aboutsummaryrefslogtreecommitdiffhomepage
path: root/blas
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2011-12-01 18:10:12 +0100
committerGravatar Gael Guennebaud <g.gael@free.fr>2011-12-01 18:10:12 +0100
commit7aaae9d6dfbb57390a4ab9370a3553e7e1501fdd (patch)
treec5d877169c86ab7fb7b3420500ba02fdd83b53b4 /blas
parent3a4c78b588ff523cb07bd7068cbe857b9b6a7ded (diff)
remove useless blas reference code
Diffstat (limited to 'blas')
-rw-r--r--blas/ctbsv.f370
-rw-r--r--blas/dtbsv.f339
-rw-r--r--blas/stbsv.f339
-rw-r--r--blas/ztbsv.f370
4 files changed, 0 insertions, 1418 deletions
diff --git a/blas/ctbsv.f b/blas/ctbsv.f
deleted file mode 100644
index 853b9d75e..000000000
--- a/blas/ctbsv.f
+++ /dev/null
@@ -1,370 +0,0 @@
- SUBROUTINE CTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
-* .. Scalar Arguments ..
- INTEGER INCX,K,LDA,N
- CHARACTER DIAG,TRANS,UPLO
-* ..
-* .. Array Arguments ..
- COMPLEX A(LDA,*),X(*)
-* ..
-*
-* Purpose
-* =======
-*
-* CTBSV solves one of the systems of equations
-*
-* A*x = b, or A'*x = b, or conjg( A' )*x = b,
-*
-* where b and x are n element vectors and A is an n by n unit, or
-* non-unit, upper or lower triangular band matrix, with ( k + 1 )
-* diagonals.
-*
-* No test for singularity or near-singularity is included in this
-* routine. Such tests must be performed before calling this routine.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the matrix is an upper or
-* lower triangular matrix as follows:
-*
-* UPLO = 'U' or 'u' A is an upper triangular matrix.
-*
-* UPLO = 'L' or 'l' A is a lower triangular matrix.
-*
-* Unchanged on exit.
-*
-* TRANS - CHARACTER*1.
-* On entry, TRANS specifies the equations to be solved as
-* follows:
-*
-* TRANS = 'N' or 'n' A*x = b.
-*
-* TRANS = 'T' or 't' A'*x = b.
-*
-* TRANS = 'C' or 'c' conjg( A' )*x = b.
-*
-* Unchanged on exit.
-*
-* DIAG - CHARACTER*1.
-* On entry, DIAG specifies whether or not A is unit
-* triangular as follows:
-*
-* DIAG = 'U' or 'u' A is assumed to be unit triangular.
-*
-* DIAG = 'N' or 'n' A is not assumed to be unit
-* triangular.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* K - INTEGER.
-* On entry with UPLO = 'U' or 'u', K specifies the number of
-* super-diagonals of the matrix A.
-* On entry with UPLO = 'L' or 'l', K specifies the number of
-* sub-diagonals of the matrix A.
-* K must satisfy 0 .le. K.
-* Unchanged on exit.
-*
-* A - COMPLEX array of DIMENSION ( LDA, n ).
-* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
-* by n part of the array A must contain the upper triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row
-* ( k + 1 ) of the array, the first super-diagonal starting at
-* position 2 in row k, and so on. The top left k by k triangle
-* of the array A is not referenced.
-* The following program segment will transfer an upper
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = K + 1 - J
-* DO 10, I = MAX( 1, J - K ), J
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
-* by n part of the array A must contain the lower triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row 1 of
-* the array, the first sub-diagonal starting at position 1 in
-* row 2, and so on. The bottom right k by k triangle of the
-* array A is not referenced.
-* The following program segment will transfer a lower
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = 1 - J
-* DO 10, I = J, MIN( N, J + K )
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Note that when DIAG = 'U' or 'u' the elements of the array A
-* corresponding to the diagonal elements of the matrix are not
-* referenced, but are assumed to be unity.
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( k + 1 ).
-* Unchanged on exit.
-*
-* X - COMPLEX array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element right-hand side vector b. On exit, X is overwritten
-* with the solution vector x.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- COMPLEX ZERO
- PARAMETER (ZERO= (0.0E+0,0.0E+0))
-* ..
-* .. Local Scalars ..
- COMPLEX TEMP
- INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
- LOGICAL NOCONJ,NOUNIT
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC CONJG,MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 2
- ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
- INFO = 3
- ELSE IF (N.LT.0) THEN
- INFO = 4
- ELSE IF (K.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT. (K+1)) THEN
- INFO = 7
- ELSE IF (INCX.EQ.0) THEN
- INFO = 9
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('CTBSV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF (N.EQ.0) RETURN
-*
- NOCONJ = LSAME(TRANS,'T')
- NOUNIT = LSAME(DIAG,'N')
-*
-* Set up the start point in X if the increment is not unity. This
-* will be ( N - 1 )*INCX too small for descending loops.
-*
- IF (INCX.LE.0) THEN
- KX = 1 - (N-1)*INCX
- ELSE IF (INCX.NE.1) THEN
- KX = 1
- END IF
-*
-* Start the operations. In this version the elements of A are
-* accessed by sequentially with one pass through A.
-*
- IF (LSAME(TRANS,'N')) THEN
-*
-* Form x := inv( A )*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 20 J = N,1,-1
- IF (X(J).NE.ZERO) THEN
- L = KPLUS1 - J
- IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
- TEMP = X(J)
- DO 10 I = J - 1,MAX(1,J-K),-1
- X(I) = X(I) - TEMP*A(L+I,J)
- 10 CONTINUE
- END IF
- 20 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 40 J = N,1,-1
- KX = KX - INCX
- IF (X(JX).NE.ZERO) THEN
- IX = KX
- L = KPLUS1 - J
- IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
- TEMP = X(JX)
- DO 30 I = J - 1,MAX(1,J-K),-1
- X(IX) = X(IX) - TEMP*A(L+I,J)
- IX = IX - INCX
- 30 CONTINUE
- END IF
- JX = JX - INCX
- 40 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 60 J = 1,N
- IF (X(J).NE.ZERO) THEN
- L = 1 - J
- IF (NOUNIT) X(J) = X(J)/A(1,J)
- TEMP = X(J)
- DO 50 I = J + 1,MIN(N,J+K)
- X(I) = X(I) - TEMP*A(L+I,J)
- 50 CONTINUE
- END IF
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80 J = 1,N
- KX = KX + INCX
- IF (X(JX).NE.ZERO) THEN
- IX = KX
- L = 1 - J
- IF (NOUNIT) X(JX) = X(JX)/A(1,J)
- TEMP = X(JX)
- DO 70 I = J + 1,MIN(N,J+K)
- X(IX) = X(IX) - TEMP*A(L+I,J)
- IX = IX + INCX
- 70 CONTINUE
- END IF
- JX = JX + INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
-*
-* Form x := inv( A' )*x or x := inv( conjg( A') )*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 110 J = 1,N
- TEMP = X(J)
- L = KPLUS1 - J
- IF (NOCONJ) THEN
- DO 90 I = MAX(1,J-K),J - 1
- TEMP = TEMP - A(L+I,J)*X(I)
- 90 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
- ELSE
- DO 100 I = MAX(1,J-K),J - 1
- TEMP = TEMP - CONJG(A(L+I,J))*X(I)
- 100 CONTINUE
- IF (NOUNIT) TEMP = TEMP/CONJG(A(KPLUS1,J))
- END IF
- X(J) = TEMP
- 110 CONTINUE
- ELSE
- JX = KX
- DO 140 J = 1,N
- TEMP = X(JX)
- IX = KX
- L = KPLUS1 - J
- IF (NOCONJ) THEN
- DO 120 I = MAX(1,J-K),J - 1
- TEMP = TEMP - A(L+I,J)*X(IX)
- IX = IX + INCX
- 120 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
- ELSE
- DO 130 I = MAX(1,J-K),J - 1
- TEMP = TEMP - CONJG(A(L+I,J))*X(IX)
- IX = IX + INCX
- 130 CONTINUE
- IF (NOUNIT) TEMP = TEMP/CONJG(A(KPLUS1,J))
- END IF
- X(JX) = TEMP
- JX = JX + INCX
- IF (J.GT.K) KX = KX + INCX
- 140 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 170 J = N,1,-1
- TEMP = X(J)
- L = 1 - J
- IF (NOCONJ) THEN
- DO 150 I = MIN(N,J+K),J + 1,-1
- TEMP = TEMP - A(L+I,J)*X(I)
- 150 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(1,J)
- ELSE
- DO 160 I = MIN(N,J+K),J + 1,-1
- TEMP = TEMP - CONJG(A(L+I,J))*X(I)
- 160 CONTINUE
- IF (NOUNIT) TEMP = TEMP/CONJG(A(1,J))
- END IF
- X(J) = TEMP
- 170 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 200 J = N,1,-1
- TEMP = X(JX)
- IX = KX
- L = 1 - J
- IF (NOCONJ) THEN
- DO 180 I = MIN(N,J+K),J + 1,-1
- TEMP = TEMP - A(L+I,J)*X(IX)
- IX = IX - INCX
- 180 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(1,J)
- ELSE
- DO 190 I = MIN(N,J+K),J + 1,-1
- TEMP = TEMP - CONJG(A(L+I,J))*X(IX)
- IX = IX - INCX
- 190 CONTINUE
- IF (NOUNIT) TEMP = TEMP/CONJG(A(1,J))
- END IF
- X(JX) = TEMP
- JX = JX - INCX
- IF ((N-J).GE.K) KX = KX - INCX
- 200 CONTINUE
- END IF
- END IF
- END IF
-*
- RETURN
-*
-* End of CTBSV .
-*
- END
diff --git a/blas/dtbsv.f b/blas/dtbsv.f
deleted file mode 100644
index cfeb0b82b..000000000
--- a/blas/dtbsv.f
+++ /dev/null
@@ -1,339 +0,0 @@
- SUBROUTINE DTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
-* .. Scalar Arguments ..
- INTEGER INCX,K,LDA,N
- CHARACTER DIAG,TRANS,UPLO
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A(LDA,*),X(*)
-* ..
-*
-* Purpose
-* =======
-*
-* DTBSV solves one of the systems of equations
-*
-* A*x = b, or A'*x = b,
-*
-* where b and x are n element vectors and A is an n by n unit, or
-* non-unit, upper or lower triangular band matrix, with ( k + 1 )
-* diagonals.
-*
-* No test for singularity or near-singularity is included in this
-* routine. Such tests must be performed before calling this routine.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the matrix is an upper or
-* lower triangular matrix as follows:
-*
-* UPLO = 'U' or 'u' A is an upper triangular matrix.
-*
-* UPLO = 'L' or 'l' A is a lower triangular matrix.
-*
-* Unchanged on exit.
-*
-* TRANS - CHARACTER*1.
-* On entry, TRANS specifies the equations to be solved as
-* follows:
-*
-* TRANS = 'N' or 'n' A*x = b.
-*
-* TRANS = 'T' or 't' A'*x = b.
-*
-* TRANS = 'C' or 'c' A'*x = b.
-*
-* Unchanged on exit.
-*
-* DIAG - CHARACTER*1.
-* On entry, DIAG specifies whether or not A is unit
-* triangular as follows:
-*
-* DIAG = 'U' or 'u' A is assumed to be unit triangular.
-*
-* DIAG = 'N' or 'n' A is not assumed to be unit
-* triangular.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* K - INTEGER.
-* On entry with UPLO = 'U' or 'u', K specifies the number of
-* super-diagonals of the matrix A.
-* On entry with UPLO = 'L' or 'l', K specifies the number of
-* sub-diagonals of the matrix A.
-* K must satisfy 0 .le. K.
-* Unchanged on exit.
-*
-* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
-* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
-* by n part of the array A must contain the upper triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row
-* ( k + 1 ) of the array, the first super-diagonal starting at
-* position 2 in row k, and so on. The top left k by k triangle
-* of the array A is not referenced.
-* The following program segment will transfer an upper
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = K + 1 - J
-* DO 10, I = MAX( 1, J - K ), J
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
-* by n part of the array A must contain the lower triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row 1 of
-* the array, the first sub-diagonal starting at position 1 in
-* row 2, and so on. The bottom right k by k triangle of the
-* array A is not referenced.
-* The following program segment will transfer a lower
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = 1 - J
-* DO 10, I = J, MIN( N, J + K )
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Note that when DIAG = 'U' or 'u' the elements of the array A
-* corresponding to the diagonal elements of the matrix are not
-* referenced, but are assumed to be unity.
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( k + 1 ).
-* Unchanged on exit.
-*
-* X - DOUBLE PRECISION array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element right-hand side vector b. On exit, X is overwritten
-* with the solution vector x.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ZERO
- PARAMETER (ZERO=0.0D+0)
-* ..
-* .. Local Scalars ..
- DOUBLE PRECISION TEMP
- INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
- LOGICAL NOUNIT
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 2
- ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
- INFO = 3
- ELSE IF (N.LT.0) THEN
- INFO = 4
- ELSE IF (K.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT. (K+1)) THEN
- INFO = 7
- ELSE IF (INCX.EQ.0) THEN
- INFO = 9
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('DTBSV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF (N.EQ.0) RETURN
-*
- NOUNIT = LSAME(DIAG,'N')
-*
-* Set up the start point in X if the increment is not unity. This
-* will be ( N - 1 )*INCX too small for descending loops.
-*
- IF (INCX.LE.0) THEN
- KX = 1 - (N-1)*INCX
- ELSE IF (INCX.NE.1) THEN
- KX = 1
- END IF
-*
-* Start the operations. In this version the elements of A are
-* accessed by sequentially with one pass through A.
-*
- IF (LSAME(TRANS,'N')) THEN
-*
-* Form x := inv( A )*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 20 J = N,1,-1
- IF (X(J).NE.ZERO) THEN
- L = KPLUS1 - J
- IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
- TEMP = X(J)
- DO 10 I = J - 1,MAX(1,J-K),-1
- X(I) = X(I) - TEMP*A(L+I,J)
- 10 CONTINUE
- END IF
- 20 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 40 J = N,1,-1
- KX = KX - INCX
- IF (X(JX).NE.ZERO) THEN
- IX = KX
- L = KPLUS1 - J
- IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
- TEMP = X(JX)
- DO 30 I = J - 1,MAX(1,J-K),-1
- X(IX) = X(IX) - TEMP*A(L+I,J)
- IX = IX - INCX
- 30 CONTINUE
- END IF
- JX = JX - INCX
- 40 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 60 J = 1,N
- IF (X(J).NE.ZERO) THEN
- L = 1 - J
- IF (NOUNIT) X(J) = X(J)/A(1,J)
- TEMP = X(J)
- DO 50 I = J + 1,MIN(N,J+K)
- X(I) = X(I) - TEMP*A(L+I,J)
- 50 CONTINUE
- END IF
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80 J = 1,N
- KX = KX + INCX
- IF (X(JX).NE.ZERO) THEN
- IX = KX
- L = 1 - J
- IF (NOUNIT) X(JX) = X(JX)/A(1,J)
- TEMP = X(JX)
- DO 70 I = J + 1,MIN(N,J+K)
- X(IX) = X(IX) - TEMP*A(L+I,J)
- IX = IX + INCX
- 70 CONTINUE
- END IF
- JX = JX + INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
-*
-* Form x := inv( A')*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 100 J = 1,N
- TEMP = X(J)
- L = KPLUS1 - J
- DO 90 I = MAX(1,J-K),J - 1
- TEMP = TEMP - A(L+I,J)*X(I)
- 90 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
- X(J) = TEMP
- 100 CONTINUE
- ELSE
- JX = KX
- DO 120 J = 1,N
- TEMP = X(JX)
- IX = KX
- L = KPLUS1 - J
- DO 110 I = MAX(1,J-K),J - 1
- TEMP = TEMP - A(L+I,J)*X(IX)
- IX = IX + INCX
- 110 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
- X(JX) = TEMP
- JX = JX + INCX
- IF (J.GT.K) KX = KX + INCX
- 120 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 140 J = N,1,-1
- TEMP = X(J)
- L = 1 - J
- DO 130 I = MIN(N,J+K),J + 1,-1
- TEMP = TEMP - A(L+I,J)*X(I)
- 130 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(1,J)
- X(J) = TEMP
- 140 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 160 J = N,1,-1
- TEMP = X(JX)
- IX = KX
- L = 1 - J
- DO 150 I = MIN(N,J+K),J + 1,-1
- TEMP = TEMP - A(L+I,J)*X(IX)
- IX = IX - INCX
- 150 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(1,J)
- X(JX) = TEMP
- JX = JX - INCX
- IF ((N-J).GE.K) KX = KX - INCX
- 160 CONTINUE
- END IF
- END IF
- END IF
-*
- RETURN
-*
-* End of DTBSV .
-*
- END
diff --git a/blas/stbsv.f b/blas/stbsv.f
deleted file mode 100644
index b846be85c..000000000
--- a/blas/stbsv.f
+++ /dev/null
@@ -1,339 +0,0 @@
- SUBROUTINE STBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
-* .. Scalar Arguments ..
- INTEGER INCX,K,LDA,N
- CHARACTER DIAG,TRANS,UPLO
-* ..
-* .. Array Arguments ..
- REAL A(LDA,*),X(*)
-* ..
-*
-* Purpose
-* =======
-*
-* STBSV solves one of the systems of equations
-*
-* A*x = b, or A'*x = b,
-*
-* where b and x are n element vectors and A is an n by n unit, or
-* non-unit, upper or lower triangular band matrix, with ( k + 1 )
-* diagonals.
-*
-* No test for singularity or near-singularity is included in this
-* routine. Such tests must be performed before calling this routine.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the matrix is an upper or
-* lower triangular matrix as follows:
-*
-* UPLO = 'U' or 'u' A is an upper triangular matrix.
-*
-* UPLO = 'L' or 'l' A is a lower triangular matrix.
-*
-* Unchanged on exit.
-*
-* TRANS - CHARACTER*1.
-* On entry, TRANS specifies the equations to be solved as
-* follows:
-*
-* TRANS = 'N' or 'n' A*x = b.
-*
-* TRANS = 'T' or 't' A'*x = b.
-*
-* TRANS = 'C' or 'c' A'*x = b.
-*
-* Unchanged on exit.
-*
-* DIAG - CHARACTER*1.
-* On entry, DIAG specifies whether or not A is unit
-* triangular as follows:
-*
-* DIAG = 'U' or 'u' A is assumed to be unit triangular.
-*
-* DIAG = 'N' or 'n' A is not assumed to be unit
-* triangular.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* K - INTEGER.
-* On entry with UPLO = 'U' or 'u', K specifies the number of
-* super-diagonals of the matrix A.
-* On entry with UPLO = 'L' or 'l', K specifies the number of
-* sub-diagonals of the matrix A.
-* K must satisfy 0 .le. K.
-* Unchanged on exit.
-*
-* A - REAL array of DIMENSION ( LDA, n ).
-* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
-* by n part of the array A must contain the upper triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row
-* ( k + 1 ) of the array, the first super-diagonal starting at
-* position 2 in row k, and so on. The top left k by k triangle
-* of the array A is not referenced.
-* The following program segment will transfer an upper
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = K + 1 - J
-* DO 10, I = MAX( 1, J - K ), J
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
-* by n part of the array A must contain the lower triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row 1 of
-* the array, the first sub-diagonal starting at position 1 in
-* row 2, and so on. The bottom right k by k triangle of the
-* array A is not referenced.
-* The following program segment will transfer a lower
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = 1 - J
-* DO 10, I = J, MIN( N, J + K )
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Note that when DIAG = 'U' or 'u' the elements of the array A
-* corresponding to the diagonal elements of the matrix are not
-* referenced, but are assumed to be unity.
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( k + 1 ).
-* Unchanged on exit.
-*
-* X - REAL array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element right-hand side vector b. On exit, X is overwritten
-* with the solution vector x.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- REAL ZERO
- PARAMETER (ZERO=0.0E+0)
-* ..
-* .. Local Scalars ..
- REAL TEMP
- INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
- LOGICAL NOUNIT
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 2
- ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
- INFO = 3
- ELSE IF (N.LT.0) THEN
- INFO = 4
- ELSE IF (K.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT. (K+1)) THEN
- INFO = 7
- ELSE IF (INCX.EQ.0) THEN
- INFO = 9
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('STBSV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF (N.EQ.0) RETURN
-*
- NOUNIT = LSAME(DIAG,'N')
-*
-* Set up the start point in X if the increment is not unity. This
-* will be ( N - 1 )*INCX too small for descending loops.
-*
- IF (INCX.LE.0) THEN
- KX = 1 - (N-1)*INCX
- ELSE IF (INCX.NE.1) THEN
- KX = 1
- END IF
-*
-* Start the operations. In this version the elements of A are
-* accessed by sequentially with one pass through A.
-*
- IF (LSAME(TRANS,'N')) THEN
-*
-* Form x := inv( A )*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 20 J = N,1,-1
- IF (X(J).NE.ZERO) THEN
- L = KPLUS1 - J
- IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
- TEMP = X(J)
- DO 10 I = J - 1,MAX(1,J-K),-1
- X(I) = X(I) - TEMP*A(L+I,J)
- 10 CONTINUE
- END IF
- 20 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 40 J = N,1,-1
- KX = KX - INCX
- IF (X(JX).NE.ZERO) THEN
- IX = KX
- L = KPLUS1 - J
- IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
- TEMP = X(JX)
- DO 30 I = J - 1,MAX(1,J-K),-1
- X(IX) = X(IX) - TEMP*A(L+I,J)
- IX = IX - INCX
- 30 CONTINUE
- END IF
- JX = JX - INCX
- 40 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 60 J = 1,N
- IF (X(J).NE.ZERO) THEN
- L = 1 - J
- IF (NOUNIT) X(J) = X(J)/A(1,J)
- TEMP = X(J)
- DO 50 I = J + 1,MIN(N,J+K)
- X(I) = X(I) - TEMP*A(L+I,J)
- 50 CONTINUE
- END IF
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80 J = 1,N
- KX = KX + INCX
- IF (X(JX).NE.ZERO) THEN
- IX = KX
- L = 1 - J
- IF (NOUNIT) X(JX) = X(JX)/A(1,J)
- TEMP = X(JX)
- DO 70 I = J + 1,MIN(N,J+K)
- X(IX) = X(IX) - TEMP*A(L+I,J)
- IX = IX + INCX
- 70 CONTINUE
- END IF
- JX = JX + INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
-*
-* Form x := inv( A')*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 100 J = 1,N
- TEMP = X(J)
- L = KPLUS1 - J
- DO 90 I = MAX(1,J-K),J - 1
- TEMP = TEMP - A(L+I,J)*X(I)
- 90 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
- X(J) = TEMP
- 100 CONTINUE
- ELSE
- JX = KX
- DO 120 J = 1,N
- TEMP = X(JX)
- IX = KX
- L = KPLUS1 - J
- DO 110 I = MAX(1,J-K),J - 1
- TEMP = TEMP - A(L+I,J)*X(IX)
- IX = IX + INCX
- 110 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
- X(JX) = TEMP
- JX = JX + INCX
- IF (J.GT.K) KX = KX + INCX
- 120 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 140 J = N,1,-1
- TEMP = X(J)
- L = 1 - J
- DO 130 I = MIN(N,J+K),J + 1,-1
- TEMP = TEMP - A(L+I,J)*X(I)
- 130 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(1,J)
- X(J) = TEMP
- 140 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 160 J = N,1,-1
- TEMP = X(JX)
- IX = KX
- L = 1 - J
- DO 150 I = MIN(N,J+K),J + 1,-1
- TEMP = TEMP - A(L+I,J)*X(IX)
- IX = IX - INCX
- 150 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(1,J)
- X(JX) = TEMP
- JX = JX - INCX
- IF ((N-J).GE.K) KX = KX - INCX
- 160 CONTINUE
- END IF
- END IF
- END IF
-*
- RETURN
-*
-* End of STBSV .
-*
- END
diff --git a/blas/ztbsv.f b/blas/ztbsv.f
deleted file mode 100644
index 42b234a77..000000000
--- a/blas/ztbsv.f
+++ /dev/null
@@ -1,370 +0,0 @@
- SUBROUTINE ZTBSV(UPLO,TRANS,DIAG,N,K,A,LDA,X,INCX)
-* .. Scalar Arguments ..
- INTEGER INCX,K,LDA,N
- CHARACTER DIAG,TRANS,UPLO
-* ..
-* .. Array Arguments ..
- DOUBLE COMPLEX A(LDA,*),X(*)
-* ..
-*
-* Purpose
-* =======
-*
-* ZTBSV solves one of the systems of equations
-*
-* A*x = b, or A'*x = b, or conjg( A' )*x = b,
-*
-* where b and x are n element vectors and A is an n by n unit, or
-* non-unit, upper or lower triangular band matrix, with ( k + 1 )
-* diagonals.
-*
-* No test for singularity or near-singularity is included in this
-* routine. Such tests must be performed before calling this routine.
-*
-* Arguments
-* ==========
-*
-* UPLO - CHARACTER*1.
-* On entry, UPLO specifies whether the matrix is an upper or
-* lower triangular matrix as follows:
-*
-* UPLO = 'U' or 'u' A is an upper triangular matrix.
-*
-* UPLO = 'L' or 'l' A is a lower triangular matrix.
-*
-* Unchanged on exit.
-*
-* TRANS - CHARACTER*1.
-* On entry, TRANS specifies the equations to be solved as
-* follows:
-*
-* TRANS = 'N' or 'n' A*x = b.
-*
-* TRANS = 'T' or 't' A'*x = b.
-*
-* TRANS = 'C' or 'c' conjg( A' )*x = b.
-*
-* Unchanged on exit.
-*
-* DIAG - CHARACTER*1.
-* On entry, DIAG specifies whether or not A is unit
-* triangular as follows:
-*
-* DIAG = 'U' or 'u' A is assumed to be unit triangular.
-*
-* DIAG = 'N' or 'n' A is not assumed to be unit
-* triangular.
-*
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the order of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* K - INTEGER.
-* On entry with UPLO = 'U' or 'u', K specifies the number of
-* super-diagonals of the matrix A.
-* On entry with UPLO = 'L' or 'l', K specifies the number of
-* sub-diagonals of the matrix A.
-* K must satisfy 0 .le. K.
-* Unchanged on exit.
-*
-* A - COMPLEX*16 array of DIMENSION ( LDA, n ).
-* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 )
-* by n part of the array A must contain the upper triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row
-* ( k + 1 ) of the array, the first super-diagonal starting at
-* position 2 in row k, and so on. The top left k by k triangle
-* of the array A is not referenced.
-* The following program segment will transfer an upper
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = K + 1 - J
-* DO 10, I = MAX( 1, J - K ), J
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 )
-* by n part of the array A must contain the lower triangular
-* band part of the matrix of coefficients, supplied column by
-* column, with the leading diagonal of the matrix in row 1 of
-* the array, the first sub-diagonal starting at position 1 in
-* row 2, and so on. The bottom right k by k triangle of the
-* array A is not referenced.
-* The following program segment will transfer a lower
-* triangular band matrix from conventional full matrix storage
-* to band storage:
-*
-* DO 20, J = 1, N
-* M = 1 - J
-* DO 10, I = J, MIN( N, J + K )
-* A( M + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Note that when DIAG = 'U' or 'u' the elements of the array A
-* corresponding to the diagonal elements of the matrix are not
-* referenced, but are assumed to be unity.
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( k + 1 ).
-* Unchanged on exit.
-*
-* X - COMPLEX*16 array of dimension at least
-* ( 1 + ( n - 1 )*abs( INCX ) ).
-* Before entry, the incremented array X must contain the n
-* element right-hand side vector b. On exit, X is overwritten
-* with the solution vector x.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE COMPLEX ZERO
- PARAMETER (ZERO= (0.0D+0,0.0D+0))
-* ..
-* .. Local Scalars ..
- DOUBLE COMPLEX TEMP
- INTEGER I,INFO,IX,J,JX,KPLUS1,KX,L
- LOGICAL NOCONJ,NOUNIT
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC DCONJG,MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
- INFO = 1
- ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 2
- ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
- INFO = 3
- ELSE IF (N.LT.0) THEN
- INFO = 4
- ELSE IF (K.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT. (K+1)) THEN
- INFO = 7
- ELSE IF (INCX.EQ.0) THEN
- INFO = 9
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('ZTBSV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF (N.EQ.0) RETURN
-*
- NOCONJ = LSAME(TRANS,'T')
- NOUNIT = LSAME(DIAG,'N')
-*
-* Set up the start point in X if the increment is not unity. This
-* will be ( N - 1 )*INCX too small for descending loops.
-*
- IF (INCX.LE.0) THEN
- KX = 1 - (N-1)*INCX
- ELSE IF (INCX.NE.1) THEN
- KX = 1
- END IF
-*
-* Start the operations. In this version the elements of A are
-* accessed by sequentially with one pass through A.
-*
- IF (LSAME(TRANS,'N')) THEN
-*
-* Form x := inv( A )*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 20 J = N,1,-1
- IF (X(J).NE.ZERO) THEN
- L = KPLUS1 - J
- IF (NOUNIT) X(J) = X(J)/A(KPLUS1,J)
- TEMP = X(J)
- DO 10 I = J - 1,MAX(1,J-K),-1
- X(I) = X(I) - TEMP*A(L+I,J)
- 10 CONTINUE
- END IF
- 20 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 40 J = N,1,-1
- KX = KX - INCX
- IF (X(JX).NE.ZERO) THEN
- IX = KX
- L = KPLUS1 - J
- IF (NOUNIT) X(JX) = X(JX)/A(KPLUS1,J)
- TEMP = X(JX)
- DO 30 I = J - 1,MAX(1,J-K),-1
- X(IX) = X(IX) - TEMP*A(L+I,J)
- IX = IX - INCX
- 30 CONTINUE
- END IF
- JX = JX - INCX
- 40 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 60 J = 1,N
- IF (X(J).NE.ZERO) THEN
- L = 1 - J
- IF (NOUNIT) X(J) = X(J)/A(1,J)
- TEMP = X(J)
- DO 50 I = J + 1,MIN(N,J+K)
- X(I) = X(I) - TEMP*A(L+I,J)
- 50 CONTINUE
- END IF
- 60 CONTINUE
- ELSE
- JX = KX
- DO 80 J = 1,N
- KX = KX + INCX
- IF (X(JX).NE.ZERO) THEN
- IX = KX
- L = 1 - J
- IF (NOUNIT) X(JX) = X(JX)/A(1,J)
- TEMP = X(JX)
- DO 70 I = J + 1,MIN(N,J+K)
- X(IX) = X(IX) - TEMP*A(L+I,J)
- IX = IX + INCX
- 70 CONTINUE
- END IF
- JX = JX + INCX
- 80 CONTINUE
- END IF
- END IF
- ELSE
-*
-* Form x := inv( A' )*x or x := inv( conjg( A') )*x.
-*
- IF (LSAME(UPLO,'U')) THEN
- KPLUS1 = K + 1
- IF (INCX.EQ.1) THEN
- DO 110 J = 1,N
- TEMP = X(J)
- L = KPLUS1 - J
- IF (NOCONJ) THEN
- DO 90 I = MAX(1,J-K),J - 1
- TEMP = TEMP - A(L+I,J)*X(I)
- 90 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
- ELSE
- DO 100 I = MAX(1,J-K),J - 1
- TEMP = TEMP - DCONJG(A(L+I,J))*X(I)
- 100 CONTINUE
- IF (NOUNIT) TEMP = TEMP/DCONJG(A(KPLUS1,J))
- END IF
- X(J) = TEMP
- 110 CONTINUE
- ELSE
- JX = KX
- DO 140 J = 1,N
- TEMP = X(JX)
- IX = KX
- L = KPLUS1 - J
- IF (NOCONJ) THEN
- DO 120 I = MAX(1,J-K),J - 1
- TEMP = TEMP - A(L+I,J)*X(IX)
- IX = IX + INCX
- 120 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(KPLUS1,J)
- ELSE
- DO 130 I = MAX(1,J-K),J - 1
- TEMP = TEMP - DCONJG(A(L+I,J))*X(IX)
- IX = IX + INCX
- 130 CONTINUE
- IF (NOUNIT) TEMP = TEMP/DCONJG(A(KPLUS1,J))
- END IF
- X(JX) = TEMP
- JX = JX + INCX
- IF (J.GT.K) KX = KX + INCX
- 140 CONTINUE
- END IF
- ELSE
- IF (INCX.EQ.1) THEN
- DO 170 J = N,1,-1
- TEMP = X(J)
- L = 1 - J
- IF (NOCONJ) THEN
- DO 150 I = MIN(N,J+K),J + 1,-1
- TEMP = TEMP - A(L+I,J)*X(I)
- 150 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(1,J)
- ELSE
- DO 160 I = MIN(N,J+K),J + 1,-1
- TEMP = TEMP - DCONJG(A(L+I,J))*X(I)
- 160 CONTINUE
- IF (NOUNIT) TEMP = TEMP/DCONJG(A(1,J))
- END IF
- X(J) = TEMP
- 170 CONTINUE
- ELSE
- KX = KX + (N-1)*INCX
- JX = KX
- DO 200 J = N,1,-1
- TEMP = X(JX)
- IX = KX
- L = 1 - J
- IF (NOCONJ) THEN
- DO 180 I = MIN(N,J+K),J + 1,-1
- TEMP = TEMP - A(L+I,J)*X(IX)
- IX = IX - INCX
- 180 CONTINUE
- IF (NOUNIT) TEMP = TEMP/A(1,J)
- ELSE
- DO 190 I = MIN(N,J+K),J + 1,-1
- TEMP = TEMP - DCONJG(A(L+I,J))*X(IX)
- IX = IX - INCX
- 190 CONTINUE
- IF (NOUNIT) TEMP = TEMP/DCONJG(A(1,J))
- END IF
- X(JX) = TEMP
- JX = JX - INCX
- IF ((N-J).GE.K) KX = KX - INCX
- 200 CONTINUE
- END IF
- END IF
- END IF
-*
- RETURN
-*
-* End of ZTBSV .
-*
- END