aboutsummaryrefslogtreecommitdiffhomepage
path: root/blas/level2_impl.h
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2010-11-22 18:49:12 +0100
committerGravatar Gael Guennebaud <g.gael@free.fr>2010-11-22 18:49:12 +0100
commitf5f288b741b173a271b9c939ac5231639135dd93 (patch)
tree977b85dc7b88aa9faf58696eabba0163ca7c2235 /blas/level2_impl.h
parenta6f483e86b0c4c1d82622eec99fb051c804bf13d (diff)
split level 1 and 2 implementation files into smaller ones and fix a couple of numerical and tricky issues discovered by the lapack test suite
Diffstat (limited to 'blas/level2_impl.h')
-rw-r--r--blas/level2_impl.h505
1 files changed, 36 insertions, 469 deletions
diff --git a/blas/level2_impl.h b/blas/level2_impl.h
index 87a4d04df..0e4649f57 100644
--- a/blas/level2_impl.h
+++ b/blas/level2_impl.h
@@ -41,7 +41,7 @@ int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealSca
init = true;
}
-
+
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar* b = reinterpret_cast<Scalar*>(pb);
Scalar* c = reinterpret_cast<Scalar*>(pc);
@@ -59,7 +59,7 @@ int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealSca
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GEMV ",&info,6);
- if(*m==0 || *n==0)
+ if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
return 0;
int actual_m = *m;
@@ -69,10 +69,13 @@ int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealSca
Scalar* actual_b = get_compact_vector(b,actual_n,*incb);
Scalar* actual_c = get_compact_vector(c,actual_m,*incc);
-
+
if(beta!=Scalar(1))
- vector(actual_c, actual_m) *= beta;
-
+ {
+ if(beta==Scalar(0)) vector(actual_c, actual_m).setZero();
+ else vector(actual_c, actual_m) *= beta;
+ }
+
int code = OP(*opa);
func[code](actual_m, actual_n, a, *lda, actual_b, 1, actual_c, 1, alpha);
@@ -131,7 +134,7 @@ int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar
func[code](*n, a, *lda, actual_b);
if(actual_b!=b) delete[] copy_back(actual_b,b,*n,*incb);
-
+
return 0;
}
@@ -195,147 +198,8 @@ int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar
copy_back(res.data(),b,*n,*incb);
if(actual_b!=b) delete[] actual_b;
-
- return 0;
-}
-
-// y = alpha*A*x + beta*y
-int EIGEN_BLAS_FUNC(symv) (char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
-{
- Scalar* a = reinterpret_cast<Scalar*>(pa);
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* y = reinterpret_cast<Scalar*>(py);
- Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
- Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
-
- // check arguments
- int info = 0;
- if(UPLO(*uplo)==INVALID) info = 1;
- else if(*n<0) info = 2;
- else if(*lda<std::max(1,*n)) info = 5;
- else if(*incx==0) info = 7;
- else if(*incy==0) info = 10;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"SYMV ",&info,6);
-
- if(*n==0)
- return 0;
-
- Scalar* actual_x = get_compact_vector(x,*n,*incx);
- Scalar* actual_y = get_compact_vector(y,*n,*incy);
-
- if(beta!=Scalar(1))
- vector(actual_y, *n) *= beta;
-
- // TODO performs a direct call to the underlying implementation function
- if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n));
- else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n));
-
- if(actual_x!=x) delete[] actual_x;
- if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
-
- return 1;
-}
-
-// C := alpha*x*x' + C
-int EIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pc, int *ldc)
-{
-
-// typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar);
-// static functype func[2];
-
-// static bool init = false;
-// if(!init)
-// {
-// for(int k=0; k<2; ++k)
-// func[k] = 0;
-//
-// func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
-// func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
-
-// init = true;
-// }
-
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* c = reinterpret_cast<Scalar*>(pc);
- Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
-
- int info = 0;
- if(UPLO(*uplo)==INVALID) info = 1;
- else if(*n<0) info = 2;
- else if(*incx==0) info = 5;
- else if(*ldc<std::max(1,*n)) info = 7;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"SYR ",&info,6);
-
- if(alpha==Scalar(0))
- return 1;
-
- // if the increment is not 1, let's copy it to a temporary vector to enable vectorization
- Scalar* x_cpy = get_compact_vector(x,*n,*incx);
-
- // TODO perform direct calls to underlying implementation
- if(UPLO(*uplo)==LO) matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha);
- else if(UPLO(*uplo)==UP) matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha);
-
- if(x_cpy!=x) delete[] x_cpy;
-
-// func[code](*n, a, *inca, c, *ldc, alpha);
- return 1;
-}
-
-
-// C := alpha*x*y' + alpha*y*x' + C
-int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, int *ldc)
-{
-// typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
-// static functype func[2];
-//
-// static bool init = false;
-// if(!init)
-// {
-// for(int k=0; k<2; ++k)
-// func[k] = 0;
-//
-// func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
-// func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
-//
-// init = true;
-// }
-
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* y = reinterpret_cast<Scalar*>(py);
- Scalar* c = reinterpret_cast<Scalar*>(pc);
- Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
-
- int info = 0;
- if(UPLO(*uplo)==INVALID) info = 1;
- else if(*n<0) info = 2;
- else if(*incx==0) info = 5;
- else if(*incy==0) info = 7;
- else if(*ldc<std::max(1,*n)) info = 9;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"SYR2 ",&info,6);
-
- if(alpha==Scalar(0))
- return 1;
-
- Scalar* x_cpy = get_compact_vector(x,*n,*incx);
- Scalar* y_cpy = get_compact_vector(y,*n,*incy);
-
- // TODO perform direct calls to underlying implementation
- if(UPLO(*uplo)==LO) matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha);
- else if(UPLO(*uplo)==UP) matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha);
-
- if(x_cpy!=x) delete[] x_cpy;
- if(y_cpy!=y) delete[] y_cpy;
-
-// int code = UPLO(*uplo);
-// if(code>=2 || func[code]==0)
-// return 0;
-// func[code](*n, a, *inca, b, *incb, c, *ldc, alpha);
- return 1;
+ return 0;
}
/** DGBMV performs one of the matrix-vector operations
@@ -345,23 +209,12 @@ int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px
* where alpha and beta are scalars, x and y are vectors and A is an
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
*/
-int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *alpha, RealScalar *a, int *lda,
- RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
-{
- return 1;
-}
-/** DSBMV performs the matrix-vector operation
- *
- * y := alpha*A*x + beta*y,
- *
- * where alpha and beta are scalars, x and y are n element vectors and
- * A is an n by n symmetric band matrix, with k super-diagonals.
- */
-int EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
- RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
-{
- return 1;
-}
+// int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *alpha, RealScalar *a, int *lda,
+// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
+// {
+// return 1;
+// }
+
/** DTBMV performs one of the matrix-vector operations
*
@@ -370,10 +223,10 @@ int EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealSc
* where x is an n element vector and A is an n by n unit, or non-unit,
* upper or lower triangular band matrix, with ( k + 1 ) diagonals.
*/
-int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *trans, char *diag, int *n, int *k, RealScalar *a, int *lda, RealScalar *x, int *incx)
-{
- return 1;
-}
+// int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *trans, char *diag, int *n, int *k, RealScalar *a, int *lda, RealScalar *x, int *incx)
+// {
+// return 1;
+// }
/** DTBSV solves one of the systems of equations
*
@@ -386,23 +239,10 @@ int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *trans, char *diag, int *n, int *k, R
* No test for singularity or near-singularity is included in this
* routine. Such tests must be performed before calling this routine.
*/
-int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *trans, char *diag, int *n, int *k, RealScalar *a, int *lda, RealScalar *x, int *incx)
-{
- return 1;
-}
-
-/** DSPMV performs the matrix-vector operation
- *
- * y := alpha*A*x + beta*y,
- *
- * where alpha and beta are scalars, x and y are n element vectors and
- * A is an n by n symmetric matrix, supplied in packed form.
- *
- */
-int EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
-{
- return 1;
-}
+// int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *trans, char *diag, int *n, int *k, RealScalar *a, int *lda, RealScalar *x, int *incx)
+// {
+// return 1;
+// }
/** DTPMV performs one of the matrix-vector operations
*
@@ -411,10 +251,10 @@ int EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap,
* where x is an n element vector and A is an n by n unit, or non-unit,
* upper or lower triangular matrix, supplied in packed form.
*/
-int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
-{
- return 1;
-}
+// int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
+// {
+// return 1;
+// }
/** DTPSV solves one of the systems of equations
*
@@ -426,10 +266,10 @@ int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *trans, char *diag, int *n, RealScala
* No test for singularity or near-singularity is included in this
* routine. Such tests must be performed before calling this routine.
*/
-int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
-{
- return 1;
-}
+// int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
+// {
+// return 1;
+// }
/** DGER performs the rank 1 operation
*
@@ -444,7 +284,7 @@ int EIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *palpha, Scalar *px, int *incx,
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
-
+
int info = 0;
if(*m<0) info = 1;
else if(*n<0) info = 2;
@@ -453,293 +293,20 @@ int EIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *palpha, Scalar *px, int *incx,
else if(*lda<std::max(1,*m)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GER ",&info,6);
-
+
if(alpha==Scalar(0))
return 1;
-
+
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
-
- // TODO perform direct calls to underlying implementation
- matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint();
-
- if(x_cpy!=x) delete[] x_cpy;
- if(y_cpy!=y) delete[] y_cpy;
-
- return 1;
-}
-
-/** DSPR performs the symmetric rank 1 operation
- *
- * A := alpha*x*x' + A,
- *
- * where alpha is a real scalar, x is an n element vector and A is an
- * n by n symmetric matrix, supplied in packed form.
- */
-int EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *alpha, Scalar *x, int *incx, Scalar *ap)
-{
- return 1;
-}
-/** DSPR2 performs the symmetric rank 2 operation
- *
- * A := alpha*x*y' + alpha*y*x' + A,
- *
- * where alpha is a scalar, x and y are n element vectors and A is an
- * n by n symmetric matrix, supplied in packed form.
- */
-int EIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
-{
- return 1;
-}
-
-#if ISCOMPLEX
-/** ZHEMV performs the matrix-vector operation
- *
- * y := alpha*A*x + beta*y,
- *
- * where alpha and beta are scalars, x and y are n element vectors and
- * A is an n by n hermitian matrix.
- */
-int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
-{
- Scalar* a = reinterpret_cast<Scalar*>(pa);
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* y = reinterpret_cast<Scalar*>(py);
- Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
- Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
- // check arguments
- int info = 0;
- if(UPLO(*uplo)==INVALID) info = 1;
- else if(*n<0) info = 2;
- else if(*lda<std::max(1,*n)) info = 5;
- else if(*incx==0) info = 7;
- else if(*incy==0) info = 10;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6);
-
- if(*n==0)
- return 1;
-
- Scalar* actual_x = get_compact_vector(x,*n,*incx);
- Scalar* actual_y = get_compact_vector(y,*n,*incy);
-
- if(beta!=Scalar(1))
- vector(actual_y, *n) *= beta;
-
- if(alpha!=Scalar(0))
- {
- // TODO performs a direct call to the underlying implementation function
- if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n));
- else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n));
- }
-
- if(actual_x!=x) delete[] actual_x;
- if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
-
- return 1;
-}
-
-/** ZHBMV performs the matrix-vector operation
- *
- * y := alpha*A*x + beta*y,
- *
- * where alpha and beta are scalars, x and y are n element vectors and
- * A is an n by n hermitian band matrix, with k super-diagonals.
- */
-int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
- RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
-{
- return 1;
-}
-
-/** ZHPMV performs the matrix-vector operation
- *
- * y := alpha*A*x + beta*y,
- *
- * where alpha and beta are scalars, x and y are n element vectors and
- * A is an n by n hermitian matrix, supplied in packed form.
- */
-int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
-{
- return 1;
-}
-
-/** ZHPR performs the hermitian rank 1 operation
- *
- * A := alpha*x*conjg( x' ) + A,
- *
- * where alpha is a real scalar, x is an n element vector and A is an
- * n by n hermitian matrix, supplied in packed form.
- */
-int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *ap)
-{
- return 1;
-}
-
-/** ZHPR2 performs the hermitian rank 2 operation
- *
- * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
- *
- * where alpha is a scalar, x and y are n element vectors and A is an
- * n by n hermitian matrix, supplied in packed form.
- */
-int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
-{
- return 1;
-}
-
-/** ZHER performs the hermitian rank 1 operation
- *
- * A := alpha*x*conjg( x' ) + A,
- *
- * where alpha is a real scalar, x is an n element vector and A is an
- * n by n hermitian matrix.
- */
-int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda)
-{
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* a = reinterpret_cast<Scalar*>(pa);
- RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha);
-
- int info = 0;
- if(UPLO(*uplo)==INVALID) info = 1;
- else if(*n<0) info = 2;
- else if(*incx==0) info = 5;
- else if(*lda<std::max(1,*n)) info = 7;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6);
-
- if(alpha==RealScalar(0))
- return 1;
-
- Scalar* x_cpy = get_compact_vector(x, *n, *incx);
-
// TODO perform direct calls to underlying implementation
- if(UPLO(*uplo)==LO) matrix(a,*n,*n,*lda).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha);
- else if(UPLO(*uplo)==UP) matrix(a,*n,*n,*lda).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha);
-
- matrix(a,*n,*n,*lda).diagonal().imag().setZero();
-
- if(x_cpy!=x) delete[] x_cpy;
-
- return 1;
-}
+ matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint();
-/** ZHER2 performs the hermitian rank 2 operation
- *
- * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
- *
- * where alpha is a scalar, x and y are n element vectors and A is an n
- * by n hermitian matrix.
- */
-int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
-{
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* y = reinterpret_cast<Scalar*>(py);
- Scalar* a = reinterpret_cast<Scalar*>(pa);
- Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
-
- int info = 0;
- if(UPLO(*uplo)==INVALID) info = 1;
- else if(*n<0) info = 2;
- else if(*incx==0) info = 5;
- else if(*incy==0) info = 7;
- else if(*lda<std::max(1,*n)) info = 9;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6);
-
- if(alpha==Scalar(0))
- return 1;
-
- Scalar* x_cpy = get_compact_vector(x, *n, *incx);
- Scalar* y_cpy = get_compact_vector(y, *n, *incy);
-
- // TODO perform direct calls to underlying implementation
- if(UPLO(*uplo)==LO) matrix(a,*n,*n,*lda).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha);
- else if(UPLO(*uplo)==UP) matrix(a,*n,*n,*lda).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha);
-
- matrix(a,*n,*n,*lda).diagonal().imag().setZero();
-
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}
-/** ZGERU performs the rank 1 operation
- *
- * A := alpha*x*y' + A,
- *
- * where alpha is a scalar, x is an m element vector, y is an n element
- * vector and A is an m by n matrix.
- */
-int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
-{
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* y = reinterpret_cast<Scalar*>(py);
- Scalar* a = reinterpret_cast<Scalar*>(pa);
- Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
-
- int info = 0;
- if(*m<0) info = 1;
- else if(*n<0) info = 2;
- else if(*incx==0) info = 5;
- else if(*incy==0) info = 7;
- else if(*lda<std::max(1,*m)) info = 9;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6);
-
- if(alpha==Scalar(0))
- return 1;
-
- Scalar* x_cpy = get_compact_vector(x,*m,*incx);
- Scalar* y_cpy = get_compact_vector(y,*n,*incy);
-
- // TODO perform direct calls to underlying implementation
- matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).transpose();
-
- if(x_cpy!=x) delete[] x_cpy;
- if(y_cpy!=y) delete[] y_cpy;
-
- return 1;
-}
-/** ZGERC performs the rank 1 operation
- *
- * A := alpha*x*conjg( y' ) + A,
- *
- * where alpha is a scalar, x is an m element vector, y is an n element
- * vector and A is an m by n matrix.
- */
-int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
-{
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* y = reinterpret_cast<Scalar*>(py);
- Scalar* a = reinterpret_cast<Scalar*>(pa);
- Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
-
- int info = 0;
- if(*m<0) info = 1;
- else if(*n<0) info = 2;
- else if(*incx==0) info = 5;
- else if(*incy==0) info = 7;
- else if(*lda<std::max(1,*m)) info = 9;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6);
-
- if(alpha==Scalar(0))
- return 1;
-
- Scalar* x_cpy = get_compact_vector(x,*m,*incx);
- Scalar* y_cpy = get_compact_vector(y,*n,*incy);
-
- // TODO perform direct calls to underlying implementation
- matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint();
-
- if(x_cpy!=x) delete[] x_cpy;
- if(y_cpy!=y) delete[] y_cpy;
-
- return 1;
-}
-#endif // ISCOMPLEX