;
+
+ /* Function Body */
+/* .. */
+ if (! (*sd1 < zero)) {
+ goto L10;
+ }
+/* GO ZERO-H-D-AND-SX1.. */
+ goto L60;
+L10:
+/* CASE-SD1-NONNEGATIVE */
+ sp2 = *sd2 * *sy1;
+ if (! (sp2 == zero)) {
+ goto L20;
+ }
+ sflag = -two;
+ goto L260;
+/* REGULAR-CASE.. */
+L20:
+ sp1 = *sd1 * *sx1;
+ sq2 = sp2 * *sy1;
+ sq1 = sp1 * *sx1;
+
+ if (! (dabs(sq1) > dabs(sq2))) {
+ goto L40;
+ }
+ sh21 = -(*sy1) / *sx1;
+ sh12 = sp2 / sp1;
+
+ su = one - sh12 * sh21;
+
+ if (! (su <= zero)) {
+ goto L30;
+ }
+/* GO ZERO-H-D-AND-SX1.. */
+ goto L60;
+L30:
+ sflag = zero;
+ *sd1 /= su;
+ *sd2 /= su;
+ *sx1 *= su;
+/* GO SCALE-CHECK.. */
+ goto L100;
+L40:
+ if (! (sq2 < zero)) {
+ goto L50;
+ }
+/* GO ZERO-H-D-AND-SX1.. */
+ goto L60;
+L50:
+ sflag = one;
+ sh11 = sp1 / sp2;
+ sh22 = *sx1 / *sy1;
+ su = one + sh11 * sh22;
+ stemp = *sd2 / su;
+ *sd2 = *sd1 / su;
+ *sd1 = stemp;
+ *sx1 = *sy1 * su;
+/* GO SCALE-CHECK */
+ goto L100;
+/* PROCEDURE..ZERO-H-D-AND-SX1.. */
+L60:
+ sflag = -one;
+ sh11 = zero;
+ sh12 = zero;
+ sh21 = zero;
+ sh22 = zero;
+
+ *sd1 = zero;
+ *sd2 = zero;
+ *sx1 = zero;
+/* RETURN.. */
+ goto L220;
+/* PROCEDURE..FIX-H.. */
+L70:
+ if (! (sflag >= zero)) {
+ goto L90;
+ }
+
+ if (! (sflag == zero)) {
+ goto L80;
+ }
+ sh11 = one;
+ sh22 = one;
+ sflag = -one;
+ goto L90;
+L80:
+ sh21 = -one;
+ sh12 = one;
+ sflag = -one;
+L90:
+ switch (igo) {
+ case 0: goto L120;
+ case 1: goto L150;
+ case 2: goto L180;
+ case 3: goto L210;
+ }
+/* PROCEDURE..SCALE-CHECK */
+L100:
+L110:
+ if (! (*sd1 <= rgamsq)) {
+ goto L130;
+ }
+ if (*sd1 == zero) {
+ goto L160;
+ }
+ igo = 0;
+ igo_fmt = fmt_120;
+/* FIX-H.. */
+ goto L70;
+L120:
+/* Computing 2nd power */
+ r__1 = gam;
+ *sd1 *= r__1 * r__1;
+ *sx1 /= gam;
+ sh11 /= gam;
+ sh12 /= gam;
+ goto L110;
+L130:
+L140:
+ if (! (*sd1 >= gamsq)) {
+ goto L160;
+ }
+ igo = 1;
+ igo_fmt = fmt_150;
+/* FIX-H.. */
+ goto L70;
+L150:
+/* Computing 2nd power */
+ r__1 = gam;
+ *sd1 /= r__1 * r__1;
+ *sx1 *= gam;
+ sh11 *= gam;
+ sh12 *= gam;
+ goto L140;
+L160:
+L170:
+ if (! (dabs(*sd2) <= rgamsq)) {
+ goto L190;
+ }
+ if (*sd2 == zero) {
+ goto L220;
+ }
+ igo = 2;
+ igo_fmt = fmt_180;
+/* FIX-H.. */
+ goto L70;
+L180:
+/* Computing 2nd power */
+ r__1 = gam;
+ *sd2 *= r__1 * r__1;
+ sh21 /= gam;
+ sh22 /= gam;
+ goto L170;
+L190:
+L200:
+ if (! (dabs(*sd2) >= gamsq)) {
+ goto L220;
+ }
+ igo = 3;
+ igo_fmt = fmt_210;
+/* FIX-H.. */
+ goto L70;
+L210:
+/* Computing 2nd power */
+ r__1 = gam;
+ *sd2 /= r__1 * r__1;
+ sh21 *= gam;
+ sh22 *= gam;
+ goto L200;
+L220:
+ if (sflag < 0.f) {
+ goto L250;
+ } else if (sflag == 0) {
+ goto L230;
+ } else {
+ goto L240;
+ }
+L230:
+ sparam[3] = sh21;
+ sparam[4] = sh12;
+ goto L260;
+L240:
+ sparam[2] = sh11;
+ sparam[5] = sh22;
+ goto L260;
+L250:
+ sparam[2] = sh11;
+ sparam[3] = sh21;
+ sparam[4] = sh12;
+ sparam[5] = sh22;
+L260:
+ sparam[1] = sflag;
+ return 0;
+} /* srotmg_ */
+
diff --git a/blas/f2c/ssbmv.c b/blas/f2c/ssbmv.c
new file mode 100644
index 000000000..8599325f2
--- /dev/null
+++ b/blas/f2c/ssbmv.c
@@ -0,0 +1,368 @@
+/* ssbmv.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int ssbmv_(char *uplo, integer *n, integer *k, real *alpha,
+ real *a, integer *lda, real *x, integer *incx, real *beta, real *y,
+ integer *incy, ftnlen uplo_len)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+
+ /* Local variables */
+ integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
+ real temp1, temp2;
+ extern logical lsame_(char *, char *, ftnlen, ftnlen);
+ integer kplus1;
+ extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SSBMV performs the matrix-vector operation */
+
+/* y := alpha*A*x + beta*y, */
+
+/* where alpha and beta are scalars, x and y are n element vectors and */
+/* A is an n by n symmetric band matrix, with k super-diagonals. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the upper or lower */
+/* triangular part of the band matrix A is being supplied as */
+/* follows: */
+
+/* UPLO = 'U' or 'u' The upper triangular part of A is */
+/* being supplied. */
+
+/* UPLO = 'L' or 'l' The lower triangular part of A is */
+/* being supplied. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix A. */
+/* N must be at least zero. */
+/* Unchanged on exit. */
+
+/* K - INTEGER. */
+/* On entry, K specifies the number of super-diagonals of the */
+/* matrix A. K must satisfy 0 .le. K. */
+/* Unchanged on exit. */
+
+/* ALPHA - REAL . */
+/* On entry, ALPHA specifies the scalar alpha. */
+/* Unchanged on exit. */
+
+/* A - REAL array of DIMENSION ( LDA, n ). */
+/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
+/* by n part of the array A must contain the upper triangular */
+/* band part of the symmetric matrix, supplied column by */
+/* column, with the leading diagonal of the matrix in row */
+/* ( k + 1 ) of the array, the first super-diagonal starting at */
+/* position 2 in row k, and so on. The top left k by k triangle */
+/* of the array A is not referenced. */
+/* The following program segment will transfer the upper */
+/* triangular part of a symmetric band matrix from conventional */
+/* full matrix storage to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = K + 1 - J */
+/* DO 10, I = MAX( 1, J - K ), J */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
+/* by n part of the array A must contain the lower triangular */
+/* band part of the symmetric matrix, supplied column by */
+/* column, with the leading diagonal of the matrix in row 1 of */
+/* the array, the first sub-diagonal starting at position 1 in */
+/* row 2, and so on. The bottom right k by k triangle of the */
+/* array A is not referenced. */
+/* The following program segment will transfer the lower */
+/* triangular part of a symmetric band matrix from conventional */
+/* full matrix storage to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = 1 - J */
+/* DO 10, I = J, MIN( N, J + K ) */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Unchanged on exit. */
+
+/* LDA - INTEGER. */
+/* On entry, LDA specifies the first dimension of A as declared */
+/* in the calling (sub) program. LDA must be at least */
+/* ( k + 1 ). */
+/* Unchanged on exit. */
+
+/* X - REAL array of DIMENSION at least */
+/* ( 1 + ( n - 1 )*abs( INCX ) ). */
+/* Before entry, the incremented array X must contain the */
+/* vector x. */
+/* Unchanged on exit. */
+
+/* INCX - INTEGER. */
+/* On entry, INCX specifies the increment for the elements of */
+/* X. INCX must not be zero. */
+/* Unchanged on exit. */
+
+/* BETA - REAL . */
+/* On entry, BETA specifies the scalar beta. */
+/* Unchanged on exit. */
+
+/* Y - REAL array of DIMENSION at least */
+/* ( 1 + ( n - 1 )*abs( INCY ) ). */
+/* Before entry, the incremented array Y must contain the */
+/* vector y. On exit, Y is overwritten by the updated vector y. */
+
+/* INCY - INTEGER. */
+/* On entry, INCY specifies the increment for the elements of */
+/* Y. INCY must not be zero. */
+/* Unchanged on exit. */
+
+/* Further Details */
+/* =============== */
+
+/* Level 2 Blas routine. */
+
+/* -- Written on 22-October-1986. */
+/* Jack Dongarra, Argonne National Lab. */
+/* Jeremy Du Croz, Nag Central Office. */
+/* Sven Hammarling, Nag Central Office. */
+/* Richard Hanson, Sandia National Labs. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+ --y;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+ ftnlen)1, (ftnlen)1)) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*k < 0) {
+ info = 3;
+ } else if (*lda < *k + 1) {
+ info = 6;
+ } else if (*incx == 0) {
+ info = 8;
+ } else if (*incy == 0) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("SSBMV ", &info, (ftnlen)6);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0 || (*alpha == 0.f && *beta == 1.f)) {
+ return 0;
+ }
+
+/* Set up the start points in X and Y. */
+
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+
+/* Start the operations. In this version the elements of the array A */
+/* are accessed sequentially with one pass through A. */
+
+/* First form y := beta*y. */
+
+ if (*beta != 1.f) {
+ if (*incy == 1) {
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = 0.f;
+/* L10: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = *beta * y[i__];
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = 0.f;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = *beta * y[iy];
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (*alpha == 0.f) {
+ return 0;
+ }
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+
+/* Form y when upper triangle of A is stored. */
+
+ kplus1 = *k + 1;
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[j];
+ temp2 = 0.f;
+ l = kplus1 - j;
+/* Computing MAX */
+ i__2 = 1, i__3 = j - *k;
+ i__4 = j - 1;
+ for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
+ y[i__] += temp1 * a[l + i__ + j * a_dim1];
+ temp2 += a[l + i__ + j * a_dim1] * x[i__];
+/* L50: */
+ }
+ y[j] = y[j] + temp1 * a[kplus1 + j * a_dim1] + *alpha * temp2;
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[jx];
+ temp2 = 0.f;
+ ix = kx;
+ iy = ky;
+ l = kplus1 - j;
+/* Computing MAX */
+ i__4 = 1, i__2 = j - *k;
+ i__3 = j - 1;
+ for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
+ y[iy] += temp1 * a[l + i__ + j * a_dim1];
+ temp2 += a[l + i__ + j * a_dim1] * x[ix];
+ ix += *incx;
+ iy += *incy;
+/* L70: */
+ }
+ y[jy] = y[jy] + temp1 * a[kplus1 + j * a_dim1] + *alpha *
+ temp2;
+ jx += *incx;
+ jy += *incy;
+ if (j > *k) {
+ kx += *incx;
+ ky += *incy;
+ }
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y when lower triangle of A is stored. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[j];
+ temp2 = 0.f;
+ y[j] += temp1 * a[j * a_dim1 + 1];
+ l = 1 - j;
+/* Computing MIN */
+ i__4 = *n, i__2 = j + *k;
+ i__3 = min(i__4,i__2);
+ for (i__ = j + 1; i__ <= i__3; ++i__) {
+ y[i__] += temp1 * a[l + i__ + j * a_dim1];
+ temp2 += a[l + i__ + j * a_dim1] * x[i__];
+/* L90: */
+ }
+ y[j] += *alpha * temp2;
+/* L100: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[jx];
+ temp2 = 0.f;
+ y[jy] += temp1 * a[j * a_dim1 + 1];
+ l = 1 - j;
+ ix = jx;
+ iy = jy;
+/* Computing MIN */
+ i__4 = *n, i__2 = j + *k;
+ i__3 = min(i__4,i__2);
+ for (i__ = j + 1; i__ <= i__3; ++i__) {
+ ix += *incx;
+ iy += *incy;
+ y[iy] += temp1 * a[l + i__ + j * a_dim1];
+ temp2 += a[l + i__ + j * a_dim1] * x[ix];
+/* L110: */
+ }
+ y[jy] += *alpha * temp2;
+ jx += *incx;
+ jy += *incy;
+/* L120: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of SSBMV . */
+
+} /* ssbmv_ */
+
diff --git a/blas/f2c/sspmv.c b/blas/f2c/sspmv.c
new file mode 100644
index 000000000..47858ec6c
--- /dev/null
+++ b/blas/f2c/sspmv.c
@@ -0,0 +1,316 @@
+/* sspmv.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int sspmv_(char *uplo, integer *n, real *alpha, real *ap,
+ real *x, integer *incx, real *beta, real *y, integer *incy, ftnlen
+ uplo_len)
+{
+ /* System generated locals */
+ integer i__1, i__2;
+
+ /* Local variables */
+ integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
+ real temp1, temp2;
+ extern logical lsame_(char *, char *, ftnlen, ftnlen);
+ extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SSPMV performs the matrix-vector operation */
+
+/* y := alpha*A*x + beta*y, */
+
+/* where alpha and beta are scalars, x and y are n element vectors and */
+/* A is an n by n symmetric matrix, supplied in packed form. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the upper or lower */
+/* triangular part of the matrix A is supplied in the packed */
+/* array AP as follows: */
+
+/* UPLO = 'U' or 'u' The upper triangular part of A is */
+/* supplied in AP. */
+
+/* UPLO = 'L' or 'l' The lower triangular part of A is */
+/* supplied in AP. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix A. */
+/* N must be at least zero. */
+/* Unchanged on exit. */
+
+/* ALPHA - REAL . */
+/* On entry, ALPHA specifies the scalar alpha. */
+/* Unchanged on exit. */
+
+/* AP - REAL array of DIMENSION at least */
+/* ( ( n*( n + 1 ) )/2 ). */
+/* Before entry with UPLO = 'U' or 'u', the array AP must */
+/* contain the upper triangular part of the symmetric matrix */
+/* packed sequentially, column by column, so that AP( 1 ) */
+/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
+/* and a( 2, 2 ) respectively, and so on. */
+/* Before entry with UPLO = 'L' or 'l', the array AP must */
+/* contain the lower triangular part of the symmetric matrix */
+/* packed sequentially, column by column, so that AP( 1 ) */
+/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
+/* and a( 3, 1 ) respectively, and so on. */
+/* Unchanged on exit. */
+
+/* X - REAL array of dimension at least */
+/* ( 1 + ( n - 1 )*abs( INCX ) ). */
+/* Before entry, the incremented array X must contain the n */
+/* element vector x. */
+/* Unchanged on exit. */
+
+/* INCX - INTEGER. */
+/* On entry, INCX specifies the increment for the elements of */
+/* X. INCX must not be zero. */
+/* Unchanged on exit. */
+
+/* BETA - REAL . */
+/* On entry, BETA specifies the scalar beta. When BETA is */
+/* supplied as zero then Y need not be set on input. */
+/* Unchanged on exit. */
+
+/* Y - REAL array of dimension at least */
+/* ( 1 + ( n - 1 )*abs( INCY ) ). */
+/* Before entry, the incremented array Y must contain the n */
+/* element vector y. On exit, Y is overwritten by the updated */
+/* vector y. */
+
+/* INCY - INTEGER. */
+/* On entry, INCY specifies the increment for the elements of */
+/* Y. INCY must not be zero. */
+/* Unchanged on exit. */
+
+/* Further Details */
+/* =============== */
+
+/* Level 2 Blas routine. */
+
+/* -- Written on 22-October-1986. */
+/* Jack Dongarra, Argonne National Lab. */
+/* Jeremy Du Croz, Nag Central Office. */
+/* Sven Hammarling, Nag Central Office. */
+/* Richard Hanson, Sandia National Labs. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --y;
+ --x;
+ --ap;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+ ftnlen)1, (ftnlen)1)) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*incx == 0) {
+ info = 6;
+ } else if (*incy == 0) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("SSPMV ", &info, (ftnlen)6);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0 || (*alpha == 0.f && *beta == 1.f)) {
+ return 0;
+ }
+
+/* Set up the start points in X and Y. */
+
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+
+/* Start the operations. In this version the elements of the array AP */
+/* are accessed sequentially with one pass through AP. */
+
+/* First form y := beta*y. */
+
+ if (*beta != 1.f) {
+ if (*incy == 1) {
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = 0.f;
+/* L10: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[i__] = *beta * y[i__];
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (*beta == 0.f) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = 0.f;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ y[iy] = *beta * y[iy];
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (*alpha == 0.f) {
+ return 0;
+ }
+ kk = 1;
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+
+/* Form y when AP contains the upper triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[j];
+ temp2 = 0.f;
+ k = kk;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ y[i__] += temp1 * ap[k];
+ temp2 += ap[k] * x[i__];
+ ++k;
+/* L50: */
+ }
+ y[j] = y[j] + temp1 * ap[kk + j - 1] + *alpha * temp2;
+ kk += j;
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[jx];
+ temp2 = 0.f;
+ ix = kx;
+ iy = ky;
+ i__2 = kk + j - 2;
+ for (k = kk; k <= i__2; ++k) {
+ y[iy] += temp1 * ap[k];
+ temp2 += ap[k] * x[ix];
+ ix += *incx;
+ iy += *incy;
+/* L70: */
+ }
+ y[jy] = y[jy] + temp1 * ap[kk + j - 1] + *alpha * temp2;
+ jx += *incx;
+ jy += *incy;
+ kk += j;
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y when AP contains the lower triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[j];
+ temp2 = 0.f;
+ y[j] += temp1 * ap[kk];
+ k = kk + 1;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ y[i__] += temp1 * ap[k];
+ temp2 += ap[k] * x[i__];
+ ++k;
+/* L90: */
+ }
+ y[j] += *alpha * temp2;
+ kk += *n - j + 1;
+/* L100: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ temp1 = *alpha * x[jx];
+ temp2 = 0.f;
+ y[jy] += temp1 * ap[kk];
+ ix = jx;
+ iy = jy;
+ i__2 = kk + *n - j;
+ for (k = kk + 1; k <= i__2; ++k) {
+ ix += *incx;
+ iy += *incy;
+ y[iy] += temp1 * ap[k];
+ temp2 += ap[k] * x[ix];
+/* L110: */
+ }
+ y[jy] += *alpha * temp2;
+ jx += *incx;
+ jy += *incy;
+ kk += *n - j + 1;
+/* L120: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of SSPMV . */
+
+} /* sspmv_ */
+
diff --git a/blas/f2c/stbmv.c b/blas/f2c/stbmv.c
new file mode 100644
index 000000000..fcf9ce336
--- /dev/null
+++ b/blas/f2c/stbmv.c
@@ -0,0 +1,428 @@
+/* stbmv.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int stbmv_(char *uplo, char *trans, char *diag, integer *n,
+ integer *k, real *a, integer *lda, real *x, integer *incx, ftnlen
+ uplo_len, ftnlen trans_len, ftnlen diag_len)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
+
+ /* Local variables */
+ integer i__, j, l, ix, jx, kx, info;
+ real temp;
+ extern logical lsame_(char *, char *, ftnlen, ftnlen);
+ integer kplus1;
+ extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+ logical nounit;
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* STBMV performs one of the matrix-vector operations */
+
+/* x := A*x, or x := A'*x, */
+
+/* where x is an n element vector and A is an n by n unit, or non-unit, */
+/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the matrix is an upper or */
+/* lower triangular matrix as follows: */
+
+/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
+
+/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
+
+/* Unchanged on exit. */
+
+/* TRANS - CHARACTER*1. */
+/* On entry, TRANS specifies the operation to be performed as */
+/* follows: */
+
+/* TRANS = 'N' or 'n' x := A*x. */
+
+/* TRANS = 'T' or 't' x := A'*x. */
+
+/* TRANS = 'C' or 'c' x := A'*x. */
+
+/* Unchanged on exit. */
+
+/* DIAG - CHARACTER*1. */
+/* On entry, DIAG specifies whether or not A is unit */
+/* triangular as follows: */
+
+/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
+
+/* DIAG = 'N' or 'n' A is not assumed to be unit */
+/* triangular. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix A. */
+/* N must be at least zero. */
+/* Unchanged on exit. */
+
+/* K - INTEGER. */
+/* On entry with UPLO = 'U' or 'u', K specifies the number of */
+/* super-diagonals of the matrix A. */
+/* On entry with UPLO = 'L' or 'l', K specifies the number of */
+/* sub-diagonals of the matrix A. */
+/* K must satisfy 0 .le. K. */
+/* Unchanged on exit. */
+
+/* A - REAL array of DIMENSION ( LDA, n ). */
+/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
+/* by n part of the array A must contain the upper triangular */
+/* band part of the matrix of coefficients, supplied column by */
+/* column, with the leading diagonal of the matrix in row */
+/* ( k + 1 ) of the array, the first super-diagonal starting at */
+/* position 2 in row k, and so on. The top left k by k triangle */
+/* of the array A is not referenced. */
+/* The following program segment will transfer an upper */
+/* triangular band matrix from conventional full matrix storage */
+/* to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = K + 1 - J */
+/* DO 10, I = MAX( 1, J - K ), J */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
+/* by n part of the array A must contain the lower triangular */
+/* band part of the matrix of coefficients, supplied column by */
+/* column, with the leading diagonal of the matrix in row 1 of */
+/* the array, the first sub-diagonal starting at position 1 in */
+/* row 2, and so on. The bottom right k by k triangle of the */
+/* array A is not referenced. */
+/* The following program segment will transfer a lower */
+/* triangular band matrix from conventional full matrix storage */
+/* to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = 1 - J */
+/* DO 10, I = J, MIN( N, J + K ) */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Note that when DIAG = 'U' or 'u' the elements of the array A */
+/* corresponding to the diagonal elements of the matrix are not */
+/* referenced, but are assumed to be unity. */
+/* Unchanged on exit. */
+
+/* LDA - INTEGER. */
+/* On entry, LDA specifies the first dimension of A as declared */
+/* in the calling (sub) program. LDA must be at least */
+/* ( k + 1 ). */
+/* Unchanged on exit. */
+
+/* X - REAL array of dimension at least */
+/* ( 1 + ( n - 1 )*abs( INCX ) ). */
+/* Before entry, the incremented array X must contain the n */
+/* element vector x. On exit, X is overwritten with the */
+/* tranformed vector x. */
+
+/* INCX - INTEGER. */
+/* On entry, INCX specifies the increment for the elements of */
+/* X. INCX must not be zero. */
+/* Unchanged on exit. */
+
+/* Further Details */
+/* =============== */
+
+/* Level 2 Blas routine. */
+
+/* -- Written on 22-October-1986. */
+/* Jack Dongarra, Argonne National Lab. */
+/* Jeremy Du Croz, Nag Central Office. */
+/* Sven Hammarling, Nag Central Office. */
+/* Richard Hanson, Sandia National Labs. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+ ftnlen)1, (ftnlen)1)) {
+ info = 1;
+ } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
+ "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
+ ftnlen)1)) {
+ info = 2;
+ } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
+ "N", (ftnlen)1, (ftnlen)1)) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*k < 0) {
+ info = 5;
+ } else if (*lda < *k + 1) {
+ info = 7;
+ } else if (*incx == 0) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("STBMV ", &info, (ftnlen)6);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
+
+/* Set up the start point in X if the increment is not unity. This */
+/* will be ( N - 1 )*INCX too small for descending loops. */
+
+ if (*incx <= 0) {
+ kx = 1 - (*n - 1) * *incx;
+ } else if (*incx != 1) {
+ kx = 1;
+ }
+
+/* Start the operations. In this version the elements of A are */
+/* accessed sequentially with one pass through A. */
+
+ if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
+
+/* Form x := A*x. */
+
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+ kplus1 = *k + 1;
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (x[j] != 0.f) {
+ temp = x[j];
+ l = kplus1 - j;
+/* Computing MAX */
+ i__2 = 1, i__3 = j - *k;
+ i__4 = j - 1;
+ for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
+ x[i__] += temp * a[l + i__ + j * a_dim1];
+/* L10: */
+ }
+ if (nounit) {
+ x[j] *= a[kplus1 + j * a_dim1];
+ }
+ }
+/* L20: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ if (x[jx] != 0.f) {
+ temp = x[jx];
+ ix = kx;
+ l = kplus1 - j;
+/* Computing MAX */
+ i__4 = 1, i__2 = j - *k;
+ i__3 = j - 1;
+ for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
+ x[ix] += temp * a[l + i__ + j * a_dim1];
+ ix += *incx;
+/* L30: */
+ }
+ if (nounit) {
+ x[jx] *= a[kplus1 + j * a_dim1];
+ }
+ }
+ jx += *incx;
+ if (j > *k) {
+ kx += *incx;
+ }
+/* L40: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ if (x[j] != 0.f) {
+ temp = x[j];
+ l = 1 - j;
+/* Computing MIN */
+ i__1 = *n, i__3 = j + *k;
+ i__4 = j + 1;
+ for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
+ x[i__] += temp * a[l + i__ + j * a_dim1];
+/* L50: */
+ }
+ if (nounit) {
+ x[j] *= a[j * a_dim1 + 1];
+ }
+ }
+/* L60: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ if (x[jx] != 0.f) {
+ temp = x[jx];
+ ix = kx;
+ l = 1 - j;
+/* Computing MIN */
+ i__4 = *n, i__1 = j + *k;
+ i__3 = j + 1;
+ for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
+ x[ix] += temp * a[l + i__ + j * a_dim1];
+ ix -= *incx;
+/* L70: */
+ }
+ if (nounit) {
+ x[jx] *= a[j * a_dim1 + 1];
+ }
+ }
+ jx -= *incx;
+ if (*n - j >= *k) {
+ kx -= *incx;
+ }
+/* L80: */
+ }
+ }
+ }
+ } else {
+
+/* Form x := A'*x. */
+
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+ kplus1 = *k + 1;
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ temp = x[j];
+ l = kplus1 - j;
+ if (nounit) {
+ temp *= a[kplus1 + j * a_dim1];
+ }
+/* Computing MAX */
+ i__4 = 1, i__1 = j - *k;
+ i__3 = max(i__4,i__1);
+ for (i__ = j - 1; i__ >= i__3; --i__) {
+ temp += a[l + i__ + j * a_dim1] * x[i__];
+/* L90: */
+ }
+ x[j] = temp;
+/* L100: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ temp = x[jx];
+ kx -= *incx;
+ ix = kx;
+ l = kplus1 - j;
+ if (nounit) {
+ temp *= a[kplus1 + j * a_dim1];
+ }
+/* Computing MAX */
+ i__4 = 1, i__1 = j - *k;
+ i__3 = max(i__4,i__1);
+ for (i__ = j - 1; i__ >= i__3; --i__) {
+ temp += a[l + i__ + j * a_dim1] * x[ix];
+ ix -= *incx;
+/* L110: */
+ }
+ x[jx] = temp;
+ jx -= *incx;
+/* L120: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ i__3 = *n;
+ for (j = 1; j <= i__3; ++j) {
+ temp = x[j];
+ l = 1 - j;
+ if (nounit) {
+ temp *= a[j * a_dim1 + 1];
+ }
+/* Computing MIN */
+ i__1 = *n, i__2 = j + *k;
+ i__4 = min(i__1,i__2);
+ for (i__ = j + 1; i__ <= i__4; ++i__) {
+ temp += a[l + i__ + j * a_dim1] * x[i__];
+/* L130: */
+ }
+ x[j] = temp;
+/* L140: */
+ }
+ } else {
+ jx = kx;
+ i__3 = *n;
+ for (j = 1; j <= i__3; ++j) {
+ temp = x[jx];
+ kx += *incx;
+ ix = kx;
+ l = 1 - j;
+ if (nounit) {
+ temp *= a[j * a_dim1 + 1];
+ }
+/* Computing MIN */
+ i__1 = *n, i__2 = j + *k;
+ i__4 = min(i__1,i__2);
+ for (i__ = j + 1; i__ <= i__4; ++i__) {
+ temp += a[l + i__ + j * a_dim1] * x[ix];
+ ix += *incx;
+/* L150: */
+ }
+ x[jx] = temp;
+ jx += *incx;
+/* L160: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of STBMV . */
+
+} /* stbmv_ */
+
diff --git a/blas/f2c/zhbmv.c b/blas/f2c/zhbmv.c
new file mode 100644
index 000000000..42da13dbb
--- /dev/null
+++ b/blas/f2c/zhbmv.c
@@ -0,0 +1,488 @@
+/* zhbmv.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int zhbmv_(char *uplo, integer *n, integer *k, doublecomplex
+ *alpha, doublecomplex *a, integer *lda, doublecomplex *x, integer *
+ incx, doublecomplex *beta, doublecomplex *y, integer *incy, ftnlen
+ uplo_len)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ doublereal d__1;
+ doublecomplex z__1, z__2, z__3, z__4;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ integer i__, j, l, ix, iy, jx, jy, kx, ky, info;
+ doublecomplex temp1, temp2;
+ extern logical lsame_(char *, char *, ftnlen, ftnlen);
+ integer kplus1;
+ extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZHBMV performs the matrix-vector operation */
+
+/* y := alpha*A*x + beta*y, */
+
+/* where alpha and beta are scalars, x and y are n element vectors and */
+/* A is an n by n hermitian band matrix, with k super-diagonals. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the upper or lower */
+/* triangular part of the band matrix A is being supplied as */
+/* follows: */
+
+/* UPLO = 'U' or 'u' The upper triangular part of A is */
+/* being supplied. */
+
+/* UPLO = 'L' or 'l' The lower triangular part of A is */
+/* being supplied. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix A. */
+/* N must be at least zero. */
+/* Unchanged on exit. */
+
+/* K - INTEGER. */
+/* On entry, K specifies the number of super-diagonals of the */
+/* matrix A. K must satisfy 0 .le. K. */
+/* Unchanged on exit. */
+
+/* ALPHA - COMPLEX*16 . */
+/* On entry, ALPHA specifies the scalar alpha. */
+/* Unchanged on exit. */
+
+/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
+/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
+/* by n part of the array A must contain the upper triangular */
+/* band part of the hermitian matrix, supplied column by */
+/* column, with the leading diagonal of the matrix in row */
+/* ( k + 1 ) of the array, the first super-diagonal starting at */
+/* position 2 in row k, and so on. The top left k by k triangle */
+/* of the array A is not referenced. */
+/* The following program segment will transfer the upper */
+/* triangular part of a hermitian band matrix from conventional */
+/* full matrix storage to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = K + 1 - J */
+/* DO 10, I = MAX( 1, J - K ), J */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
+/* by n part of the array A must contain the lower triangular */
+/* band part of the hermitian matrix, supplied column by */
+/* column, with the leading diagonal of the matrix in row 1 of */
+/* the array, the first sub-diagonal starting at position 1 in */
+/* row 2, and so on. The bottom right k by k triangle of the */
+/* array A is not referenced. */
+/* The following program segment will transfer the lower */
+/* triangular part of a hermitian band matrix from conventional */
+/* full matrix storage to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = 1 - J */
+/* DO 10, I = J, MIN( N, J + K ) */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Note that the imaginary parts of the diagonal elements need */
+/* not be set and are assumed to be zero. */
+/* Unchanged on exit. */
+
+/* LDA - INTEGER. */
+/* On entry, LDA specifies the first dimension of A as declared */
+/* in the calling (sub) program. LDA must be at least */
+/* ( k + 1 ). */
+/* Unchanged on exit. */
+
+/* X - COMPLEX*16 array of DIMENSION at least */
+/* ( 1 + ( n - 1 )*abs( INCX ) ). */
+/* Before entry, the incremented array X must contain the */
+/* vector x. */
+/* Unchanged on exit. */
+
+/* INCX - INTEGER. */
+/* On entry, INCX specifies the increment for the elements of */
+/* X. INCX must not be zero. */
+/* Unchanged on exit. */
+
+/* BETA - COMPLEX*16 . */
+/* On entry, BETA specifies the scalar beta. */
+/* Unchanged on exit. */
+
+/* Y - COMPLEX*16 array of DIMENSION at least */
+/* ( 1 + ( n - 1 )*abs( INCY ) ). */
+/* Before entry, the incremented array Y must contain the */
+/* vector y. On exit, Y is overwritten by the updated vector y. */
+
+/* INCY - INTEGER. */
+/* On entry, INCY specifies the increment for the elements of */
+/* Y. INCY must not be zero. */
+/* Unchanged on exit. */
+
+/* Further Details */
+/* =============== */
+
+/* Level 2 Blas routine. */
+
+/* -- Written on 22-October-1986. */
+/* Jack Dongarra, Argonne National Lab. */
+/* Jeremy Du Croz, Nag Central Office. */
+/* Sven Hammarling, Nag Central Office. */
+/* Richard Hanson, Sandia National Labs. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+ --y;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+ ftnlen)1, (ftnlen)1)) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*k < 0) {
+ info = 3;
+ } else if (*lda < *k + 1) {
+ info = 6;
+ } else if (*incx == 0) {
+ info = 8;
+ } else if (*incy == 0) {
+ info = 11;
+ }
+ if (info != 0) {
+ xerbla_("ZHBMV ", &info, (ftnlen)6);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
+ beta->i == 0.))) {
+ return 0;
+ }
+
+/* Set up the start points in X and Y. */
+
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+
+/* Start the operations. In this version the elements of the array A */
+/* are accessed sequentially with one pass through A. */
+
+/* First form y := beta*y. */
+
+ if (beta->r != 1. || beta->i != 0.) {
+ if (*incy == 1) {
+ if (beta->r == 0. && beta->i == 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ y[i__2].r = 0., y[i__2].i = 0.;
+/* L10: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (beta->r == 0. && beta->i == 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ y[i__2].r = 0., y[i__2].i = 0.;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ i__3 = iy;
+ z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (alpha->r == 0. && alpha->i == 0.) {
+ return 0;
+ }
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+
+/* Form y when upper triangle of A is stored. */
+
+ kplus1 = *k + 1;
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ temp2.r = 0., temp2.i = 0.;
+ l = kplus1 - j;
+/* Computing MAX */
+ i__2 = 1, i__3 = j - *k;
+ i__4 = j - 1;
+ for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ i__5 = l + i__ + j * a_dim1;
+ z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
+ i__2 = i__;
+ z__2.r = z__3.r * x[i__2].r - z__3.i * x[i__2].i, z__2.i =
+ z__3.r * x[i__2].i + z__3.i * x[i__2].r;
+ z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
+ temp2.r = z__1.r, temp2.i = z__1.i;
+/* L50: */
+ }
+ i__4 = j;
+ i__2 = j;
+ i__3 = kplus1 + j * a_dim1;
+ d__1 = a[i__3].r;
+ z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
+ z__2.r = y[i__2].r + z__3.r, z__2.i = y[i__2].i + z__3.i;
+ z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
+ y[i__4].r = z__1.r, y[i__4].i = z__1.i;
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__4 = jx;
+ z__1.r = alpha->r * x[i__4].r - alpha->i * x[i__4].i, z__1.i =
+ alpha->r * x[i__4].i + alpha->i * x[i__4].r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ temp2.r = 0., temp2.i = 0.;
+ ix = kx;
+ iy = ky;
+ l = kplus1 - j;
+/* Computing MAX */
+ i__4 = 1, i__2 = j - *k;
+ i__3 = j - 1;
+ for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
+ i__4 = iy;
+ i__2 = iy;
+ i__5 = l + i__ + j * a_dim1;
+ z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
+ y[i__4].r = z__1.r, y[i__4].i = z__1.i;
+ d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
+ i__4 = ix;
+ z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
+ z__3.r * x[i__4].i + z__3.i * x[i__4].r;
+ z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
+ temp2.r = z__1.r, temp2.i = z__1.i;
+ ix += *incx;
+ iy += *incy;
+/* L70: */
+ }
+ i__3 = jy;
+ i__4 = jy;
+ i__2 = kplus1 + j * a_dim1;
+ d__1 = a[i__2].r;
+ z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
+ z__2.r = y[i__4].r + z__3.r, z__2.i = y[i__4].i + z__3.i;
+ z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+ jx += *incx;
+ jy += *incy;
+ if (j > *k) {
+ kx += *incx;
+ ky += *incy;
+ }
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y when lower triangle of A is stored. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__3 = j;
+ z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
+ alpha->r * x[i__3].i + alpha->i * x[i__3].r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ temp2.r = 0., temp2.i = 0.;
+ i__3 = j;
+ i__4 = j;
+ i__2 = j * a_dim1 + 1;
+ d__1 = a[i__2].r;
+ z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
+ z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+ l = 1 - j;
+/* Computing MIN */
+ i__4 = *n, i__2 = j + *k;
+ i__3 = min(i__4,i__2);
+ for (i__ = j + 1; i__ <= i__3; ++i__) {
+ i__4 = i__;
+ i__2 = i__;
+ i__5 = l + i__ + j * a_dim1;
+ z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
+ y[i__4].r = z__1.r, y[i__4].i = z__1.i;
+ d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
+ i__4 = i__;
+ z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
+ z__3.r * x[i__4].i + z__3.i * x[i__4].r;
+ z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
+ temp2.r = z__1.r, temp2.i = z__1.i;
+/* L90: */
+ }
+ i__3 = j;
+ i__4 = j;
+ z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+/* L100: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__3 = jx;
+ z__1.r = alpha->r * x[i__3].r - alpha->i * x[i__3].i, z__1.i =
+ alpha->r * x[i__3].i + alpha->i * x[i__3].r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ temp2.r = 0., temp2.i = 0.;
+ i__3 = jy;
+ i__4 = jy;
+ i__2 = j * a_dim1 + 1;
+ d__1 = a[i__2].r;
+ z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
+ z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+ l = 1 - j;
+ ix = jx;
+ iy = jy;
+/* Computing MIN */
+ i__4 = *n, i__2 = j + *k;
+ i__3 = min(i__4,i__2);
+ for (i__ = j + 1; i__ <= i__3; ++i__) {
+ ix += *incx;
+ iy += *incy;
+ i__4 = iy;
+ i__2 = iy;
+ i__5 = l + i__ + j * a_dim1;
+ z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
+ z__2.i = temp1.r * a[i__5].i + temp1.i * a[i__5]
+ .r;
+ z__1.r = y[i__2].r + z__2.r, z__1.i = y[i__2].i + z__2.i;
+ y[i__4].r = z__1.r, y[i__4].i = z__1.i;
+ d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
+ i__4 = ix;
+ z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i, z__2.i =
+ z__3.r * x[i__4].i + z__3.i * x[i__4].r;
+ z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
+ temp2.r = z__1.r, temp2.i = z__1.i;
+/* L110: */
+ }
+ i__3 = jy;
+ i__4 = jy;
+ z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+ jx += *incx;
+ jy += *incy;
+/* L120: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZHBMV . */
+
+} /* zhbmv_ */
+
diff --git a/blas/f2c/zhpmv.c b/blas/f2c/zhpmv.c
new file mode 100644
index 000000000..fbe2f42b3
--- /dev/null
+++ b/blas/f2c/zhpmv.c
@@ -0,0 +1,438 @@
+/* zhpmv.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int zhpmv_(char *uplo, integer *n, doublecomplex *alpha,
+ doublecomplex *ap, doublecomplex *x, integer *incx, doublecomplex *
+ beta, doublecomplex *y, integer *incy, ftnlen uplo_len)
+{
+ /* System generated locals */
+ integer i__1, i__2, i__3, i__4, i__5;
+ doublereal d__1;
+ doublecomplex z__1, z__2, z__3, z__4;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ integer i__, j, k, kk, ix, iy, jx, jy, kx, ky, info;
+ doublecomplex temp1, temp2;
+ extern logical lsame_(char *, char *, ftnlen, ftnlen);
+ extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZHPMV performs the matrix-vector operation */
+
+/* y := alpha*A*x + beta*y, */
+
+/* where alpha and beta are scalars, x and y are n element vectors and */
+/* A is an n by n hermitian matrix, supplied in packed form. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the upper or lower */
+/* triangular part of the matrix A is supplied in the packed */
+/* array AP as follows: */
+
+/* UPLO = 'U' or 'u' The upper triangular part of A is */
+/* supplied in AP. */
+
+/* UPLO = 'L' or 'l' The lower triangular part of A is */
+/* supplied in AP. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix A. */
+/* N must be at least zero. */
+/* Unchanged on exit. */
+
+/* ALPHA - COMPLEX*16 . */
+/* On entry, ALPHA specifies the scalar alpha. */
+/* Unchanged on exit. */
+
+/* AP - COMPLEX*16 array of DIMENSION at least */
+/* ( ( n*( n + 1 ) )/2 ). */
+/* Before entry with UPLO = 'U' or 'u', the array AP must */
+/* contain the upper triangular part of the hermitian matrix */
+/* packed sequentially, column by column, so that AP( 1 ) */
+/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
+/* and a( 2, 2 ) respectively, and so on. */
+/* Before entry with UPLO = 'L' or 'l', the array AP must */
+/* contain the lower triangular part of the hermitian matrix */
+/* packed sequentially, column by column, so that AP( 1 ) */
+/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
+/* and a( 3, 1 ) respectively, and so on. */
+/* Note that the imaginary parts of the diagonal elements need */
+/* not be set and are assumed to be zero. */
+/* Unchanged on exit. */
+
+/* X - COMPLEX*16 array of dimension at least */
+/* ( 1 + ( n - 1 )*abs( INCX ) ). */
+/* Before entry, the incremented array X must contain the n */
+/* element vector x. */
+/* Unchanged on exit. */
+
+/* INCX - INTEGER. */
+/* On entry, INCX specifies the increment for the elements of */
+/* X. INCX must not be zero. */
+/* Unchanged on exit. */
+
+/* BETA - COMPLEX*16 . */
+/* On entry, BETA specifies the scalar beta. When BETA is */
+/* supplied as zero then Y need not be set on input. */
+/* Unchanged on exit. */
+
+/* Y - COMPLEX*16 array of dimension at least */
+/* ( 1 + ( n - 1 )*abs( INCY ) ). */
+/* Before entry, the incremented array Y must contain the n */
+/* element vector y. On exit, Y is overwritten by the updated */
+/* vector y. */
+
+/* INCY - INTEGER. */
+/* On entry, INCY specifies the increment for the elements of */
+/* Y. INCY must not be zero. */
+/* Unchanged on exit. */
+
+/* Further Details */
+/* =============== */
+
+/* Level 2 Blas routine. */
+
+/* -- Written on 22-October-1986. */
+/* Jack Dongarra, Argonne National Lab. */
+/* Jeremy Du Croz, Nag Central Office. */
+/* Sven Hammarling, Nag Central Office. */
+/* Richard Hanson, Sandia National Labs. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --y;
+ --x;
+ --ap;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+ ftnlen)1, (ftnlen)1)) {
+ info = 1;
+ } else if (*n < 0) {
+ info = 2;
+ } else if (*incx == 0) {
+ info = 6;
+ } else if (*incy == 0) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("ZHPMV ", &info, (ftnlen)6);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0 || (alpha->r == 0. && alpha->i == 0. && (beta->r == 1. &&
+ beta->i == 0.))) {
+ return 0;
+ }
+
+/* Set up the start points in X and Y. */
+
+ if (*incx > 0) {
+ kx = 1;
+ } else {
+ kx = 1 - (*n - 1) * *incx;
+ }
+ if (*incy > 0) {
+ ky = 1;
+ } else {
+ ky = 1 - (*n - 1) * *incy;
+ }
+
+/* Start the operations. In this version the elements of the array AP */
+/* are accessed sequentially with one pass through AP. */
+
+/* First form y := beta*y. */
+
+ if (beta->r != 1. || beta->i != 0.) {
+ if (*incy == 1) {
+ if (beta->r == 0. && beta->i == 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ y[i__2].r = 0., y[i__2].i = 0.;
+/* L10: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+/* L20: */
+ }
+ }
+ } else {
+ iy = ky;
+ if (beta->r == 0. && beta->i == 0.) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ y[i__2].r = 0., y[i__2].i = 0.;
+ iy += *incy;
+/* L30: */
+ }
+ } else {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ i__2 = iy;
+ i__3 = iy;
+ z__1.r = beta->r * y[i__3].r - beta->i * y[i__3].i,
+ z__1.i = beta->r * y[i__3].i + beta->i * y[i__3]
+ .r;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ iy += *incy;
+/* L40: */
+ }
+ }
+ }
+ }
+ if (alpha->r == 0. && alpha->i == 0.) {
+ return 0;
+ }
+ kk = 1;
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+
+/* Form y when AP contains the upper triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ temp2.r = 0., temp2.i = 0.;
+ k = kk;
+ i__2 = j - 1;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = k;
+ z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
+ z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
+ .r;
+ z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+ d_cnjg(&z__3, &ap[k]);
+ i__3 = i__;
+ z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
+ z__3.r * x[i__3].i + z__3.i * x[i__3].r;
+ z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
+ temp2.r = z__1.r, temp2.i = z__1.i;
+ ++k;
+/* L50: */
+ }
+ i__2 = j;
+ i__3 = j;
+ i__4 = kk + j - 1;
+ d__1 = ap[i__4].r;
+ z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
+ z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
+ z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ kk += j;
+/* L60: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ temp2.r = 0., temp2.i = 0.;
+ ix = kx;
+ iy = ky;
+ i__2 = kk + j - 2;
+ for (k = kk; k <= i__2; ++k) {
+ i__3 = iy;
+ i__4 = iy;
+ i__5 = k;
+ z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
+ z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
+ .r;
+ z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+ d_cnjg(&z__3, &ap[k]);
+ i__3 = ix;
+ z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
+ z__3.r * x[i__3].i + z__3.i * x[i__3].r;
+ z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
+ temp2.r = z__1.r, temp2.i = z__1.i;
+ ix += *incx;
+ iy += *incy;
+/* L70: */
+ }
+ i__2 = jy;
+ i__3 = jy;
+ i__4 = kk + j - 1;
+ d__1 = ap[i__4].r;
+ z__3.r = d__1 * temp1.r, z__3.i = d__1 * temp1.i;
+ z__2.r = y[i__3].r + z__3.r, z__2.i = y[i__3].i + z__3.i;
+ z__4.r = alpha->r * temp2.r - alpha->i * temp2.i, z__4.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ jx += *incx;
+ jy += *incy;
+ kk += j;
+/* L80: */
+ }
+ }
+ } else {
+
+/* Form y when AP contains the lower triangle. */
+
+ if (*incx == 1 && *incy == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ temp2.r = 0., temp2.i = 0.;
+ i__2 = j;
+ i__3 = j;
+ i__4 = kk;
+ d__1 = ap[i__4].r;
+ z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
+ z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ k = kk + 1;
+ i__2 = *n;
+ for (i__ = j + 1; i__ <= i__2; ++i__) {
+ i__3 = i__;
+ i__4 = i__;
+ i__5 = k;
+ z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
+ z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
+ .r;
+ z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+ d_cnjg(&z__3, &ap[k]);
+ i__3 = i__;
+ z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
+ z__3.r * x[i__3].i + z__3.i * x[i__3].r;
+ z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
+ temp2.r = z__1.r, temp2.i = z__1.i;
+ ++k;
+/* L90: */
+ }
+ i__2 = j;
+ i__3 = j;
+ z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ kk += *n - j + 1;
+/* L100: */
+ }
+ } else {
+ jx = kx;
+ jy = ky;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = jx;
+ z__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i, z__1.i =
+ alpha->r * x[i__2].i + alpha->i * x[i__2].r;
+ temp1.r = z__1.r, temp1.i = z__1.i;
+ temp2.r = 0., temp2.i = 0.;
+ i__2 = jy;
+ i__3 = jy;
+ i__4 = kk;
+ d__1 = ap[i__4].r;
+ z__2.r = d__1 * temp1.r, z__2.i = d__1 * temp1.i;
+ z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ ix = jx;
+ iy = jy;
+ i__2 = kk + *n - j;
+ for (k = kk + 1; k <= i__2; ++k) {
+ ix += *incx;
+ iy += *incy;
+ i__3 = iy;
+ i__4 = iy;
+ i__5 = k;
+ z__2.r = temp1.r * ap[i__5].r - temp1.i * ap[i__5].i,
+ z__2.i = temp1.r * ap[i__5].i + temp1.i * ap[i__5]
+ .r;
+ z__1.r = y[i__4].r + z__2.r, z__1.i = y[i__4].i + z__2.i;
+ y[i__3].r = z__1.r, y[i__3].i = z__1.i;
+ d_cnjg(&z__3, &ap[k]);
+ i__3 = ix;
+ z__2.r = z__3.r * x[i__3].r - z__3.i * x[i__3].i, z__2.i =
+ z__3.r * x[i__3].i + z__3.i * x[i__3].r;
+ z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
+ temp2.r = z__1.r, temp2.i = z__1.i;
+/* L110: */
+ }
+ i__2 = jy;
+ i__3 = jy;
+ z__2.r = alpha->r * temp2.r - alpha->i * temp2.i, z__2.i =
+ alpha->r * temp2.i + alpha->i * temp2.r;
+ z__1.r = y[i__3].r + z__2.r, z__1.i = y[i__3].i + z__2.i;
+ y[i__2].r = z__1.r, y[i__2].i = z__1.i;
+ jx += *incx;
+ jy += *incy;
+ kk += *n - j + 1;
+/* L120: */
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZHPMV . */
+
+} /* zhpmv_ */
+
diff --git a/blas/f2c/ztbmv.c b/blas/f2c/ztbmv.c
new file mode 100644
index 000000000..4cdcd7f88
--- /dev/null
+++ b/blas/f2c/ztbmv.c
@@ -0,0 +1,647 @@
+/* ztbmv.f -- translated by f2c (version 20100827).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "datatypes.h"
+
+/* Subroutine */ int ztbmv_(char *uplo, char *trans, char *diag, integer *n,
+ integer *k, doublecomplex *a, integer *lda, doublecomplex *x, integer
+ *incx, ftnlen uplo_len, ftnlen trans_len, ftnlen diag_len)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
+ doublecomplex z__1, z__2, z__3;
+
+ /* Builtin functions */
+ void d_cnjg(doublecomplex *, doublecomplex *);
+
+ /* Local variables */
+ integer i__, j, l, ix, jx, kx, info;
+ doublecomplex temp;
+ extern logical lsame_(char *, char *, ftnlen, ftnlen);
+ integer kplus1;
+ extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
+ logical noconj, nounit;
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZTBMV performs one of the matrix-vector operations */
+
+/* x := A*x, or x := A'*x, or x := conjg( A' )*x, */
+
+/* where x is an n element vector and A is an n by n unit, or non-unit, */
+/* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */
+
+/* Arguments */
+/* ========== */
+
+/* UPLO - CHARACTER*1. */
+/* On entry, UPLO specifies whether the matrix is an upper or */
+/* lower triangular matrix as follows: */
+
+/* UPLO = 'U' or 'u' A is an upper triangular matrix. */
+
+/* UPLO = 'L' or 'l' A is a lower triangular matrix. */
+
+/* Unchanged on exit. */
+
+/* TRANS - CHARACTER*1. */
+/* On entry, TRANS specifies the operation to be performed as */
+/* follows: */
+
+/* TRANS = 'N' or 'n' x := A*x. */
+
+/* TRANS = 'T' or 't' x := A'*x. */
+
+/* TRANS = 'C' or 'c' x := conjg( A' )*x. */
+
+/* Unchanged on exit. */
+
+/* DIAG - CHARACTER*1. */
+/* On entry, DIAG specifies whether or not A is unit */
+/* triangular as follows: */
+
+/* DIAG = 'U' or 'u' A is assumed to be unit triangular. */
+
+/* DIAG = 'N' or 'n' A is not assumed to be unit */
+/* triangular. */
+
+/* Unchanged on exit. */
+
+/* N - INTEGER. */
+/* On entry, N specifies the order of the matrix A. */
+/* N must be at least zero. */
+/* Unchanged on exit. */
+
+/* K - INTEGER. */
+/* On entry with UPLO = 'U' or 'u', K specifies the number of */
+/* super-diagonals of the matrix A. */
+/* On entry with UPLO = 'L' or 'l', K specifies the number of */
+/* sub-diagonals of the matrix A. */
+/* K must satisfy 0 .le. K. */
+/* Unchanged on exit. */
+
+/* A - COMPLEX*16 array of DIMENSION ( LDA, n ). */
+/* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */
+/* by n part of the array A must contain the upper triangular */
+/* band part of the matrix of coefficients, supplied column by */
+/* column, with the leading diagonal of the matrix in row */
+/* ( k + 1 ) of the array, the first super-diagonal starting at */
+/* position 2 in row k, and so on. The top left k by k triangle */
+/* of the array A is not referenced. */
+/* The following program segment will transfer an upper */
+/* triangular band matrix from conventional full matrix storage */
+/* to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = K + 1 - J */
+/* DO 10, I = MAX( 1, J - K ), J */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */
+/* by n part of the array A must contain the lower triangular */
+/* band part of the matrix of coefficients, supplied column by */
+/* column, with the leading diagonal of the matrix in row 1 of */
+/* the array, the first sub-diagonal starting at position 1 in */
+/* row 2, and so on. The bottom right k by k triangle of the */
+/* array A is not referenced. */
+/* The following program segment will transfer a lower */
+/* triangular band matrix from conventional full matrix storage */
+/* to band storage: */
+
+/* DO 20, J = 1, N */
+/* M = 1 - J */
+/* DO 10, I = J, MIN( N, J + K ) */
+/* A( M + I, J ) = matrix( I, J ) */
+/* 10 CONTINUE */
+/* 20 CONTINUE */
+
+/* Note that when DIAG = 'U' or 'u' the elements of the array A */
+/* corresponding to the diagonal elements of the matrix are not */
+/* referenced, but are assumed to be unity. */
+/* Unchanged on exit. */
+
+/* LDA - INTEGER. */
+/* On entry, LDA specifies the first dimension of A as declared */
+/* in the calling (sub) program. LDA must be at least */
+/* ( k + 1 ). */
+/* Unchanged on exit. */
+
+/* X - COMPLEX*16 array of dimension at least */
+/* ( 1 + ( n - 1 )*abs( INCX ) ). */
+/* Before entry, the incremented array X must contain the n */
+/* element vector x. On exit, X is overwritten with the */
+/* tranformed vector x. */
+
+/* INCX - INTEGER. */
+/* On entry, INCX specifies the increment for the elements of */
+/* X. INCX must not be zero. */
+/* Unchanged on exit. */
+
+/* Further Details */
+/* =============== */
+
+/* Level 2 Blas routine. */
+
+/* -- Written on 22-October-1986. */
+/* Jack Dongarra, Argonne National Lab. */
+/* Jeremy Du Croz, Nag Central Office. */
+/* Sven Hammarling, Nag Central Office. */
+/* Richard Hanson, Sandia National Labs. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --x;
+
+ /* Function Body */
+ info = 0;
+ if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", (
+ ftnlen)1, (ftnlen)1)) {
+ info = 1;
+ } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
+ "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, (
+ ftnlen)1)) {
+ info = 2;
+ } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
+ "N", (ftnlen)1, (ftnlen)1)) {
+ info = 3;
+ } else if (*n < 0) {
+ info = 4;
+ } else if (*k < 0) {
+ info = 5;
+ } else if (*lda < *k + 1) {
+ info = 7;
+ } else if (*incx == 0) {
+ info = 9;
+ }
+ if (info != 0) {
+ xerbla_("ZTBMV ", &info, (ftnlen)6);
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ noconj = lsame_(trans, "T", (ftnlen)1, (ftnlen)1);
+ nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1);
+
+/* Set up the start point in X if the increment is not unity. This */
+/* will be ( N - 1 )*INCX too small for descending loops. */
+
+ if (*incx <= 0) {
+ kx = 1 - (*n - 1) * *incx;
+ } else if (*incx != 1) {
+ kx = 1;
+ }
+
+/* Start the operations. In this version the elements of A are */
+/* accessed sequentially with one pass through A. */
+
+ if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) {
+
+/* Form x := A*x. */
+
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+ kplus1 = *k + 1;
+ if (*incx == 1) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = j;
+ if (x[i__2].r != 0. || x[i__2].i != 0.) {
+ i__2 = j;
+ temp.r = x[i__2].r, temp.i = x[i__2].i;
+ l = kplus1 - j;
+/* Computing MAX */
+ i__2 = 1, i__3 = j - *k;
+ i__4 = j - 1;
+ for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
+ i__2 = i__;
+ i__3 = i__;
+ i__5 = l + i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ z__2.i = temp.r * a[i__5].i + temp.i * a[
+ i__5].r;
+ z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
+ z__2.i;
+ x[i__2].r = z__1.r, x[i__2].i = z__1.i;
+/* L10: */
+ }
+ if (nounit) {
+ i__4 = j;
+ i__2 = j;
+ i__3 = kplus1 + j * a_dim1;
+ z__1.r = x[i__2].r * a[i__3].r - x[i__2].i * a[
+ i__3].i, z__1.i = x[i__2].r * a[i__3].i +
+ x[i__2].i * a[i__3].r;
+ x[i__4].r = z__1.r, x[i__4].i = z__1.i;
+ }
+ }
+/* L20: */
+ }
+ } else {
+ jx = kx;
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__4 = jx;
+ if (x[i__4].r != 0. || x[i__4].i != 0.) {
+ i__4 = jx;
+ temp.r = x[i__4].r, temp.i = x[i__4].i;
+ ix = kx;
+ l = kplus1 - j;
+/* Computing MAX */
+ i__4 = 1, i__2 = j - *k;
+ i__3 = j - 1;
+ for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) {
+ i__4 = ix;
+ i__2 = ix;
+ i__5 = l + i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__5].r - temp.i * a[i__5].i,
+ z__2.i = temp.r * a[i__5].i + temp.i * a[
+ i__5].r;
+ z__1.r = x[i__2].r + z__2.r, z__1.i = x[i__2].i +
+ z__2.i;
+ x[i__4].r = z__1.r, x[i__4].i = z__1.i;
+ ix += *incx;
+/* L30: */
+ }
+ if (nounit) {
+ i__3 = jx;
+ i__4 = jx;
+ i__2 = kplus1 + j * a_dim1;
+ z__1.r = x[i__4].r * a[i__2].r - x[i__4].i * a[
+ i__2].i, z__1.i = x[i__4].r * a[i__2].i +
+ x[i__4].i * a[i__2].r;
+ x[i__3].r = z__1.r, x[i__3].i = z__1.i;
+ }
+ }
+ jx += *incx;
+ if (j > *k) {
+ kx += *incx;
+ }
+/* L40: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__1 = j;
+ if (x[i__1].r != 0. || x[i__1].i != 0.) {
+ i__1 = j;
+ temp.r = x[i__1].r, temp.i = x[i__1].i;
+ l = 1 - j;
+/* Computing MIN */
+ i__1 = *n, i__3 = j + *k;
+ i__4 = j + 1;
+ for (i__ = min(i__1,i__3); i__ >= i__4; --i__) {
+ i__1 = i__;
+ i__3 = i__;
+ i__2 = l + i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
+ z__2.i = temp.r * a[i__2].i + temp.i * a[
+ i__2].r;
+ z__1.r = x[i__3].r + z__2.r, z__1.i = x[i__3].i +
+ z__2.i;
+ x[i__1].r = z__1.r, x[i__1].i = z__1.i;
+/* L50: */
+ }
+ if (nounit) {
+ i__4 = j;
+ i__1 = j;
+ i__3 = j * a_dim1 + 1;
+ z__1.r = x[i__1].r * a[i__3].r - x[i__1].i * a[
+ i__3].i, z__1.i = x[i__1].r * a[i__3].i +
+ x[i__1].i * a[i__3].r;
+ x[i__4].r = z__1.r, x[i__4].i = z__1.i;
+ }
+ }
+/* L60: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ i__4 = jx;
+ if (x[i__4].r != 0. || x[i__4].i != 0.) {
+ i__4 = jx;
+ temp.r = x[i__4].r, temp.i = x[i__4].i;
+ ix = kx;
+ l = 1 - j;
+/* Computing MIN */
+ i__4 = *n, i__1 = j + *k;
+ i__3 = j + 1;
+ for (i__ = min(i__4,i__1); i__ >= i__3; --i__) {
+ i__4 = ix;
+ i__1 = ix;
+ i__2 = l + i__ + j * a_dim1;
+ z__2.r = temp.r * a[i__2].r - temp.i * a[i__2].i,
+ z__2.i = temp.r * a[i__2].i + temp.i * a[
+ i__2].r;
+ z__1.r = x[i__1].r + z__2.r, z__1.i = x[i__1].i +
+ z__2.i;
+ x[i__4].r = z__1.r, x[i__4].i = z__1.i;
+ ix -= *incx;
+/* L70: */
+ }
+ if (nounit) {
+ i__3 = jx;
+ i__4 = jx;
+ i__1 = j * a_dim1 + 1;
+ z__1.r = x[i__4].r * a[i__1].r - x[i__4].i * a[
+ i__1].i, z__1.i = x[i__4].r * a[i__1].i +
+ x[i__4].i * a[i__1].r;
+ x[i__3].r = z__1.r, x[i__3].i = z__1.i;
+ }
+ }
+ jx -= *incx;
+ if (*n - j >= *k) {
+ kx -= *incx;
+ }
+/* L80: */
+ }
+ }
+ }
+ } else {
+
+/* Form x := A'*x or x := conjg( A' )*x. */
+
+ if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) {
+ kplus1 = *k + 1;
+ if (*incx == 1) {
+ for (j = *n; j >= 1; --j) {
+ i__3 = j;
+ temp.r = x[i__3].r, temp.i = x[i__3].i;
+ l = kplus1 - j;
+ if (noconj) {
+ if (nounit) {
+ i__3 = kplus1 + j * a_dim1;
+ z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
+ z__1.i = temp.r * a[i__3].i + temp.i * a[
+ i__3].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+/* Computing MAX */
+ i__4 = 1, i__1 = j - *k;
+ i__3 = max(i__4,i__1);
+ for (i__ = j - 1; i__ >= i__3; --i__) {
+ i__4 = l + i__ + j * a_dim1;
+ i__1 = i__;
+ z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
+ i__1].i, z__2.i = a[i__4].r * x[i__1].i +
+ a[i__4].i * x[i__1].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L90: */
+ }
+ } else {
+ if (nounit) {
+ d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
+ z__1.r = temp.r * z__2.r - temp.i * z__2.i,
+ z__1.i = temp.r * z__2.i + temp.i *
+ z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+/* Computing MAX */
+ i__4 = 1, i__1 = j - *k;
+ i__3 = max(i__4,i__1);
+ for (i__ = j - 1; i__ >= i__3; --i__) {
+ d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
+ i__4 = i__;
+ z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
+ z__2.i = z__3.r * x[i__4].i + z__3.i * x[
+ i__4].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L100: */
+ }
+ }
+ i__3 = j;
+ x[i__3].r = temp.r, x[i__3].i = temp.i;
+/* L110: */
+ }
+ } else {
+ kx += (*n - 1) * *incx;
+ jx = kx;
+ for (j = *n; j >= 1; --j) {
+ i__3 = jx;
+ temp.r = x[i__3].r, temp.i = x[i__3].i;
+ kx -= *incx;
+ ix = kx;
+ l = kplus1 - j;
+ if (noconj) {
+ if (nounit) {
+ i__3 = kplus1 + j * a_dim1;
+ z__1.r = temp.r * a[i__3].r - temp.i * a[i__3].i,
+ z__1.i = temp.r * a[i__3].i + temp.i * a[
+ i__3].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+/* Computing MAX */
+ i__4 = 1, i__1 = j - *k;
+ i__3 = max(i__4,i__1);
+ for (i__ = j - 1; i__ >= i__3; --i__) {
+ i__4 = l + i__ + j * a_dim1;
+ i__1 = ix;
+ z__2.r = a[i__4].r * x[i__1].r - a[i__4].i * x[
+ i__1].i, z__2.i = a[i__4].r * x[i__1].i +
+ a[i__4].i * x[i__1].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix -= *incx;
+/* L120: */
+ }
+ } else {
+ if (nounit) {
+ d_cnjg(&z__2, &a[kplus1 + j * a_dim1]);
+ z__1.r = temp.r * z__2.r - temp.i * z__2.i,
+ z__1.i = temp.r * z__2.i + temp.i *
+ z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+/* Computing MAX */
+ i__4 = 1, i__1 = j - *k;
+ i__3 = max(i__4,i__1);
+ for (i__ = j - 1; i__ >= i__3; --i__) {
+ d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
+ i__4 = ix;
+ z__2.r = z__3.r * x[i__4].r - z__3.i * x[i__4].i,
+ z__2.i = z__3.r * x[i__4].i + z__3.i * x[
+ i__4].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix -= *incx;
+/* L130: */
+ }
+ }
+ i__3 = jx;
+ x[i__3].r = temp.r, x[i__3].i = temp.i;
+ jx -= *incx;
+/* L140: */
+ }
+ }
+ } else {
+ if (*incx == 1) {
+ i__3 = *n;
+ for (j = 1; j <= i__3; ++j) {
+ i__4 = j;
+ temp.r = x[i__4].r, temp.i = x[i__4].i;
+ l = 1 - j;
+ if (noconj) {
+ if (nounit) {
+ i__4 = j * a_dim1 + 1;
+ z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
+ z__1.i = temp.r * a[i__4].i + temp.i * a[
+ i__4].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+/* Computing MIN */
+ i__1 = *n, i__2 = j + *k;
+ i__4 = min(i__1,i__2);
+ for (i__ = j + 1; i__ <= i__4; ++i__) {
+ i__1 = l + i__ + j * a_dim1;
+ i__2 = i__;
+ z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
+ i__2].i, z__2.i = a[i__1].r * x[i__2].i +
+ a[i__1].i * x[i__2].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L150: */
+ }
+ } else {
+ if (nounit) {
+ d_cnjg(&z__2, &a[j * a_dim1 + 1]);
+ z__1.r = temp.r * z__2.r - temp.i * z__2.i,
+ z__1.i = temp.r * z__2.i + temp.i *
+ z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+/* Computing MIN */
+ i__1 = *n, i__2 = j + *k;
+ i__4 = min(i__1,i__2);
+ for (i__ = j + 1; i__ <= i__4; ++i__) {
+ d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
+ i__1 = i__;
+ z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
+ z__2.i = z__3.r * x[i__1].i + z__3.i * x[
+ i__1].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+/* L160: */
+ }
+ }
+ i__4 = j;
+ x[i__4].r = temp.r, x[i__4].i = temp.i;
+/* L170: */
+ }
+ } else {
+ jx = kx;
+ i__3 = *n;
+ for (j = 1; j <= i__3; ++j) {
+ i__4 = jx;
+ temp.r = x[i__4].r, temp.i = x[i__4].i;
+ kx += *incx;
+ ix = kx;
+ l = 1 - j;
+ if (noconj) {
+ if (nounit) {
+ i__4 = j * a_dim1 + 1;
+ z__1.r = temp.r * a[i__4].r - temp.i * a[i__4].i,
+ z__1.i = temp.r * a[i__4].i + temp.i * a[
+ i__4].r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+/* Computing MIN */
+ i__1 = *n, i__2 = j + *k;
+ i__4 = min(i__1,i__2);
+ for (i__ = j + 1; i__ <= i__4; ++i__) {
+ i__1 = l + i__ + j * a_dim1;
+ i__2 = ix;
+ z__2.r = a[i__1].r * x[i__2].r - a[i__1].i * x[
+ i__2].i, z__2.i = a[i__1].r * x[i__2].i +
+ a[i__1].i * x[i__2].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix += *incx;
+/* L180: */
+ }
+ } else {
+ if (nounit) {
+ d_cnjg(&z__2, &a[j * a_dim1 + 1]);
+ z__1.r = temp.r * z__2.r - temp.i * z__2.i,
+ z__1.i = temp.r * z__2.i + temp.i *
+ z__2.r;
+ temp.r = z__1.r, temp.i = z__1.i;
+ }
+/* Computing MIN */
+ i__1 = *n, i__2 = j + *k;
+ i__4 = min(i__1,i__2);
+ for (i__ = j + 1; i__ <= i__4; ++i__) {
+ d_cnjg(&z__3, &a[l + i__ + j * a_dim1]);
+ i__1 = ix;
+ z__2.r = z__3.r * x[i__1].r - z__3.i * x[i__1].i,
+ z__2.i = z__3.r * x[i__1].i + z__3.i * x[
+ i__1].r;
+ z__1.r = temp.r + z__2.r, z__1.i = temp.i +
+ z__2.i;
+ temp.r = z__1.r, temp.i = z__1.i;
+ ix += *incx;
+/* L190: */
+ }
+ }
+ i__4 = jx;
+ x[i__4].r = temp.r, x[i__4].i = temp.i;
+ jx += *incx;
+/* L200: */
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of ZTBMV . */
+
+} /* ztbmv_ */
+
diff --git a/blas/complexdots.f b/blas/fortran/complexdots.f
index a7da51d16..a7da51d16 100644
--- a/blas/complexdots.f
+++ b/blas/fortran/complexdots.f
diff --git a/blas/lsame.f b/blas/lsame.f
deleted file mode 100644
index f53690268..000000000
--- a/blas/lsame.f
+++ /dev/null
@@ -1,85 +0,0 @@
- LOGICAL FUNCTION LSAME(CA,CB)
-*
-* -- LAPACK auxiliary routine (version 3.1) --
-* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
-* November 2006
-*
-* .. Scalar Arguments ..
- CHARACTER CA,CB
-* ..
-*
-* Purpose
-* =======
-*
-* LSAME returns .TRUE. if CA is the same letter as CB regardless of
-* case.
-*
-* Arguments
-* =========
-*
-* CA (input) CHARACTER*1
-*
-* CB (input) CHARACTER*1
-* CA and CB specify the single characters to be compared.
-*
-* =====================================================================
-*
-* .. Intrinsic Functions ..
- INTRINSIC ICHAR
-* ..
-* .. Local Scalars ..
- INTEGER INTA,INTB,ZCODE
-* ..
-*
-* Test if the characters are equal
-*
- LSAME = CA .EQ. CB
- IF (LSAME) RETURN
-*
-* Now test for equivalence if both characters are alphabetic.
-*
- ZCODE = ICHAR('Z')
-*
-* Use 'Z' rather than 'A' so that ASCII can be detected on Prime
-* machines, on which ICHAR returns a value with bit 8 set.
-* ICHAR('A') on Prime machines returns 193 which is the same as
-* ICHAR('A') on an EBCDIC machine.
-*
- INTA = ICHAR(CA)
- INTB = ICHAR(CB)
-*
- IF (ZCODE.EQ.90 .OR. ZCODE.EQ.122) THEN
-*
-* ASCII is assumed - ZCODE is the ASCII code of either lower or
-* upper case 'Z'.
-*
- IF (INTA.GE.97 .AND. INTA.LE.122) INTA = INTA - 32
- IF (INTB.GE.97 .AND. INTB.LE.122) INTB = INTB - 32
-*
- ELSE IF (ZCODE.EQ.233 .OR. ZCODE.EQ.169) THEN
-*
-* EBCDIC is assumed - ZCODE is the EBCDIC code of either lower or
-* upper case 'Z'.
-*
- IF (INTA.GE.129 .AND. INTA.LE.137 .OR.
- + INTA.GE.145 .AND. INTA.LE.153 .OR.
- + INTA.GE.162 .AND. INTA.LE.169) INTA = INTA + 64
- IF (INTB.GE.129 .AND. INTB.LE.137 .OR.
- + INTB.GE.145 .AND. INTB.LE.153 .OR.
- + INTB.GE.162 .AND. INTB.LE.169) INTB = INTB + 64
-*
- ELSE IF (ZCODE.EQ.218 .OR. ZCODE.EQ.250) THEN
-*
-* ASCII is assumed, on Prime machines - ZCODE is the ASCII code
-* plus 128 of either lower or upper case 'Z'.
-*
- IF (INTA.GE.225 .AND. INTA.LE.250) INTA = INTA - 32
- IF (INTB.GE.225 .AND. INTB.LE.250) INTB = INTB - 32
- END IF
- LSAME = INTA .EQ. INTB
-*
-* RETURN
-*
-* End of LSAME
-*
- END
diff --git a/blas/srotm.f b/blas/srotm.f
deleted file mode 100644
index fc5a59333..000000000
--- a/blas/srotm.f
+++ /dev/null
@@ -1,148 +0,0 @@
- SUBROUTINE SROTM(N,SX,INCX,SY,INCY,SPARAM)
-* .. Scalar Arguments ..
- INTEGER INCX,INCY,N
-* ..
-* .. Array Arguments ..
- REAL SPARAM(5),SX(*),SY(*)
-* ..
-*
-* Purpose
-* =======
-*
-* APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX
-*
-* (SX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF SX ARE IN
-* (DX**T)
-*
-* SX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE
-* LX = (-INCX)*N, AND SIMILARLY FOR SY USING USING LY AND INCY.
-* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS..
-*
-* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0
-*
-* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0)
-* H=( ) ( ) ( ) ( )
-* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0).
-* SEE SROTMG FOR A DESCRIPTION OF DATA STORAGE IN SPARAM.
-*
-*
-* Arguments
-* =========
-*
-* N (input) INTEGER
-* number of elements in input vector(s)
-*
-* SX (input/output) REAL array, dimension N
-* double precision vector with N elements
-*
-* INCX (input) INTEGER
-* storage spacing between elements of SX
-*
-* SY (input/output) REAL array, dimension N
-* double precision vector with N elements
-*
-* INCY (input) INTEGER
-* storage spacing between elements of SY
-*
-* SPARAM (input/output) REAL array, dimension 5
-* SPARAM(1)=SFLAG
-* SPARAM(2)=SH11
-* SPARAM(3)=SH21
-* SPARAM(4)=SH12
-* SPARAM(5)=SH22
-*
-* =====================================================================
-*
-* .. Local Scalars ..
- REAL SFLAG,SH11,SH12,SH21,SH22,TWO,W,Z,ZERO
- INTEGER I,KX,KY,NSTEPS
-* ..
-* .. Data statements ..
- DATA ZERO,TWO/0.E0,2.E0/
-* ..
-*
- SFLAG = SPARAM(1)
- IF (N.LE.0 .OR. (SFLAG+TWO.EQ.ZERO)) GO TO 140
- IF (.NOT. (INCX.EQ.INCY.AND.INCX.GT.0)) GO TO 70
-*
- NSTEPS = N*INCX
- IF (SFLAG) 50,10,30
- 10 CONTINUE
- SH12 = SPARAM(4)
- SH21 = SPARAM(3)
- DO 20 I = 1,NSTEPS,INCX
- W = SX(I)
- Z = SY(I)
- SX(I) = W + Z*SH12
- SY(I) = W*SH21 + Z
- 20 CONTINUE
- GO TO 140
- 30 CONTINUE
- SH11 = SPARAM(2)
- SH22 = SPARAM(5)
- DO 40 I = 1,NSTEPS,INCX
- W = SX(I)
- Z = SY(I)
- SX(I) = W*SH11 + Z
- SY(I) = -W + SH22*Z
- 40 CONTINUE
- GO TO 140
- 50 CONTINUE
- SH11 = SPARAM(2)
- SH12 = SPARAM(4)
- SH21 = SPARAM(3)
- SH22 = SPARAM(5)
- DO 60 I = 1,NSTEPS,INCX
- W = SX(I)
- Z = SY(I)
- SX(I) = W*SH11 + Z*SH12
- SY(I) = W*SH21 + Z*SH22
- 60 CONTINUE
- GO TO 140
- 70 CONTINUE
- KX = 1
- KY = 1
- IF (INCX.LT.0) KX = 1 + (1-N)*INCX
- IF (INCY.LT.0) KY = 1 + (1-N)*INCY
-*
- IF (SFLAG) 120,80,100
- 80 CONTINUE
- SH12 = SPARAM(4)
- SH21 = SPARAM(3)
- DO 90 I = 1,N
- W = SX(KX)
- Z = SY(KY)
- SX(KX) = W + Z*SH12
- SY(KY) = W*SH21 + Z
- KX = KX + INCX
- KY = KY + INCY
- 90 CONTINUE
- GO TO 140
- 100 CONTINUE
- SH11 = SPARAM(2)
- SH22 = SPARAM(5)
- DO 110 I = 1,N
- W = SX(KX)
- Z = SY(KY)
- SX(KX) = W*SH11 + Z
- SY(KY) = -W + SH22*Z
- KX = KX + INCX
- KY = KY + INCY
- 110 CONTINUE
- GO TO 140
- 120 CONTINUE
- SH11 = SPARAM(2)
- SH12 = SPARAM(4)
- SH21 = SPARAM(3)
- SH22 = SPARAM(5)
- DO 130 I = 1,N
- W = SX(KX)
- Z = SY(KY)
- SX(KX) = W*SH11 + Z*SH12
- SY(KY) = W*SH21 + Z*SH22
- KX = KX + INCX
- KY = KY + INCY
- 130 CONTINUE
- 140 CONTINUE
- RETURN
- END
diff --git a/blas/srotmg.f b/blas/srotmg.f
deleted file mode 100644
index 7b3bd4272..000000000
--- a/blas/srotmg.f
+++ /dev/null
@@ -1,208 +0,0 @@
- SUBROUTINE SROTMG(SD1,SD2,SX1,SY1,SPARAM)
-* .. Scalar Arguments ..
- REAL SD1,SD2,SX1,SY1
-* ..
-* .. Array Arguments ..
- REAL SPARAM(5)
-* ..
-*
-* Purpose
-* =======
-*
-* CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS
-* THE SECOND COMPONENT OF THE 2-VECTOR (SQRT(SD1)*SX1,SQRT(SD2)*
-* SY2)**T.
-* WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS..
-*
-* SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0
-*
-* (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0)
-* H=( ) ( ) ( ) ( )
-* (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0).
-* LOCATIONS 2-4 OF SPARAM CONTAIN SH11,SH21,SH12, AND SH22
-* RESPECTIVELY. (VALUES OF 1.E0, -1.E0, OR 0.E0 IMPLIED BY THE
-* VALUE OF SPARAM(1) ARE NOT STORED IN SPARAM.)
-*
-* THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE
-* INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE
-* OF SD1 AND SD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM.
-*
-*
-* Arguments
-* =========
-*
-*
-* SD1 (input/output) REAL
-*
-* SD2 (input/output) REAL
-*
-* SX1 (input/output) REAL
-*
-* SY1 (input) REAL
-*
-*
-* SPARAM (input/output) REAL array, dimension 5
-* SPARAM(1)=SFLAG
-* SPARAM(2)=SH11
-* SPARAM(3)=SH21
-* SPARAM(4)=SH12
-* SPARAM(5)=SH22
-*
-* =====================================================================
-*
-* .. Local Scalars ..
- REAL GAM,GAMSQ,ONE,RGAMSQ,SFLAG,SH11,SH12,SH21,SH22,SP1,SP2,SQ1,
- + SQ2,STEMP,SU,TWO,ZERO
- INTEGER IGO
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC ABS
-* ..
-* .. Data statements ..
-*
- DATA ZERO,ONE,TWO/0.E0,1.E0,2.E0/
- DATA GAM,GAMSQ,RGAMSQ/4096.E0,1.67772E7,5.96046E-8/
-* ..
-
- IF (.NOT.SD1.LT.ZERO) GO TO 10
-* GO ZERO-H-D-AND-SX1..
- GO TO 60
- 10 CONTINUE
-* CASE-SD1-NONNEGATIVE
- SP2 = SD2*SY1
- IF (.NOT.SP2.EQ.ZERO) GO TO 20
- SFLAG = -TWO
- GO TO 260
-* REGULAR-CASE..
- 20 CONTINUE
- SP1 = SD1*SX1
- SQ2 = SP2*SY1
- SQ1 = SP1*SX1
-*
- IF (.NOT.ABS(SQ1).GT.ABS(SQ2)) GO TO 40
- SH21 = -SY1/SX1
- SH12 = SP2/SP1
-*
- SU = ONE - SH12*SH21
-*
- IF (.NOT.SU.LE.ZERO) GO TO 30
-* GO ZERO-H-D-AND-SX1..
- GO TO 60
- 30 CONTINUE
- SFLAG = ZERO
- SD1 = SD1/SU
- SD2 = SD2/SU
- SX1 = SX1*SU
-* GO SCALE-CHECK..
- GO TO 100
- 40 CONTINUE
- IF (.NOT.SQ2.LT.ZERO) GO TO 50
-* GO ZERO-H-D-AND-SX1..
- GO TO 60
- 50 CONTINUE
- SFLAG = ONE
- SH11 = SP1/SP2
- SH22 = SX1/SY1
- SU = ONE + SH11*SH22
- STEMP = SD2/SU
- SD2 = SD1/SU
- SD1 = STEMP
- SX1 = SY1*SU
-* GO SCALE-CHECK
- GO TO 100
-* PROCEDURE..ZERO-H-D-AND-SX1..
- 60 CONTINUE
- SFLAG = -ONE
- SH11 = ZERO
- SH12 = ZERO
- SH21 = ZERO
- SH22 = ZERO
-*
- SD1 = ZERO
- SD2 = ZERO
- SX1 = ZERO
-* RETURN..
- GO TO 220
-* PROCEDURE..FIX-H..
- 70 CONTINUE
- IF (.NOT.SFLAG.GE.ZERO) GO TO 90
-*
- IF (.NOT.SFLAG.EQ.ZERO) GO TO 80
- SH11 = ONE
- SH22 = ONE
- SFLAG = -ONE
- GO TO 90
- 80 CONTINUE
- SH21 = -ONE
- SH12 = ONE
- SFLAG = -ONE
- 90 CONTINUE
- GO TO IGO(120,150,180,210)
-* PROCEDURE..SCALE-CHECK
- 100 CONTINUE
- 110 CONTINUE
- IF (.NOT.SD1.LE.RGAMSQ) GO TO 130
- IF (SD1.EQ.ZERO) GO TO 160
- ASSIGN 120 TO IGO
-* FIX-H..
- GO TO 70
- 120 CONTINUE
- SD1 = SD1*GAM**2
- SX1 = SX1/GAM
- SH11 = SH11/GAM
- SH12 = SH12/GAM
- GO TO 110
- 130 CONTINUE
- 140 CONTINUE
- IF (.NOT.SD1.GE.GAMSQ) GO TO 160
- ASSIGN 150 TO IGO
-* FIX-H..
- GO TO 70
- 150 CONTINUE
- SD1 = SD1/GAM**2
- SX1 = SX1*GAM
- SH11 = SH11*GAM
- SH12 = SH12*GAM
- GO TO 140
- 160 CONTINUE
- 170 CONTINUE
- IF (.NOT.ABS(SD2).LE.RGAMSQ) GO TO 190
- IF (SD2.EQ.ZERO) GO TO 220
- ASSIGN 180 TO IGO
-* FIX-H..
- GO TO 70
- 180 CONTINUE
- SD2 = SD2*GAM**2
- SH21 = SH21/GAM
- SH22 = SH22/GAM
- GO TO 170
- 190 CONTINUE
- 200 CONTINUE
- IF (.NOT.ABS(SD2).GE.GAMSQ) GO TO 220
- ASSIGN 210 TO IGO
-* FIX-H..
- GO TO 70
- 210 CONTINUE
- SD2 = SD2/GAM**2
- SH21 = SH21*GAM
- SH22 = SH22*GAM
- GO TO 200
- 220 CONTINUE
- IF (SFLAG) 250,230,240
- 230 CONTINUE
- SPARAM(3) = SH21
- SPARAM(4) = SH12
- GO TO 260
- 240 CONTINUE
- SPARAM(2) = SH11
- SPARAM(5) = SH22
- GO TO 260
- 250 CONTINUE
- SPARAM(2) = SH11
- SPARAM(3) = SH21
- SPARAM(4) = SH12
- SPARAM(5) = SH22
- 260 CONTINUE
- SPARAM(1) = SFLAG
- RETURN
- END
diff --git a/blas/ssbmv.f b/blas/ssbmv.f
deleted file mode 100644
index 16893a295..000000000
--- a/blas/ssbmv.f
+++ /dev/null
@@ -1,306 +0,0 @@
- SUBROUTINE SSBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
-* .. Scalar Arguments ..
- REAL ALPHA,BETA
- INTEGER INCX,INCY,K,LDA,N
- CHARACTER UPLO
-* ..
-* .. Array Arguments ..
- REAL A(LDA,*),X(*),Y(*)
-* ..
-*
-* Purpose
-* =======
-*
-* SSBMV performs the matrix-vector operation
-*
-* y := alpha*A*x + beta*y,
-*
-* where alpha and beta are scalars, x and y are n element vectors and
-* A is an n by n symmetric band matrix, with k super-diagonals.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the upper or lower
-* triangular part of the band matrix A is being supplied as
-* follows:
-*
-* UPLO = 'U' or 'u' The upper triangular part of A is
-* being supplied.
-*
-* UPLO = 'L' or 'l' The lower triangular part of A is
-* being supplied.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* K - INTEGER.
-* On entry, K specifies the number of super-diagonals of the
-* matrix A. K must satisfy 0 .le. K.
-* Unchanged on exit.
-*
-* ALPHA - REAL .
-* On entry, ALPHA specifies the scalar alpha.
-* Unchanged on exit.
-*
-* A - REAL array of DIMENSION ( LDA, n ).
-* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
-* by n part of the array A must contain the upper triangular
-* band part of the symmetric matrix, supplied column by
-* column, with the leading diagonal of the matrix in row
-* ( k + 1 ) of the array, the first super-diagonal starting at
-* position 2 in row k, and so on. The top left k by k triangle
-* of the array A is not referenced.
-* The following program segment will transfer the upper
-* triangular part of a symmetric band matrix from conventional
-* full matrix storage to band storage:
-*
-* DO 20, J = 1, N
-* M = K + 1 - J
-* DO 10, I = MAX( 1, J - K ), J
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
-* by n part of the array A must contain the lower triangular
-* band part of the symmetric matrix, supplied column by
-* column, with the leading diagonal of the matrix in row 1 of
-* the array, the first sub-diagonal starting at position 1 in
-* row 2, and so on. The bottom right k by k triangle of the
-* array A is not referenced.
-* The following program segment will transfer the lower
-* triangular part of a symmetric band matrix from conventional
-* full matrix storage to band storage:
-*
-* DO 20, J = 1, N
-* M = 1 - J
-* DO 10, I = J, MIN( N, J + K )
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( k + 1 ).
-* Unchanged on exit.
-*
-* X - REAL array of DIMENSION at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the
-* vector x.
-* Unchanged on exit.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* BETA - REAL .
-* On entry, BETA specifies the scalar beta.
-* Unchanged on exit.
-*
-* Y - REAL array of DIMENSION at least
-* ( 1 + ( n - 1 )*abs( INCY ) ).
-* Before entry, the incremented array Y must contain the
-* vector y. On exit, Y is overwritten by the updated vector y.
-*
-* INCY - INTEGER.
-* On entry, INCY specifies the increment for the elements of
-* Y. INCY must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- REAL ONE,ZERO
- PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
-* ..
-* .. Local Scalars ..
- REAL TEMP1,TEMP2
- INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (N.LT.0) THEN
- INFO = 2
- ELSE IF (K.LT.0) THEN
- INFO = 3
- ELSE IF (LDA.LT. (K+1)) THEN
- INFO = 6
- ELSE IF (INCX.EQ.0) THEN
- INFO = 8
- ELSE IF (INCY.EQ.0) THEN
- INFO = 11
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('SSBMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
-*
-* Set up the start points in X and Y.
-*
- IF (INCX.GT.0) THEN
- KX = 1
- ELSE
- KX = 1 - (N-1)*INCX
- END IF
- IF (INCY.GT.0) THEN
- KY = 1
- ELSE
- KY = 1 - (N-1)*INCY
- END IF
-*
-* Start the operations. In this version the elements of the array A
-* are accessed sequentially with one pass through A.
-*
-* First form y := beta*y.
-*
- IF (BETA.NE.ONE) THEN
- IF (INCY.EQ.1) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 10 I = 1,N
- Y(I) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1,N
- Y(I) = BETA*Y(I)
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF (BETA.EQ.ZERO) THEN
- DO 30 I = 1,N
- Y(IY) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1,N
- Y(IY) = BETA*Y(IY)
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF (ALPHA.EQ.ZERO) RETURN
- IF (LSAME(UPLO,'U')) THEN
-*
-* Form y when upper triangle of A is stored.
-*
- KPLUS1 = K + 1
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 60 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- L = KPLUS1 - J
- DO 50 I = MAX(1,J-K),J - 1
- Y(I) = Y(I) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + A(L+I,J)*X(I)
- 50 CONTINUE
- Y(J) = Y(J) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- IX = KX
- IY = KY
- L = KPLUS1 - J
- DO 70 I = MAX(1,J-K),J - 1
- Y(IY) = Y(IY) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + A(L+I,J)*X(IX)
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y(JY) = Y(JY) + TEMP1*A(KPLUS1,J) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- IF (J.GT.K) THEN
- KX = KX + INCX
- KY = KY + INCY
- END IF
- 80 CONTINUE
- END IF
- ELSE
-*
-* Form y when lower triangle of A is stored.
-*
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 100 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- Y(J) = Y(J) + TEMP1*A(1,J)
- L = 1 - J
- DO 90 I = J + 1,MIN(N,J+K)
- Y(I) = Y(I) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + A(L+I,J)*X(I)
- 90 CONTINUE
- Y(J) = Y(J) + ALPHA*TEMP2
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- Y(JY) = Y(JY) + TEMP1*A(1,J)
- L = 1 - J
- IX = JX
- IY = JY
- DO 110 I = J + 1,MIN(N,J+K)
- IX = IX + INCX
- IY = IY + INCY
- Y(IY) = Y(IY) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + A(L+I,J)*X(IX)
- 110 CONTINUE
- Y(JY) = Y(JY) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 120 CONTINUE
- END IF
- END IF
-*
- RETURN
-*
-* End of SSBMV .
-*
- END
diff --git a/blas/sspmv.f b/blas/sspmv.f
deleted file mode 100644
index 0b8449824..000000000
--- a/blas/sspmv.f
+++ /dev/null
@@ -1,265 +0,0 @@
- SUBROUTINE SSPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
-* .. Scalar Arguments ..
- REAL ALPHA,BETA
- INTEGER INCX,INCY,N
- CHARACTER UPLO
-* ..
-* .. Array Arguments ..
- REAL AP(*),X(*),Y(*)
-* ..
-*
-* Purpose
-* =======
-*
-* SSPMV performs the matrix-vector operation
-*
-* y := alpha*A*x + beta*y,
-*
-* where alpha and beta are scalars, x and y are n element vectors and
-* A is an n by n symmetric matrix, supplied in packed form.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the upper or lower
-* triangular part of the matrix A is supplied in the packed
-* array AP as follows:
-*
-* UPLO = 'U' or 'u' The upper triangular part of A is
-* supplied in AP.
-*
-* UPLO = 'L' or 'l' The lower triangular part of A is
-* supplied in AP.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* ALPHA - REAL .
-* On entry, ALPHA specifies the scalar alpha.
-* Unchanged on exit.
-*
-* AP - REAL array of DIMENSION at least
-* ( ( n*( n + 1 ) )/2 ).
-* Before entry with UPLO = 'U' or 'u', the array AP must
-* contain the upper triangular part of the symmetric matrix
-* packed sequentially, column by column, so that AP( 1 )
-* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
-* and a( 2, 2 ) respectively, and so on.
-* Before entry with UPLO = 'L' or 'l', the array AP must
-* contain the lower triangular part of the symmetric matrix
-* packed sequentially, column by column, so that AP( 1 )
-* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
-* and a( 3, 1 ) respectively, and so on.
-* Unchanged on exit.
-*
-* X - REAL array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element vector x.
-* Unchanged on exit.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* BETA - REAL .
-* On entry, BETA specifies the scalar beta. When BETA is
-* supplied as zero then Y need not be set on input.
-* Unchanged on exit.
-*
-* Y - REAL array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCY ) ).
-* Before entry, the incremented array Y must contain the n
-* element vector y. On exit, Y is overwritten by the updated
-* vector y.
-*
-* INCY - INTEGER.
-* On entry, INCY specifies the increment for the elements of
-* Y. INCY must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- REAL ONE,ZERO
- PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
-* ..
-* .. Local Scalars ..
- REAL TEMP1,TEMP2
- INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (N.LT.0) THEN
- INFO = 2
- ELSE IF (INCX.EQ.0) THEN
- INFO = 6
- ELSE IF (INCY.EQ.0) THEN
- INFO = 9
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('SSPMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
-*
-* Set up the start points in X and Y.
-*
- IF (INCX.GT.0) THEN
- KX = 1
- ELSE
- KX = 1 - (N-1)*INCX
- END IF
- IF (INCY.GT.0) THEN
- KY = 1
- ELSE
- KY = 1 - (N-1)*INCY
- END IF
-*
-* Start the operations. In this version the elements of the array AP
-* are accessed sequentially with one pass through AP.
-*
-* First form y := beta*y.
-*
- IF (BETA.NE.ONE) THEN
- IF (INCY.EQ.1) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 10 I = 1,N
- Y(I) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1,N
- Y(I) = BETA*Y(I)
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF (BETA.EQ.ZERO) THEN
- DO 30 I = 1,N
- Y(IY) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1,N
- Y(IY) = BETA*Y(IY)
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF (ALPHA.EQ.ZERO) RETURN
- KK = 1
- IF (LSAME(UPLO,'U')) THEN
-*
-* Form y when AP contains the upper triangle.
-*
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 60 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- K = KK
- DO 50 I = 1,J - 1
- Y(I) = Y(I) + TEMP1*AP(K)
- TEMP2 = TEMP2 + AP(K)*X(I)
- K = K + 1
- 50 CONTINUE
- Y(J) = Y(J) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
- KK = KK + J
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- IX = KX
- IY = KY
- DO 70 K = KK,KK + J - 2
- Y(IY) = Y(IY) + TEMP1*AP(K)
- TEMP2 = TEMP2 + AP(K)*X(IX)
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y(JY) = Y(JY) + TEMP1*AP(KK+J-1) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + J
- 80 CONTINUE
- END IF
- ELSE
-*
-* Form y when AP contains the lower triangle.
-*
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 100 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- Y(J) = Y(J) + TEMP1*AP(KK)
- K = KK + 1
- DO 90 I = J + 1,N
- Y(I) = Y(I) + TEMP1*AP(K)
- TEMP2 = TEMP2 + AP(K)*X(I)
- K = K + 1
- 90 CONTINUE
- Y(J) = Y(J) + ALPHA*TEMP2
- KK = KK + (N-J+1)
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- Y(JY) = Y(JY) + TEMP1*AP(KK)
- IX = JX
- IY = JY
- DO 110 K = KK + 1,KK + N - J
- IX = IX + INCX
- IY = IY + INCY
- Y(IY) = Y(IY) + TEMP1*AP(K)
- TEMP2 = TEMP2 + AP(K)*X(IX)
- 110 CONTINUE
- Y(JY) = Y(JY) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + (N-J+1)
- 120 CONTINUE
- END IF
- END IF
-*
- RETURN
-*
-* End of SSPMV .
-*
- END
diff --git a/blas/stbmv.f b/blas/stbmv.f
deleted file mode 100644
index c0b8f1136..000000000
--- a/blas/stbmv.f
+++ /dev/null
@@ -1,335 +0,0 @@
- SUBROUTINE STBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
-* .. Scalar Arguments ..
- INTEGER INCX,K,LDA,N
- CHARACTER DIAG,TRANS,UPLO
-* ..
-* .. Array Arguments ..
- REAL A(LDA,*),X(*)
-* ..
-*
-* Purpose
-* =======
-*
-* STBMV performs one of the matrix-vector operations
-*
-* x := A*x, or x := A'*x,
-*
-* where x is an n element vector and A is an n by n unit, or non-unit,
-* upper or lower triangular band matrix, with ( k + 1 ) diagonals.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the matrix is an upper or
-* lower triangular matrix as follows:
-*
-* UPLO = 'U' or 'u' A is an upper triangular matrix.
-*
-* UPLO = 'L' or 'l' A is a lower triangular matrix.
-*
-* Unchanged on exit.
-*
-* TRANS - CHARACTER*1.
-* On entry, TRANS specifies the operation to be performed as
-* follows:
-*
-* TRANS = 'N' or 'n' x := A*x.
-*
-* TRANS = 'T' or 't' x := A'*x.
-*
-* TRANS = 'C' or 'c' x := A'*x.
-*
-* Unchanged on exit.
-*
-* DIAG - CHARACTER*1.
-* On entry, DIAG specifies whether or not A is unit
-* triangular as follows:
-*
-* DIAG = 'U' or 'u' A is assumed to be unit triangular.
-*
-* DIAG = 'N' or 'n' A is not assumed to be unit
-* triangular.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* K - INTEGER.
-* On entry with UPLO = 'U' or 'u', K specifies the number of
-* super-diagonals of the matrix A.
-* On entry with UPLO = 'L' or 'l', K specifies the number of
-* sub-diagonals of the matrix A.
-* K must satisfy 0 .le. K.
-* Unchanged on exit.
-*
-* A - REAL array of DIMENSION ( LDA, n ).
-* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
-* by n part of the array A must contain the upper triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row
-* ( k + 1 ) of the array, the first super-diagonal starting at
-* position 2 in row k, and so on. The top left k by k triangle
-* of the array A is not referenced.
-* The following program segment will transfer an upper
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = K + 1 - J
-* DO 10, I = MAX( 1, J - K ), J
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
-* by n part of the array A must contain the lower triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row 1 of
-* the array, the first sub-diagonal starting at position 1 in
-* row 2, and so on. The bottom right k by k triangle of the
-* array A is not referenced.
-* The following program segment will transfer a lower
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = 1 - J
-* DO 10, I = J, MIN( N, J + K )
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Note that when DIAG = 'U' or 'u' the elements of the array A
-* corresponding to the diagonal elements of the matrix are not
-* referenced, but are assumed to be unity.
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( k + 1 ).
-* Unchanged on exit.
-*
-* X - REAL array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element vector x. On exit, X is overwritten with the
-* tranformed vector x.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- REAL ZERO
- PARAMETER (ZERO=0.0E+0)
-* ..
-* .. Local Scalars ..
- REAL TEMP
- INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
- LOGICAL NOUNIT
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 2
- ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
- INFO = 3
- ELSE IF (N.LT.0) THEN
- INFO = 4
- ELSE IF (K.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT. (K+1)) THEN
- INFO = 7
- ELSE IF (INCX.EQ.0) THEN
- INFO = 9
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('STBMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF (N.EQ.0) RETURN
-*
- NOUNIT = LSAME(DIAG,'N')
-*
-* Set up the start point in X if the increment is not unity. This
-* will be ( N - 1 )*INCX too small for descending loops.
-*
- IF (INCX.LE.0) THEN
- KX = 1 - (N-1)*INCX
- ELSE IF (INCX.NE.1) THEN
- KX = 1
- END IF
-*
-* Start the operations. In this version the elements of A are
-* accessed sequentially with one pass through A.
-*
- IF (LSAME(TRANS,'N')) THEN
-*
-* Form x := A*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 20 J = 1,N
- IF (X(J).NE.ZERO) THEN
- TEMP = X(J)
- L = KPLUS1 - J
- DO 10 I = MAX(1,J-K),J - 1
- X(I) = X(I) + TEMP*A(L+I,J)
- 10 CONTINUE
- IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
- END IF
- 20 CONTINUE
- ELSE
- JX = KX
- DO 40 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = X(JX)
- IX = KX
- L = KPLUS1 - J
- DO 30 I = MAX(1,J-K),J - 1
- X(IX) = X(IX) + TEMP*A(L+I,J)
- IX = IX + INCX
- 30 CONTINUE
- IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
- END IF
- JX = JX + INCX
- IF (J.GT.K) KX = KX + INCX
- 40 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 60 J = N,1,-1
- IF (X(J).NE.ZERO) THEN
- TEMP = X(J)
- L = 1 - J
- DO 50 I = MIN(N,J+K),J + 1,-1
- X(I) = X(I) + TEMP*A(L+I,J)
- 50 CONTINUE
- IF (NOUNIT) X(J) = X(J)*A(1,J)
- END IF
- 60 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 80 J = N,1,-1
- IF (X(JX).NE.ZERO) THEN
- TEMP = X(JX)
- IX = KX
- L = 1 - J
- DO 70 I = MIN(N,J+K),J + 1,-1
- X(IX) = X(IX) + TEMP*A(L+I,J)
- IX = IX - INCX
- 70 CONTINUE
- IF (NOUNIT) X(JX) = X(JX)*A(1,J)
- END IF
- JX = JX - INCX
- IF ((N-J).GE.K) KX = KX - INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
-*
-* Form x := A'*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 100 J = N,1,-1
- TEMP = X(J)
- L = KPLUS1 - J
- IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
- DO 90 I = J - 1,MAX(1,J-K),-1
- TEMP = TEMP + A(L+I,J)*X(I)
- 90 CONTINUE
- X(J) = TEMP
- 100 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 120 J = N,1,-1
- TEMP = X(JX)
- KX = KX - INCX
- IX = KX
- L = KPLUS1 - J
- IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
- DO 110 I = J - 1,MAX(1,J-K),-1
- TEMP = TEMP + A(L+I,J)*X(IX)
- IX = IX - INCX
- 110 CONTINUE
- X(JX) = TEMP
- JX = JX - INCX
- 120 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 140 J = 1,N
- TEMP = X(J)
- L = 1 - J
- IF (NOUNIT) TEMP = TEMP*A(1,J)
- DO 130 I = J + 1,MIN(N,J+K)
- TEMP = TEMP + A(L+I,J)*X(I)
- 130 CONTINUE
- X(J) = TEMP
- 140 CONTINUE
- ELSE
- JX = KX
- DO 160 J = 1,N
- TEMP = X(JX)
- KX = KX + INCX
- IX = KX
- L = 1 - J
- IF (NOUNIT) TEMP = TEMP*A(1,J)
- DO 150 I = J + 1,MIN(N,J+K)
- TEMP = TEMP + A(L+I,J)*X(IX)
- IX = IX + INCX
- 150 CONTINUE
- X(JX) = TEMP
- JX = JX + INCX
- 160 CONTINUE
- END IF
- END IF
- END IF
-*
- RETURN
-*
-* End of STBMV .
-*
- END
diff --git a/blas/zhbmv.f b/blas/zhbmv.f
deleted file mode 100644
index bca0da5fc..000000000
--- a/blas/zhbmv.f
+++ /dev/null
@@ -1,310 +0,0 @@
- SUBROUTINE ZHBMV(UPLO,N,K,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
-* .. Scalar Arguments ..
- DOUBLE COMPLEX ALPHA,BETA
- INTEGER INCX,INCY,K,LDA,N
- CHARACTER UPLO
-* ..
-* .. Array Arguments ..
- DOUBLE COMPLEX A(LDA,*),X(*),Y(*)
-* ..
-*
-* Purpose
-* =======
-*
-* ZHBMV performs the matrix-vector operation
-*
-* y := alpha*A*x + beta*y,
-*
-* where alpha and beta are scalars, x and y are n element vectors and
-* A is an n by n hermitian band matrix, with k super-diagonals.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the upper or lower
-* triangular part of the band matrix A is being supplied as
-* follows:
-*
-* UPLO = 'U' or 'u' The upper triangular part of A is
-* being supplied.
-*
-* UPLO = 'L' or 'l' The lower triangular part of A is
-* being supplied.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* K - INTEGER.
-* On entry, K specifies the number of super-diagonals of the
-* matrix A. K must satisfy 0 .le. K.
-* Unchanged on exit.
-*
-* ALPHA - COMPLEX*16 .
-* On entry, ALPHA specifies the scalar alpha.
-* Unchanged on exit.
-*
-* A - COMPLEX*16 array of DIMENSION ( LDA, n ).
-* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
-* by n part of the array A must contain the upper triangular
-* band part of the hermitian matrix, supplied column by
-* column, with the leading diagonal of the matrix in row
-* ( k + 1 ) of the array, the first super-diagonal starting at
-* position 2 in row k, and so on. The top left k by k triangle
-* of the array A is not referenced.
-* The following program segment will transfer the upper
-* triangular part of a hermitian band matrix from conventional
-* full matrix storage to band storage:
-*
-* DO 20, J = 1, N
-* M = K + 1 - J
-* DO 10, I = MAX( 1, J - K ), J
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
-* by n part of the array A must contain the lower triangular
-* band part of the hermitian matrix, supplied column by
-* column, with the leading diagonal of the matrix in row 1 of
-* the array, the first sub-diagonal starting at position 1 in
-* row 2, and so on. The bottom right k by k triangle of the
-* array A is not referenced.
-* The following program segment will transfer the lower
-* triangular part of a hermitian band matrix from conventional
-* full matrix storage to band storage:
-*
-* DO 20, J = 1, N
-* M = 1 - J
-* DO 10, I = J, MIN( N, J + K )
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Note that the imaginary parts of the diagonal elements need
-* not be set and are assumed to be zero.
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( k + 1 ).
-* Unchanged on exit.
-*
-* X - COMPLEX*16 array of DIMENSION at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the
-* vector x.
-* Unchanged on exit.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* BETA - COMPLEX*16 .
-* On entry, BETA specifies the scalar beta.
-* Unchanged on exit.
-*
-* Y - COMPLEX*16 array of DIMENSION at least
-* ( 1 + ( n - 1 )*abs( INCY ) ).
-* Before entry, the incremented array Y must contain the
-* vector y. On exit, Y is overwritten by the updated vector y.
-*
-* INCY - INTEGER.
-* On entry, INCY specifies the increment for the elements of
-* Y. INCY must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE COMPLEX ONE
- PARAMETER (ONE= (1.0D+0,0.0D+0))
- DOUBLE COMPLEX ZERO
- PARAMETER (ZERO= (0.0D+0,0.0D+0))
-* ..
-* .. Local Scalars ..
- DOUBLE COMPLEX TEMP1,TEMP2
- INTEGER I,INFO,IX,IY,J,JX,JY,KPLUS1,KX,KY,L
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC DBLE,DCONJG,MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (N.LT.0) THEN
- INFO = 2
- ELSE IF (K.LT.0) THEN
- INFO = 3
- ELSE IF (LDA.LT. (K+1)) THEN
- INFO = 6
- ELSE IF (INCX.EQ.0) THEN
- INFO = 8
- ELSE IF (INCY.EQ.0) THEN
- INFO = 11
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('ZHBMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
-*
-* Set up the start points in X and Y.
-*
- IF (INCX.GT.0) THEN
- KX = 1
- ELSE
- KX = 1 - (N-1)*INCX
- END IF
- IF (INCY.GT.0) THEN
- KY = 1
- ELSE
- KY = 1 - (N-1)*INCY
- END IF
-*
-* Start the operations. In this version the elements of the array A
-* are accessed sequentially with one pass through A.
-*
-* First form y := beta*y.
-*
- IF (BETA.NE.ONE) THEN
- IF (INCY.EQ.1) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 10 I = 1,N
- Y(I) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1,N
- Y(I) = BETA*Y(I)
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF (BETA.EQ.ZERO) THEN
- DO 30 I = 1,N
- Y(IY) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1,N
- Y(IY) = BETA*Y(IY)
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF (ALPHA.EQ.ZERO) RETURN
- IF (LSAME(UPLO,'U')) THEN
-*
-* Form y when upper triangle of A is stored.
-*
- KPLUS1 = K + 1
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 60 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- L = KPLUS1 - J
- DO 50 I = MAX(1,J-K),J - 1
- Y(I) = Y(I) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I)
- 50 CONTINUE
- Y(J) = Y(J) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- IX = KX
- IY = KY
- L = KPLUS1 - J
- DO 70 I = MAX(1,J-K),J - 1
- Y(IY) = Y(IY) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX)
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y(JY) = Y(JY) + TEMP1*DBLE(A(KPLUS1,J)) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- IF (J.GT.K) THEN
- KX = KX + INCX
- KY = KY + INCY
- END IF
- 80 CONTINUE
- END IF
- ELSE
-*
-* Form y when lower triangle of A is stored.
-*
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 100 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- Y(J) = Y(J) + TEMP1*DBLE(A(1,J))
- L = 1 - J
- DO 90 I = J + 1,MIN(N,J+K)
- Y(I) = Y(I) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(I)
- 90 CONTINUE
- Y(J) = Y(J) + ALPHA*TEMP2
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- Y(JY) = Y(JY) + TEMP1*DBLE(A(1,J))
- L = 1 - J
- IX = JX
- IY = JY
- DO 110 I = J + 1,MIN(N,J+K)
- IX = IX + INCX
- IY = IY + INCY
- Y(IY) = Y(IY) + TEMP1*A(L+I,J)
- TEMP2 = TEMP2 + DCONJG(A(L+I,J))*X(IX)
- 110 CONTINUE
- Y(JY) = Y(JY) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- 120 CONTINUE
- END IF
- END IF
-*
- RETURN
-*
-* End of ZHBMV .
-*
- END
diff --git a/blas/zhpmv.f b/blas/zhpmv.f
deleted file mode 100644
index b686108b3..000000000
--- a/blas/zhpmv.f
+++ /dev/null
@@ -1,272 +0,0 @@
- SUBROUTINE ZHPMV(UPLO,N,ALPHA,AP,X,INCX,BETA,Y,INCY)
-* .. Scalar Arguments ..
- DOUBLE COMPLEX ALPHA,BETA
- INTEGER INCX,INCY,N
- CHARACTER UPLO
-* ..
-* .. Array Arguments ..
- DOUBLE COMPLEX AP(*),X(*),Y(*)
-* ..
-*
-* Purpose
-* =======
-*
-* ZHPMV performs the matrix-vector operation
-*
-* y := alpha*A*x + beta*y,
-*
-* where alpha and beta are scalars, x and y are n element vectors and
-* A is an n by n hermitian matrix, supplied in packed form.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the upper or lower
-* triangular part of the matrix A is supplied in the packed
-* array AP as follows:
-*
-* UPLO = 'U' or 'u' The upper triangular part of A is
-* supplied in AP.
-*
-* UPLO = 'L' or 'l' The lower triangular part of A is
-* supplied in AP.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* ALPHA - COMPLEX*16 .
-* On entry, ALPHA specifies the scalar alpha.
-* Unchanged on exit.
-*
-* AP - COMPLEX*16 array of DIMENSION at least
-* ( ( n*( n + 1 ) )/2 ).
-* Before entry with UPLO = 'U' or 'u', the array AP must
-* contain the upper triangular part of the hermitian matrix
-* packed sequentially, column by column, so that AP( 1 )
-* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 )
-* and a( 2, 2 ) respectively, and so on.
-* Before entry with UPLO = 'L' or 'l', the array AP must
-* contain the lower triangular part of the hermitian matrix
-* packed sequentially, column by column, so that AP( 1 )
-* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 )
-* and a( 3, 1 ) respectively, and so on.
-* Note that the imaginary parts of the diagonal elements need
-* not be set and are assumed to be zero.
-* Unchanged on exit.
-*
-* X - COMPLEX*16 array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element vector x.
-* Unchanged on exit.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* BETA - COMPLEX*16 .
-* On entry, BETA specifies the scalar beta. When BETA is
-* supplied as zero then Y need not be set on input.
-* Unchanged on exit.
-*
-* Y - COMPLEX*16 array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCY ) ).
-* Before entry, the incremented array Y must contain the n
-* element vector y. On exit, Y is overwritten by the updated
-* vector y.
-*
-* INCY - INTEGER.
-* On entry, INCY specifies the increment for the elements of
-* Y. INCY must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE COMPLEX ONE
- PARAMETER (ONE= (1.0D+0,0.0D+0))
- DOUBLE COMPLEX ZERO
- PARAMETER (ZERO= (0.0D+0,0.0D+0))
-* ..
-* .. Local Scalars ..
- DOUBLE COMPLEX TEMP1,TEMP2
- INTEGER I,INFO,IX,IY,J,JX,JY,K,KK,KX,KY
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC DBLE,DCONJG
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (N.LT.0) THEN
- INFO = 2
- ELSE IF (INCX.EQ.0) THEN
- INFO = 6
- ELSE IF (INCY.EQ.0) THEN
- INFO = 9
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('ZHPMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF ((N.EQ.0) .OR. ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
-*
-* Set up the start points in X and Y.
-*
- IF (INCX.GT.0) THEN
- KX = 1
- ELSE
- KX = 1 - (N-1)*INCX
- END IF
- IF (INCY.GT.0) THEN
- KY = 1
- ELSE
- KY = 1 - (N-1)*INCY
- END IF
-*
-* Start the operations. In this version the elements of the array AP
-* are accessed sequentially with one pass through AP.
-*
-* First form y := beta*y.
-*
- IF (BETA.NE.ONE) THEN
- IF (INCY.EQ.1) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 10 I = 1,N
- Y(I) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1,N
- Y(I) = BETA*Y(I)
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF (BETA.EQ.ZERO) THEN
- DO 30 I = 1,N
- Y(IY) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1,N
- Y(IY) = BETA*Y(IY)
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF (ALPHA.EQ.ZERO) RETURN
- KK = 1
- IF (LSAME(UPLO,'U')) THEN
-*
-* Form y when AP contains the upper triangle.
-*
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 60 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- K = KK
- DO 50 I = 1,J - 1
- Y(I) = Y(I) + TEMP1*AP(K)
- TEMP2 = TEMP2 + DCONJG(AP(K))*X(I)
- K = K + 1
- 50 CONTINUE
- Y(J) = Y(J) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2
- KK = KK + J
- 60 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 80 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- IX = KX
- IY = KY
- DO 70 K = KK,KK + J - 2
- Y(IY) = Y(IY) + TEMP1*AP(K)
- TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX)
- IX = IX + INCX
- IY = IY + INCY
- 70 CONTINUE
- Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK+J-1)) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + J
- 80 CONTINUE
- END IF
- ELSE
-*
-* Form y when AP contains the lower triangle.
-*
- IF ((INCX.EQ.1) .AND. (INCY.EQ.1)) THEN
- DO 100 J = 1,N
- TEMP1 = ALPHA*X(J)
- TEMP2 = ZERO
- Y(J) = Y(J) + TEMP1*DBLE(AP(KK))
- K = KK + 1
- DO 90 I = J + 1,N
- Y(I) = Y(I) + TEMP1*AP(K)
- TEMP2 = TEMP2 + DCONJG(AP(K))*X(I)
- K = K + 1
- 90 CONTINUE
- Y(J) = Y(J) + ALPHA*TEMP2
- KK = KK + (N-J+1)
- 100 CONTINUE
- ELSE
- JX = KX
- JY = KY
- DO 120 J = 1,N
- TEMP1 = ALPHA*X(JX)
- TEMP2 = ZERO
- Y(JY) = Y(JY) + TEMP1*DBLE(AP(KK))
- IX = JX
- IY = JY
- DO 110 K = KK + 1,KK + N - J
- IX = IX + INCX
- IY = IY + INCY
- Y(IY) = Y(IY) + TEMP1*AP(K)
- TEMP2 = TEMP2 + DCONJG(AP(K))*X(IX)
- 110 CONTINUE
- Y(JY) = Y(JY) + ALPHA*TEMP2
- JX = JX + INCX
- JY = JY + INCY
- KK = KK + (N-J+1)
- 120 CONTINUE
- END IF
- END IF
-*
- RETURN
-*
-* End of ZHPMV .
-*
- END
diff --git a/blas/ztbmv.f b/blas/ztbmv.f
deleted file mode 100644
index 7c85c1b55..000000000
--- a/blas/ztbmv.f
+++ /dev/null
@@ -1,366 +0,0 @@
- SUBROUTINE ZTBMV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
-* .. Scalar Arguments ..
- INTEGER INCX,K,LDA,N
- CHARACTER DIAG,TRANS,UPLO
-* ..
-* .. Array Arguments ..
- DOUBLE COMPLEX A(LDA,*),X(*)
-* ..
-*
-* Purpose
-* =======
-*
-* ZTBMV performs one of the matrix-vector operations
-*
-* x := A*x, or x := A'*x, or x := conjg( A' )*x,
-*
-* where x is an n element vector and A is an n by n unit, or non-unit,
-* upper or lower triangular band matrix, with ( k + 1 ) diagonals.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the matrix is an upper or
-* lower triangular matrix as follows:
-*
-* UPLO = 'U' or 'u' A is an upper triangular matrix.
-*
-* UPLO = 'L' or 'l' A is a lower triangular matrix.
-*
-* Unchanged on exit.
-*
-* TRANS - CHARACTER*1.
-* On entry, TRANS specifies the operation to be performed as
-* follows:
-*
-* TRANS = 'N' or 'n' x := A*x.
-*
-* TRANS = 'T' or 't' x := A'*x.
-*
-* TRANS = 'C' or 'c' x := conjg( A' )*x.
-*
-* Unchanged on exit.
-*
-* DIAG - CHARACTER*1.
-* On entry, DIAG specifies whether or not A is unit
-* triangular as follows:
-*
-* DIAG = 'U' or 'u' A is assumed to be unit triangular.
-*
-* DIAG = 'N' or 'n' A is not assumed to be unit
-* triangular.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* K - INTEGER.
-* On entry with UPLO = 'U' or 'u', K specifies the number of
-* super-diagonals of the matrix A.
-* On entry with UPLO = 'L' or 'l', K specifies the number of
-* sub-diagonals of the matrix A.
-* K must satisfy 0 .le. K.
-* Unchanged on exit.
-*
-* A - COMPLEX*16 array of DIMENSION ( LDA, n ).
-* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
-* by n part of the array A must contain the upper triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row
-* ( k + 1 ) of the array, the first super-diagonal starting at
-* position 2 in row k, and so on. The top left k by k triangle
-* of the array A is not referenced.
-* The following program segment will transfer an upper
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = K + 1 - J
-* DO 10, I = MAX( 1, J - K ), J
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
-* by n part of the array A must contain the lower triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row 1 of
-* the array, the first sub-diagonal starting at position 1 in
-* row 2, and so on. The bottom right k by k triangle of the
-* array A is not referenced.
-* The following program segment will transfer a lower
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = 1 - J
-* DO 10, I = J, MIN( N, J + K )
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Note that when DIAG = 'U' or 'u' the elements of the array A
-* corresponding to the diagonal elements of the matrix are not
-* referenced, but are assumed to be unity.
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( k + 1 ).
-* Unchanged on exit.
-*
-* X - COMPLEX*16 array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element vector x. On exit, X is overwritten with the
-* tranformed vector x.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE COMPLEX ZERO
- PARAMETER (ZERO= (0.0D+0,0.0D+0))
-* ..
-* .. Local Scalars ..
- DOUBLE COMPLEX TEMP
- INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
- LOGICAL NOCONJ,NOUNIT
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC DCONJG,MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 2
- ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
- INFO = 3
- ELSE IF (N.LT.0) THEN
- INFO = 4
- ELSE IF (K.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT. (K+1)) THEN
- INFO = 7
- ELSE IF (INCX.EQ.0) THEN
- INFO = 9
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('ZTBMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF (N.EQ.0) RETURN
-*
- NOCONJ = LSAME(TRANS,'T')
- NOUNIT = LSAME(DIAG,'N')
-*
-* Set up the start point in X if the increment is not unity. This
-* will be ( N - 1 )*INCX too small for descending loops.
-*
- IF (INCX.LE.0) THEN
- KX = 1 - (N-1)*INCX
- ELSE IF (INCX.NE.1) THEN
- KX = 1
- END IF
-*
-* Start the operations. In this version the elements of A are
-* accessed sequentially with one pass through A.
-*
- IF (LSAME(TRANS,'N')) THEN
-*
-* Form x := A*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 20 J = 1,N
- IF (X(J).NE.ZERO) THEN
- TEMP = X(J)
- L = KPLUS1 - J
- DO 10 I = MAX(1,J-K),J - 1
- X(I) = X(I) + TEMP*A(L+I,J)
- 10 CONTINUE
- IF (NOUNIT) X(J) = X(J)*A(KPLUS1,J)
- END IF
- 20 CONTINUE
- ELSE
- JX = KX
- DO 40 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = X(JX)
- IX = KX
- L = KPLUS1 - J
- DO 30 I = MAX(1,J-K),J - 1
- X(IX) = X(IX) + TEMP*A(L+I,J)
- IX = IX + INCX
- 30 CONTINUE
- IF (NOUNIT) X(JX) = X(JX)*A(KPLUS1,J)
- END IF
- JX = JX + INCX
- IF (J.GT.K) KX = KX + INCX
- 40 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 60 J = N,1,-1
- IF (X(J).NE.ZERO) THEN
- TEMP = X(J)
- L = 1 - J
- DO 50 I = MIN(N,J+K),J + 1,-1
- X(I) = X(I) + TEMP*A(L+I,J)
- 50 CONTINUE
- IF (NOUNIT) X(J) = X(J)*A(1,J)
- END IF
- 60 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 80 J = N,1,-1
- IF (X(JX).NE.ZERO) THEN
- TEMP = X(JX)
- IX = KX
- L = 1 - J
- DO 70 I = MIN(N,J+K),J + 1,-1
- X(IX) = X(IX) + TEMP*A(L+I,J)
- IX = IX - INCX
- 70 CONTINUE
- IF (NOUNIT) X(JX) = X(JX)*A(1,J)
- END IF
- JX = JX - INCX
- IF ((N-J).GE.K) KX = KX - INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
-*
-* Form x := A'*x or x := conjg( A' )*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 110 J = N,1,-1
- TEMP = X(J)
- L = KPLUS1 - J
- IF (NOCONJ) THEN
- IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
- DO 90 I = J - 1,MAX(1,J-K),-1
- TEMP = TEMP + A(L+I,J)*X(I)
- 90 CONTINUE
- ELSE
- IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J))
- DO 100 I = J - 1,MAX(1,J-K),-1
- TEMP = TEMP + DCONJG(A(L+I,J))*X(I)
- 100 CONTINUE
- END IF
- X(J) = TEMP
- 110 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 140 J = N,1,-1
- TEMP = X(JX)
- KX = KX - INCX
- IX = KX
- L = KPLUS1 - J
- IF (NOCONJ) THEN
- IF (NOUNIT) TEMP = TEMP*A(KPLUS1,J)
- DO 120 I = J - 1,MAX(1,J-K),-1
- TEMP = TEMP + A(L+I,J)*X(IX)
- IX = IX - INCX
- 120 CONTINUE
- ELSE
- IF (NOUNIT) TEMP = TEMP*DCONJG(A(KPLUS1,J))
- DO 130 I = J - 1,MAX(1,J-K),-1
- TEMP = TEMP + DCONJG(A(L+I,J))*X(IX)
- IX = IX - INCX
- 130 CONTINUE
- END IF
- X(JX) = TEMP
- JX = JX - INCX
- 140 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 170 J = 1,N
- TEMP = X(J)
- L = 1 - J
- IF (NOCONJ) THEN
- IF (NOUNIT) TEMP = TEMP*A(1,J)
- DO 150 I = J + 1,MIN(N,J+K)
- TEMP = TEMP + A(L+I,J)*X(I)
- 150 CONTINUE
- ELSE
- IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J))
- DO 160 I = J + 1,MIN(N,J+K)
- TEMP = TEMP + DCONJG(A(L+I,J))*X(I)
- 160 CONTINUE
- END IF
- X(J) = TEMP
- 170 CONTINUE
- ELSE
- JX = KX
- DO 200 J = 1,N
- TEMP = X(JX)
- KX = KX + INCX
- IX = KX
- L = 1 - J
- IF (NOCONJ) THEN
- IF (NOUNIT) TEMP = TEMP*A(1,J)
- DO 180 I = J + 1,MIN(N,J+K)
- TEMP = TEMP + A(L+I,J)*X(IX)
- IX = IX + INCX
- 180 CONTINUE
- ELSE
- IF (NOUNIT) TEMP = TEMP*DCONJG(A(1,J))
- DO 190 I = J + 1,MIN(N,J+K)
- TEMP = TEMP + DCONJG(A(L+I,J))*X(IX)
- IX = IX + INCX
- 190 CONTINUE
- END IF
- X(JX) = TEMP
- JX = JX + INCX
- 200 CONTINUE
- END IF
- END IF
- END IF
-*
- RETURN
-*
-* End of ZTBMV .
-*
- END