aboutsummaryrefslogtreecommitdiffhomepage
path: root/blas
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2011-02-02 11:39:13 +0100
committerGravatar Gael Guennebaud <g.gael@free.fr>2011-02-02 11:39:13 +0100
commit52e0a4403406ce8cd038efe13754d3ac24faac6d (patch)
tree50cb8cddca8a28317bd03b7806a0b1c28582c5bb /blas
parentd5f681976103058bf64fba506b367be06b9a0e3c (diff)
implement GBMV
Diffstat (limited to 'blas')
-rw-r--r--blas/CMakeLists.txt2
-rw-r--r--blas/cgbmv.f322
-rw-r--r--blas/dgbmv.f301
-rw-r--r--blas/level2_impl.h71
-rw-r--r--blas/sgbmv.f301
-rw-r--r--blas/zgbmv.f322
6 files changed, 64 insertions, 1255 deletions
diff --git a/blas/CMakeLists.txt b/blas/CMakeLists.txt
index c8d5c241f..5cbf90ddd 100644
--- a/blas/CMakeLists.txt
+++ b/blas/CMakeLists.txt
@@ -19,7 +19,7 @@ add_custom_target(blas)
set(EigenBlas_SRCS single.cpp double.cpp complex_single.cpp complex_double.cpp xerbla.cpp
srotm.f srotmg.f drotm.f drotmg.f
- lsame.f cgbmv.f chpr2.f ctbsv.f dspmv.f dtbmv.f dtpsv.f ssbmv.f sspr.f stpmv.f zgbmv.f zhpr2.f ztbsv.f chbmv.f chpr.f ctpmv.f dgbmv.f dspr2.f dtbsv.f sspmv.f stbmv.f stpsv.f zhbmv.f zhpr.f ztpmv.f chpmv.f ctbmv.f ctpsv.f dsbmv.f dspr.f dtpmv.f sgbmv.f sspr2.f stbsv.f zhpmv.f ztbmv.f ztpsv.f
+ lsame.f chpr2.f ctbsv.f dspmv.f dtbmv.f dtpsv.f ssbmv.f sspr.f stpmv.f zhpr2.f ztbsv.f chbmv.f chpr.f ctpmv.f dspr2.f dtbsv.f sspmv.f stbmv.f stpsv.f zhbmv.f zhpr.f ztpmv.f chpmv.f ctbmv.f ctpsv.f dsbmv.f dspr.f dtpmv.f sspr2.f stbsv.f zhpmv.f ztbmv.f ztpsv.f
)
add_library(eigen_blas_static ${EigenBlas_SRCS})
diff --git a/blas/cgbmv.f b/blas/cgbmv.f
deleted file mode 100644
index 2a837dba3..000000000
--- a/blas/cgbmv.f
+++ /dev/null
@@ -1,322 +0,0 @@
- SUBROUTINE CGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
-* .. Scalar Arguments ..
- COMPLEX ALPHA,BETA
- INTEGER INCX,INCY,KL,KU,LDA,M,N
- CHARACTER TRANS
-* ..
-* .. Array Arguments ..
- COMPLEX A(LDA,*),X(*),Y(*)
-* ..
-*
-* Purpose
-* =======
-*
-* CGBMV performs one of the matrix-vector operations
-*
-* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
-*
-* y := alpha*conjg( A' )*x + beta*y,
-*
-* where alpha and beta are scalars, x and y are vectors and A is an
-* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
-*
-* Arguments
-* ==========
-*
-* TRANS - CHARACTER*1.
-* On entry, TRANS specifies the operation to be performed as
-* follows:
-*
-* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
-*
-* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
-*
-* TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
-*
-* Unchanged on exit.
-*
-* M - INTEGER.
-* On entry, M specifies the number of rows of the matrix A.
-* M must be at least zero.
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the number of columns of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* KL - INTEGER.
-* On entry, KL specifies the number of sub-diagonals of the
-* matrix A. KL must satisfy 0 .le. KL.
-* Unchanged on exit.
-*
-* KU - INTEGER.
-* On entry, KU specifies the number of super-diagonals of the
-* matrix A. KU must satisfy 0 .le. KU.
-* Unchanged on exit.
-*
-* ALPHA - COMPLEX .
-* On entry, ALPHA specifies the scalar alpha.
-* Unchanged on exit.
-*
-* A - COMPLEX array of DIMENSION ( LDA, n ).
-* Before entry, the leading ( kl + ku + 1 ) by n part of the
-* array A must contain the matrix of coefficients, supplied
-* column by column, with the leading diagonal of the matrix in
-* row ( ku + 1 ) of the array, the first super-diagonal
-* starting at position 2 in row ku, the first sub-diagonal
-* starting at position 1 in row ( ku + 2 ), and so on.
-* Elements in the array A that do not correspond to elements
-* in the band matrix (such as the top left ku by ku triangle)
-* are not referenced.
-* The following program segment will transfer a band matrix
-* from conventional full matrix storage to band storage:
-*
-* DO 20, J = 1, N
-* K = KU + 1 - J
-* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
-* A( K + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( kl + ku + 1 ).
-* Unchanged on exit.
-*
-* X - COMPLEX array of DIMENSION at least
-* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
-* and at least
-* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
-* Before entry, the incremented array X must contain the
-* vector x.
-* Unchanged on exit.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* BETA - COMPLEX .
-* On entry, BETA specifies the scalar beta. When BETA is
-* supplied as zero then Y need not be set on input.
-* Unchanged on exit.
-*
-* Y - COMPLEX array of DIMENSION at least
-* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
-* and at least
-* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
-* Before entry, the incremented array Y must contain the
-* vector y. On exit, Y is overwritten by the updated vector y.
-*
-*
-* INCY - INTEGER.
-* On entry, INCY specifies the increment for the elements of
-* Y. INCY must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- COMPLEX ONE
- PARAMETER (ONE= (1.0E+0,0.0E+0))
- COMPLEX ZERO
- PARAMETER (ZERO= (0.0E+0,0.0E+0))
-* ..
-* .. Local Scalars ..
- COMPLEX TEMP
- INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
- LOGICAL NOCONJ
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC CONJG,MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 1
- ELSE IF (M.LT.0) THEN
- INFO = 2
- ELSE IF (N.LT.0) THEN
- INFO = 3
- ELSE IF (KL.LT.0) THEN
- INFO = 4
- ELSE IF (KU.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT. (KL+KU+1)) THEN
- INFO = 8
- ELSE IF (INCX.EQ.0) THEN
- INFO = 10
- ELSE IF (INCY.EQ.0) THEN
- INFO = 13
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('CGBMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
- + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
-*
- NOCONJ = LSAME(TRANS,'T')
-*
-* Set LENX and LENY, the lengths of the vectors x and y, and set
-* up the start points in X and Y.
-*
- IF (LSAME(TRANS,'N')) THEN
- LENX = N
- LENY = M
- ELSE
- LENX = M
- LENY = N
- END IF
- IF (INCX.GT.0) THEN
- KX = 1
- ELSE
- KX = 1 - (LENX-1)*INCX
- END IF
- IF (INCY.GT.0) THEN
- KY = 1
- ELSE
- KY = 1 - (LENY-1)*INCY
- END IF
-*
-* Start the operations. In this version the elements of A are
-* accessed sequentially with one pass through the band part of A.
-*
-* First form y := beta*y.
-*
- IF (BETA.NE.ONE) THEN
- IF (INCY.EQ.1) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 10 I = 1,LENY
- Y(I) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1,LENY
- Y(I) = BETA*Y(I)
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF (BETA.EQ.ZERO) THEN
- DO 30 I = 1,LENY
- Y(IY) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1,LENY
- Y(IY) = BETA*Y(IY)
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF (ALPHA.EQ.ZERO) RETURN
- KUP1 = KU + 1
- IF (LSAME(TRANS,'N')) THEN
-*
-* Form y := alpha*A*x + y.
-*
- JX = KX
- IF (INCY.EQ.1) THEN
- DO 60 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = ALPHA*X(JX)
- K = KUP1 - J
- DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
- Y(I) = Y(I) + TEMP*A(K+I,J)
- 50 CONTINUE
- END IF
- JX = JX + INCX
- 60 CONTINUE
- ELSE
- DO 80 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = ALPHA*X(JX)
- IY = KY
- K = KUP1 - J
- DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
- Y(IY) = Y(IY) + TEMP*A(K+I,J)
- IY = IY + INCY
- 70 CONTINUE
- END IF
- JX = JX + INCX
- IF (J.GT.KU) KY = KY + INCY
- 80 CONTINUE
- END IF
- ELSE
-*
-* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
-*
- JY = KY
- IF (INCX.EQ.1) THEN
- DO 110 J = 1,N
- TEMP = ZERO
- K = KUP1 - J
- IF (NOCONJ) THEN
- DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + A(K+I,J)*X(I)
- 90 CONTINUE
- ELSE
- DO 100 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + CONJG(A(K+I,J))*X(I)
- 100 CONTINUE
- END IF
- Y(JY) = Y(JY) + ALPHA*TEMP
- JY = JY + INCY
- 110 CONTINUE
- ELSE
- DO 140 J = 1,N
- TEMP = ZERO
- IX = KX
- K = KUP1 - J
- IF (NOCONJ) THEN
- DO 120 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + A(K+I,J)*X(IX)
- IX = IX + INCX
- 120 CONTINUE
- ELSE
- DO 130 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + CONJG(A(K+I,J))*X(IX)
- IX = IX + INCX
- 130 CONTINUE
- END IF
- Y(JY) = Y(JY) + ALPHA*TEMP
- JY = JY + INCY
- IF (J.GT.KU) KX = KX + INCX
- 140 CONTINUE
- END IF
- END IF
-*
- RETURN
-*
-* End of CGBMV .
-*
- END
diff --git a/blas/dgbmv.f b/blas/dgbmv.f
deleted file mode 100644
index c3dc64aa3..000000000
--- a/blas/dgbmv.f
+++ /dev/null
@@ -1,301 +0,0 @@
- SUBROUTINE DGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
-* .. Scalar Arguments ..
- DOUBLE PRECISION ALPHA,BETA
- INTEGER INCX,INCY,KL,KU,LDA,M,N
- CHARACTER TRANS
-* ..
-* .. Array Arguments ..
- DOUBLE PRECISION A(LDA,*),X(*),Y(*)
-* ..
-*
-* Purpose
-* =======
-*
-* DGBMV performs one of the matrix-vector operations
-*
-* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
-*
-* where alpha and beta are scalars, x and y are vectors and A is an
-* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
-*
-* Arguments
-* ==========
-*
-* TRANS - CHARACTER*1.
-* On entry, TRANS specifies the operation to be performed as
-* follows:
-*
-* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
-*
-* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
-*
-* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
-*
-* Unchanged on exit.
-*
-* M - INTEGER.
-* On entry, M specifies the number of rows of the matrix A.
-* M must be at least zero.
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the number of columns of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* KL - INTEGER.
-* On entry, KL specifies the number of sub-diagonals of the
-* matrix A. KL must satisfy 0 .le. KL.
-* Unchanged on exit.
-*
-* KU - INTEGER.
-* On entry, KU specifies the number of super-diagonals of the
-* matrix A. KU must satisfy 0 .le. KU.
-* Unchanged on exit.
-*
-* ALPHA - DOUBLE PRECISION.
-* On entry, ALPHA specifies the scalar alpha.
-* Unchanged on exit.
-*
-* A - DOUBLE PRECISION array of DIMENSION ( LDA, n ).
-* Before entry, the leading ( kl + ku + 1 ) by n part of the
-* array A must contain the matrix of coefficients, supplied
-* column by column, with the leading diagonal of the matrix in
-* row ( ku + 1 ) of the array, the first super-diagonal
-* starting at position 2 in row ku, the first sub-diagonal
-* starting at position 1 in row ( ku + 2 ), and so on.
-* Elements in the array A that do not correspond to elements
-* in the band matrix (such as the top left ku by ku triangle)
-* are not referenced.
-* The following program segment will transfer a band matrix
-* from conventional full matrix storage to band storage:
-*
-* DO 20, J = 1, N
-* K = KU + 1 - J
-* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
-* A( K + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( kl + ku + 1 ).
-* Unchanged on exit.
-*
-* X - DOUBLE PRECISION array of DIMENSION at least
-* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
-* and at least
-* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
-* Before entry, the incremented array X must contain the
-* vector x.
-* Unchanged on exit.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* BETA - DOUBLE PRECISION.
-* On entry, BETA specifies the scalar beta. When BETA is
-* supplied as zero then Y need not be set on input.
-* Unchanged on exit.
-*
-* Y - DOUBLE PRECISION array of DIMENSION at least
-* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
-* and at least
-* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
-* Before entry, the incremented array Y must contain the
-* vector y. On exit, Y is overwritten by the updated vector y.
-*
-* INCY - INTEGER.
-* On entry, INCY specifies the increment for the elements of
-* Y. INCY must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE PRECISION ONE,ZERO
- PARAMETER (ONE=1.0D+0,ZERO=0.0D+0)
-* ..
-* .. Local Scalars ..
- DOUBLE PRECISION TEMP
- INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 1
- ELSE IF (M.LT.0) THEN
- INFO = 2
- ELSE IF (N.LT.0) THEN
- INFO = 3
- ELSE IF (KL.LT.0) THEN
- INFO = 4
- ELSE IF (KU.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT. (KL+KU+1)) THEN
- INFO = 8
- ELSE IF (INCX.EQ.0) THEN
- INFO = 10
- ELSE IF (INCY.EQ.0) THEN
- INFO = 13
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('DGBMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
- + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
-*
-* Set LENX and LENY, the lengths of the vectors x and y, and set
-* up the start points in X and Y.
-*
- IF (LSAME(TRANS,'N')) THEN
- LENX = N
- LENY = M
- ELSE
- LENX = M
- LENY = N
- END IF
- IF (INCX.GT.0) THEN
- KX = 1
- ELSE
- KX = 1 - (LENX-1)*INCX
- END IF
- IF (INCY.GT.0) THEN
- KY = 1
- ELSE
- KY = 1 - (LENY-1)*INCY
- END IF
-*
-* Start the operations. In this version the elements of A are
-* accessed sequentially with one pass through the band part of A.
-*
-* First form y := beta*y.
-*
- IF (BETA.NE.ONE) THEN
- IF (INCY.EQ.1) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 10 I = 1,LENY
- Y(I) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1,LENY
- Y(I) = BETA*Y(I)
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF (BETA.EQ.ZERO) THEN
- DO 30 I = 1,LENY
- Y(IY) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1,LENY
- Y(IY) = BETA*Y(IY)
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF (ALPHA.EQ.ZERO) RETURN
- KUP1 = KU + 1
- IF (LSAME(TRANS,'N')) THEN
-*
-* Form y := alpha*A*x + y.
-*
- JX = KX
- IF (INCY.EQ.1) THEN
- DO 60 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = ALPHA*X(JX)
- K = KUP1 - J
- DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
- Y(I) = Y(I) + TEMP*A(K+I,J)
- 50 CONTINUE
- END IF
- JX = JX + INCX
- 60 CONTINUE
- ELSE
- DO 80 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = ALPHA*X(JX)
- IY = KY
- K = KUP1 - J
- DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
- Y(IY) = Y(IY) + TEMP*A(K+I,J)
- IY = IY + INCY
- 70 CONTINUE
- END IF
- JX = JX + INCX
- IF (J.GT.KU) KY = KY + INCY
- 80 CONTINUE
- END IF
- ELSE
-*
-* Form y := alpha*A'*x + y.
-*
- JY = KY
- IF (INCX.EQ.1) THEN
- DO 100 J = 1,N
- TEMP = ZERO
- K = KUP1 - J
- DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + A(K+I,J)*X(I)
- 90 CONTINUE
- Y(JY) = Y(JY) + ALPHA*TEMP
- JY = JY + INCY
- 100 CONTINUE
- ELSE
- DO 120 J = 1,N
- TEMP = ZERO
- IX = KX
- K = KUP1 - J
- DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + A(K+I,J)*X(IX)
- IX = IX + INCX
- 110 CONTINUE
- Y(JY) = Y(JY) + ALPHA*TEMP
- JY = JY + INCY
- IF (J.GT.KU) KX = KX + INCX
- 120 CONTINUE
- END IF
- END IF
-*
- RETURN
-*
-* End of DGBMV .
-*
- END
diff --git a/blas/level2_impl.h b/blas/level2_impl.h
index 0e4649f57..8cbc2f424 100644
--- a/blas/level2_impl.h
+++ b/blas/level2_impl.h
@@ -202,21 +202,76 @@ int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar
return 0;
}
-/** DGBMV performs one of the matrix-vector operations
+/** GBMV performs one of the matrix-vector operations
*
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
*
* where alpha and beta are scalars, x and y are vectors and A is an
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
*/
-// int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *alpha, RealScalar *a, int *lda,
-// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
-// {
-// return 1;
-// }
-
+int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *palpha, RealScalar *pa, int *lda,
+ RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
+{
+ Scalar* a = reinterpret_cast<Scalar*>(pa);
+ Scalar* x = reinterpret_cast<Scalar*>(px);
+ Scalar* y = reinterpret_cast<Scalar*>(py);
+ Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
+ Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
+ int coeff_rows = *kl+*ku+1;
+
+ int info = 0;
+ if(OP(*trans)==INVALID) info = 1;
+ else if(*m<0) info = 2;
+ else if(*n<0) info = 3;
+ else if(*kl<0) info = 4;
+ else if(*ku<0) info = 5;
+ else if(*lda<coeff_rows) info = 8;
+ else if(*incx==0) info = 10;
+ else if(*incy==0) info = 13;
+ if(info)
+ return xerbla_(SCALAR_SUFFIX_UP"GBMV ",&info,6);
+
+ if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
+ return 0;
+
+ int actual_m = *m;
+ int actual_n = *n;
+ if(OP(*trans)!=NOTR)
+ std::swap(actual_m,actual_n);
+
+ Scalar* actual_x = get_compact_vector(x,actual_n,*incx);
+ Scalar* actual_y = get_compact_vector(y,actual_m,*incy);
+
+ if(beta!=Scalar(1))
+ {
+ if(beta==Scalar(0)) vector(actual_y, actual_m).setZero();
+ else vector(actual_y, actual_m) *= beta;
+ }
+
+ MatrixType mat_coeffs(a,coeff_rows,*n,*lda);
+
+ int nb = std::min(*n,(*m)+(*ku));
+ for(int j=0; j<nb; ++j)
+ {
+ int start = std::max(0,j - *ku);
+ int end = std::min((*m)-1,j + *kl);
+ int len = end - start + 1;
+ int offset = (*ku) - j + start;
+ if(OP(*trans)==NOTR)
+ vector(actual_y+start,len) += (alpha*actual_x[j]) * mat_coeffs.col(j).segment(offset,len);
+ else if(OP(*trans)==TR)
+ actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).transpose() * vector(actual_x+start,len) ).value();
+ else
+ actual_y[j] += alpha * ( mat_coeffs.col(j).segment(offset,len).adjoint() * vector(actual_x+start,len) ).value();
+ }
+
+ if(actual_x!=x) delete[] actual_x;
+ if(actual_y!=y) delete[] copy_back(actual_y,y,actual_m,*incy);
+
+ return 0;
+}
-/** DTBMV performs one of the matrix-vector operations
+/** TBMV performs one of the matrix-vector operations
*
* x := A*x, or x := A'*x,
*
diff --git a/blas/sgbmv.f b/blas/sgbmv.f
deleted file mode 100644
index aaa8b1a17..000000000
--- a/blas/sgbmv.f
+++ /dev/null
@@ -1,301 +0,0 @@
- SUBROUTINE SGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
-* .. Scalar Arguments ..
- REAL ALPHA,BETA
- INTEGER INCX,INCY,KL,KU,LDA,M,N
- CHARACTER TRANS
-* ..
-* .. Array Arguments ..
- REAL A(LDA,*),X(*),Y(*)
-* ..
-*
-* Purpose
-* =======
-*
-* SGBMV performs one of the matrix-vector operations
-*
-* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
-*
-* where alpha and beta are scalars, x and y are vectors and A is an
-* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
-*
-* Arguments
-* ==========
-*
-* TRANS - CHARACTER*1.
-* On entry, TRANS specifies the operation to be performed as
-* follows:
-*
-* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
-*
-* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
-*
-* TRANS = 'C' or 'c' y := alpha*A'*x + beta*y.
-*
-* Unchanged on exit.
-*
-* M - INTEGER.
-* On entry, M specifies the number of rows of the matrix A.
-* M must be at least zero.
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the number of columns of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* KL - INTEGER.
-* On entry, KL specifies the number of sub-diagonals of the
-* matrix A. KL must satisfy 0 .le. KL.
-* Unchanged on exit.
-*
-* KU - INTEGER.
-* On entry, KU specifies the number of super-diagonals of the
-* matrix A. KU must satisfy 0 .le. KU.
-* Unchanged on exit.
-*
-* ALPHA - REAL .
-* On entry, ALPHA specifies the scalar alpha.
-* Unchanged on exit.
-*
-* A - REAL array of DIMENSION ( LDA, n ).
-* Before entry, the leading ( kl + ku + 1 ) by n part of the
-* array A must contain the matrix of coefficients, supplied
-* column by column, with the leading diagonal of the matrix in
-* row ( ku + 1 ) of the array, the first super-diagonal
-* starting at position 2 in row ku, the first sub-diagonal
-* starting at position 1 in row ( ku + 2 ), and so on.
-* Elements in the array A that do not correspond to elements
-* in the band matrix (such as the top left ku by ku triangle)
-* are not referenced.
-* The following program segment will transfer a band matrix
-* from conventional full matrix storage to band storage:
-*
-* DO 20, J = 1, N
-* K = KU + 1 - J
-* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
-* A( K + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( kl + ku + 1 ).
-* Unchanged on exit.
-*
-* X - REAL array of DIMENSION at least
-* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
-* and at least
-* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
-* Before entry, the incremented array X must contain the
-* vector x.
-* Unchanged on exit.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* BETA - REAL .
-* On entry, BETA specifies the scalar beta. When BETA is
-* supplied as zero then Y need not be set on input.
-* Unchanged on exit.
-*
-* Y - REAL array of DIMENSION at least
-* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
-* and at least
-* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
-* Before entry, the incremented array Y must contain the
-* vector y. On exit, Y is overwritten by the updated vector y.
-*
-* INCY - INTEGER.
-* On entry, INCY specifies the increment for the elements of
-* Y. INCY must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- REAL ONE,ZERO
- PARAMETER (ONE=1.0E+0,ZERO=0.0E+0)
-* ..
-* .. Local Scalars ..
- REAL TEMP
- INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 1
- ELSE IF (M.LT.0) THEN
- INFO = 2
- ELSE IF (N.LT.0) THEN
- INFO = 3
- ELSE IF (KL.LT.0) THEN
- INFO = 4
- ELSE IF (KU.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT. (KL+KU+1)) THEN
- INFO = 8
- ELSE IF (INCX.EQ.0) THEN
- INFO = 10
- ELSE IF (INCY.EQ.0) THEN
- INFO = 13
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('SGBMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
- + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
-*
-* Set LENX and LENY, the lengths of the vectors x and y, and set
-* up the start points in X and Y.
-*
- IF (LSAME(TRANS,'N')) THEN
- LENX = N
- LENY = M
- ELSE
- LENX = M
- LENY = N
- END IF
- IF (INCX.GT.0) THEN
- KX = 1
- ELSE
- KX = 1 - (LENX-1)*INCX
- END IF
- IF (INCY.GT.0) THEN
- KY = 1
- ELSE
- KY = 1 - (LENY-1)*INCY
- END IF
-*
-* Start the operations. In this version the elements of A are
-* accessed sequentially with one pass through the band part of A.
-*
-* First form y := beta*y.
-*
- IF (BETA.NE.ONE) THEN
- IF (INCY.EQ.1) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 10 I = 1,LENY
- Y(I) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1,LENY
- Y(I) = BETA*Y(I)
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF (BETA.EQ.ZERO) THEN
- DO 30 I = 1,LENY
- Y(IY) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1,LENY
- Y(IY) = BETA*Y(IY)
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF (ALPHA.EQ.ZERO) RETURN
- KUP1 = KU + 1
- IF (LSAME(TRANS,'N')) THEN
-*
-* Form y := alpha*A*x + y.
-*
- JX = KX
- IF (INCY.EQ.1) THEN
- DO 60 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = ALPHA*X(JX)
- K = KUP1 - J
- DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
- Y(I) = Y(I) + TEMP*A(K+I,J)
- 50 CONTINUE
- END IF
- JX = JX + INCX
- 60 CONTINUE
- ELSE
- DO 80 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = ALPHA*X(JX)
- IY = KY
- K = KUP1 - J
- DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
- Y(IY) = Y(IY) + TEMP*A(K+I,J)
- IY = IY + INCY
- 70 CONTINUE
- END IF
- JX = JX + INCX
- IF (J.GT.KU) KY = KY + INCY
- 80 CONTINUE
- END IF
- ELSE
-*
-* Form y := alpha*A'*x + y.
-*
- JY = KY
- IF (INCX.EQ.1) THEN
- DO 100 J = 1,N
- TEMP = ZERO
- K = KUP1 - J
- DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + A(K+I,J)*X(I)
- 90 CONTINUE
- Y(JY) = Y(JY) + ALPHA*TEMP
- JY = JY + INCY
- 100 CONTINUE
- ELSE
- DO 120 J = 1,N
- TEMP = ZERO
- IX = KX
- K = KUP1 - J
- DO 110 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + A(K+I,J)*X(IX)
- IX = IX + INCX
- 110 CONTINUE
- Y(JY) = Y(JY) + ALPHA*TEMP
- JY = JY + INCY
- IF (J.GT.KU) KX = KX + INCX
- 120 CONTINUE
- END IF
- END IF
-*
- RETURN
-*
-* End of SGBMV .
-*
- END
diff --git a/blas/zgbmv.f b/blas/zgbmv.f
deleted file mode 100644
index 5a2228d04..000000000
--- a/blas/zgbmv.f
+++ /dev/null
@@ -1,322 +0,0 @@
- SUBROUTINE ZGBMV(TRANS,M,N,KL,KU,ALPHA,A,LDA,X,INCX,BETA,Y,INCY)
-* .. Scalar Arguments ..
- DOUBLE COMPLEX ALPHA,BETA
- INTEGER INCX,INCY,KL,KU,LDA,M,N
- CHARACTER TRANS
-* ..
-* .. Array Arguments ..
- DOUBLE COMPLEX A(LDA,*),X(*),Y(*)
-* ..
-*
-* Purpose
-* =======
-*
-* ZGBMV performs one of the matrix-vector operations
-*
-* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, or
-*
-* y := alpha*conjg( A' )*x + beta*y,
-*
-* where alpha and beta are scalars, x and y are vectors and A is an
-* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
-*
-* Arguments
-* ==========
-*
-* TRANS - CHARACTER*1.
-* On entry, TRANS specifies the operation to be performed as
-* follows:
-*
-* TRANS = 'N' or 'n' y := alpha*A*x + beta*y.
-*
-* TRANS = 'T' or 't' y := alpha*A'*x + beta*y.
-*
-* TRANS = 'C' or 'c' y := alpha*conjg( A' )*x + beta*y.
-*
-* Unchanged on exit.
-*
-* M - INTEGER.
-* On entry, M specifies the number of rows of the matrix A.
-* M must be at least zero.
-* Unchanged on exit.
-*
-* N - INTEGER.
-* On entry, N specifies the number of columns of the matrix A.
-* N must be at least zero.
-* Unchanged on exit.
-*
-* KL - INTEGER.
-* On entry, KL specifies the number of sub-diagonals of the
-* matrix A. KL must satisfy 0 .le. KL.
-* Unchanged on exit.
-*
-* KU - INTEGER.
-* On entry, KU specifies the number of super-diagonals of the
-* matrix A. KU must satisfy 0 .le. KU.
-* Unchanged on exit.
-*
-* ALPHA - COMPLEX*16 .
-* On entry, ALPHA specifies the scalar alpha.
-* Unchanged on exit.
-*
-* A - COMPLEX*16 array of DIMENSION ( LDA, n ).
-* Before entry, the leading ( kl + ku + 1 ) by n part of the
-* array A must contain the matrix of coefficients, supplied
-* column by column, with the leading diagonal of the matrix in
-* row ( ku + 1 ) of the array, the first super-diagonal
-* starting at position 2 in row ku, the first sub-diagonal
-* starting at position 1 in row ( ku + 2 ), and so on.
-* Elements in the array A that do not correspond to elements
-* in the band matrix (such as the top left ku by ku triangle)
-* are not referenced.
-* The following program segment will transfer a band matrix
-* from conventional full matrix storage to band storage:
-*
-* DO 20, J = 1, N
-* K = KU + 1 - J
-* DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL )
-* A( K + I, J ) = matrix( I, J )
-* 10 CONTINUE
-* 20 CONTINUE
-*
-* Unchanged on exit.
-*
-* LDA - INTEGER.
-* On entry, LDA specifies the first dimension of A as declared
-* in the calling (sub) program. LDA must be at least
-* ( kl + ku + 1 ).
-* Unchanged on exit.
-*
-* X - COMPLEX*16 array of DIMENSION at least
-* ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
-* and at least
-* ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
-* Before entry, the incremented array X must contain the
-* vector x.
-* Unchanged on exit.
-*
-* INCX - INTEGER.
-* On entry, INCX specifies the increment for the elements of
-* X. INCX must not be zero.
-* Unchanged on exit.
-*
-* BETA - COMPLEX*16 .
-* On entry, BETA specifies the scalar beta. When BETA is
-* supplied as zero then Y need not be set on input.
-* Unchanged on exit.
-*
-* Y - COMPLEX*16 array of DIMENSION at least
-* ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
-* and at least
-* ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
-* Before entry, the incremented array Y must contain the
-* vector y. On exit, Y is overwritten by the updated vector y.
-*
-*
-* INCY - INTEGER.
-* On entry, INCY specifies the increment for the elements of
-* Y. INCY must not be zero.
-* Unchanged on exit.
-*
-* Further Details
-* ===============
-*
-* Level 2 Blas routine.
-*
-* -- Written on 22-October-1986.
-* Jack Dongarra, Argonne National Lab.
-* Jeremy Du Croz, Nag Central Office.
-* Sven Hammarling, Nag Central Office.
-* Richard Hanson, Sandia National Labs.
-*
-* =====================================================================
-*
-* .. Parameters ..
- DOUBLE COMPLEX ONE
- PARAMETER (ONE= (1.0D+0,0.0D+0))
- DOUBLE COMPLEX ZERO
- PARAMETER (ZERO= (0.0D+0,0.0D+0))
-* ..
-* .. Local Scalars ..
- DOUBLE COMPLEX TEMP
- INTEGER I,INFO,IX,IY,J,JX,JY,K,KUP1,KX,KY,LENX,LENY
- LOGICAL NOCONJ
-* ..
-* .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
-* ..
-* .. External Subroutines ..
- EXTERNAL XERBLA
-* ..
-* .. Intrinsic Functions ..
- INTRINSIC DCONJG,MAX,MIN
-* ..
-*
-* Test the input parameters.
-*
- INFO = 0
- IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
- + .NOT.LSAME(TRANS,'C')) THEN
- INFO = 1
- ELSE IF (M.LT.0) THEN
- INFO = 2
- ELSE IF (N.LT.0) THEN
- INFO = 3
- ELSE IF (KL.LT.0) THEN
- INFO = 4
- ELSE IF (KU.LT.0) THEN
- INFO = 5
- ELSE IF (LDA.LT. (KL+KU+1)) THEN
- INFO = 8
- ELSE IF (INCX.EQ.0) THEN
- INFO = 10
- ELSE IF (INCY.EQ.0) THEN
- INFO = 13
- END IF
- IF (INFO.NE.0) THEN
- CALL XERBLA('ZGBMV ',INFO)
- RETURN
- END IF
-*
-* Quick return if possible.
-*
- IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
- + ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
-*
- NOCONJ = LSAME(TRANS,'T')
-*
-* Set LENX and LENY, the lengths of the vectors x and y, and set
-* up the start points in X and Y.
-*
- IF (LSAME(TRANS,'N')) THEN
- LENX = N
- LENY = M
- ELSE
- LENX = M
- LENY = N
- END IF
- IF (INCX.GT.0) THEN
- KX = 1
- ELSE
- KX = 1 - (LENX-1)*INCX
- END IF
- IF (INCY.GT.0) THEN
- KY = 1
- ELSE
- KY = 1 - (LENY-1)*INCY
- END IF
-*
-* Start the operations. In this version the elements of A are
-* accessed sequentially with one pass through the band part of A.
-*
-* First form y := beta*y.
-*
- IF (BETA.NE.ONE) THEN
- IF (INCY.EQ.1) THEN
- IF (BETA.EQ.ZERO) THEN
- DO 10 I = 1,LENY
- Y(I) = ZERO
- 10 CONTINUE
- ELSE
- DO 20 I = 1,LENY
- Y(I) = BETA*Y(I)
- 20 CONTINUE
- END IF
- ELSE
- IY = KY
- IF (BETA.EQ.ZERO) THEN
- DO 30 I = 1,LENY
- Y(IY) = ZERO
- IY = IY + INCY
- 30 CONTINUE
- ELSE
- DO 40 I = 1,LENY
- Y(IY) = BETA*Y(IY)
- IY = IY + INCY
- 40 CONTINUE
- END IF
- END IF
- END IF
- IF (ALPHA.EQ.ZERO) RETURN
- KUP1 = KU + 1
- IF (LSAME(TRANS,'N')) THEN
-*
-* Form y := alpha*A*x + y.
-*
- JX = KX
- IF (INCY.EQ.1) THEN
- DO 60 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = ALPHA*X(JX)
- K = KUP1 - J
- DO 50 I = MAX(1,J-KU),MIN(M,J+KL)
- Y(I) = Y(I) + TEMP*A(K+I,J)
- 50 CONTINUE
- END IF
- JX = JX + INCX
- 60 CONTINUE
- ELSE
- DO 80 J = 1,N
- IF (X(JX).NE.ZERO) THEN
- TEMP = ALPHA*X(JX)
- IY = KY
- K = KUP1 - J
- DO 70 I = MAX(1,J-KU),MIN(M,J+KL)
- Y(IY) = Y(IY) + TEMP*A(K+I,J)
- IY = IY + INCY
- 70 CONTINUE
- END IF
- JX = JX + INCX
- IF (J.GT.KU) KY = KY + INCY
- 80 CONTINUE
- END IF
- ELSE
-*
-* Form y := alpha*A'*x + y or y := alpha*conjg( A' )*x + y.
-*
- JY = KY
- IF (INCX.EQ.1) THEN
- DO 110 J = 1,N
- TEMP = ZERO
- K = KUP1 - J
- IF (NOCONJ) THEN
- DO 90 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + A(K+I,J)*X(I)
- 90 CONTINUE
- ELSE
- DO 100 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + DCONJG(A(K+I,J))*X(I)
- 100 CONTINUE
- END IF
- Y(JY) = Y(JY) + ALPHA*TEMP
- JY = JY + INCY
- 110 CONTINUE
- ELSE
- DO 140 J = 1,N
- TEMP = ZERO
- IX = KX
- K = KUP1 - J
- IF (NOCONJ) THEN
- DO 120 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + A(K+I,J)*X(IX)
- IX = IX + INCX
- 120 CONTINUE
- ELSE
- DO 130 I = MAX(1,J-KU),MIN(M,J+KL)
- TEMP = TEMP + DCONJG(A(K+I,J))*X(IX)
- IX = IX + INCX
- 130 CONTINUE
- END IF
- Y(JY) = Y(JY) + ALPHA*TEMP
- JY = JY + INCY
- IF (J.GT.KU) KX = KX + INCX
- 140 CONTINUE
- END IF
- END IF
-*
- RETURN
-*
-* End of ZGBMV .
-*
- END