aboutsummaryrefslogtreecommitdiffhomepage
path: root/bench
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2009-07-16 16:21:26 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2009-07-16 16:21:26 +0200
commit15ed32dd6ef53111e6e29428418a65e1d3547c12 (patch)
tree8b90b13ada6dfa93c296a92593d5cf2095387ad0 /bench
parent525da6a464c897d0fe4e401a65851bcd7567fc5a (diff)
add other stable norm impl. in the benchmark
Diffstat (limited to 'bench')
-rw-r--r--bench/bench_norm.cpp75
1 files changed, 61 insertions, 14 deletions
diff --git a/bench/bench_norm.cpp b/bench/bench_norm.cpp
index e06d06417..8e4fefdd7 100644
--- a/bench/bench_norm.cpp
+++ b/bench/bench_norm.cpp
@@ -1,5 +1,5 @@
#include <typeinfo>
-#include <Eigen/Core>
+#include <Eigen/Array>
#include "BenchTimer.h"
using namespace Eigen;
using namespace std;
@@ -27,23 +27,55 @@ EIGEN_DONT_INLINE typename T::Scalar lapackNorm(T& v)
{
typedef typename T::Scalar Scalar;
int n = v.size();
- Scalar scale = 1;
- Scalar ssq = 0;
+ Scalar scale = 0;
+ Scalar ssq = 1;
for (int i=0;i<n;++i)
{
Scalar ax = ei_abs(v.coeff(i));
- if (scale < ax)
+ if (scale >= ax)
+ {
+ ssq += ei_abs2(ax/scale);
+ }
+ else
{
ssq = Scalar(1) + ssq * ei_abs2(scale/ax);
scale = ax;
}
- else
- ssq += ei_abs2(ax/scale);
}
return scale * ei_sqrt(ssq);
}
template<typename T>
+EIGEN_DONT_INLINE typename T::Scalar twopassNorm(T& v)
+{
+ typedef typename T::Scalar Scalar;
+ Scalar s = v.cwise().abs().maxCoeff();
+ return s*(v/s).norm();
+}
+
+template<typename T>
+EIGEN_DONT_INLINE typename T::Scalar bl2passNorm(T& v)
+{
+ const int blockSize = 4096;
+ typedef typename T::Scalar Scalar;
+ Scalar s = 0;
+ Scalar ssq = 0;
+ for (int bi=0; bi<v.size(); bi+=blockSize)
+ {
+ int r = std::min(blockSize, v.size() - bi);
+ Eigen::Block<typename ei_cleantype<T>::type,Eigen::Dynamic,1,Eigen::ForceAligned> sv(v,bi,0,r,1);
+ Scalar m = sv.cwise().abs().maxCoeff();
+ if (m>s)
+ {
+ ssq = ssq * ei_abs2(s/m);
+ s = m;
+ }
+ ssq += (sv/s).squaredNorm();
+ }
+ return s*ei_sqrt(ssq);
+}
+
+template<typename T>
EIGEN_DONT_INLINE typename T::Scalar divacNorm(T& v)
{
int n =v.size() / 2;
@@ -210,6 +242,8 @@ void check_accuracy(double basef, double based, int s)
std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\n";
std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\n";
std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\n";
+ std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\n";
+ std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\n";
}
void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s)
@@ -228,11 +262,13 @@ void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s)
std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n";
std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n";
std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\t" << lapackNorm(vf.cast<long double>()) << "\t" << lapackNorm(vd.cast<long double>()) << "\n";
+ std::cout << "twopassNorm\t" << twopassNorm(vf) << "\t" << twopassNorm(vd) << "\t" << twopassNorm(vf.cast<long double>()) << "\t" << twopassNorm(vd.cast<long double>()) << "\n";
+ std::cout << "bl2passNorm\t" << bl2passNorm(vf) << "\t" << bl2passNorm(vd) << "\t" << bl2passNorm(vf.cast<long double>()) << "\t" << bl2passNorm(vd.cast<long double>()) << "\n";
}
int main(int argc, char** argv)
{
- int tries = 5;
+ int tries = 10;
int iters = 100000;
double y = 1.1345743233455785456788e12 * ei_random<double>();
VectorXf v = VectorXf::Ones(1024) * y;
@@ -240,33 +276,37 @@ int main(int argc, char** argv)
std::cerr << "Performance (out of cache):\n";
{
int iters = 1;
- VectorXf vf = VectorXf::Ones(1024*1024*32) * y;
- VectorXd vd = VectorXd::Ones(1024*1024*32) * y;
+ VectorXf vf = VectorXf::Random(1024*1024*32) * y;
+ VectorXd vd = VectorXd::Random(1024*1024*32) * y;
BENCH_PERF(sqsumNorm);
BENCH_PERF(blueNorm);
BENCH_PERF(pblueNorm);
BENCH_PERF(lapackNorm);
BENCH_PERF(hypotNorm);
+ BENCH_PERF(twopassNorm);
+ BENCH_PERF(bl2passNorm);
}
std::cerr << "\nPerformance (in cache):\n";
{
int iters = 100000;
- VectorXf vf = VectorXf::Ones(512) * y;
- VectorXd vd = VectorXd::Ones(512) * y;
+ VectorXf vf = VectorXf::Random(512) * y;
+ VectorXd vd = VectorXd::Random(512) * y;
BENCH_PERF(sqsumNorm);
BENCH_PERF(blueNorm);
BENCH_PERF(pblueNorm);
BENCH_PERF(lapackNorm);
BENCH_PERF(hypotNorm);
+ BENCH_PERF(twopassNorm);
+ BENCH_PERF(bl2passNorm);
}
-
+return 0;
int s = 10000;
double basef_ok = 1.1345743233455785456788e15;
double based_ok = 1.1345743233455785456788e95;
double basef_under = 1.1345743233455785456788e-27;
- double based_under = 1.1345743233455785456788e-315;
+ double based_under = 1.1345743233455785456788e-303;
double basef_over = 1.1345743233455785456788e+27;
double based_over = 1.1345743233455785456788e+302;
@@ -283,9 +323,16 @@ int main(int argc, char** argv)
check_accuracy(basef_over, based_over, s);
std::cerr << "\nVarying (over):\n";
- for (int k=0; k<5; ++k)
+ for (int k=0; k<1; ++k)
{
check_accuracy_var(20,27,190,302,s);
std::cout << "\n";
}
+
+ std::cerr << "\nVarying (under):\n";
+ for (int k=0; k<1; ++k)
+ {
+ check_accuracy_var(-27,20,-302,-190,s);
+ std::cout << "\n";
+ }
}