aboutsummaryrefslogtreecommitdiffhomepage
path: root/bench/bench_norm.cpp
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2009-07-16 14:20:36 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2009-07-16 14:20:36 +0200
commit525da6a464c897d0fe4e401a65851bcd7567fc5a (patch)
tree29567b1ed5d365576a094dc3919776d96d1aac1d /bench/bench_norm.cpp
parent65fc70b75039a5cdfc5df67f62d38b317196293b (diff)
bugfix in blueNorm
Diffstat (limited to 'bench/bench_norm.cpp')
-rw-r--r--bench/bench_norm.cpp126
1 files changed, 79 insertions, 47 deletions
diff --git a/bench/bench_norm.cpp b/bench/bench_norm.cpp
index 76c8c574d..e06d06417 100644
--- a/bench/bench_norm.cpp
+++ b/bench/bench_norm.cpp
@@ -1,3 +1,4 @@
+#include <typeinfo>
#include <Eigen/Core>
#include "BenchTimer.h"
using namespace Eigen;
@@ -58,18 +59,23 @@ EIGEN_DONT_INLINE typename T::Scalar divacNorm(T& v)
return ei_sqrt(v(0));
}
+#ifdef EIGEN_VECTORIZE
Packet4f ei_plt(const Packet4f& a, Packet4f& b) { return _mm_cmplt_ps(a,b); }
Packet2d ei_plt(const Packet2d& a, Packet2d& b) { return _mm_cmplt_pd(a,b); }
Packet4f ei_pandnot(const Packet4f& a, Packet4f& b) { return _mm_andnot_ps(a,b); }
Packet2d ei_pandnot(const Packet2d& a, Packet2d& b) { return _mm_andnot_pd(a,b); }
+#endif
template<typename T>
EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v)
{
+ #ifndef EIGEN_VECTORIZE
+ return v.blueNorm();
+ #else
typedef typename T::Scalar Scalar;
- static int nmax;
+ static int nmax = 0;
static Scalar b1, b2, s1m, s2m, overfl, rbig, relerr;
int n;
@@ -79,8 +85,8 @@ EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v)
Scalar abig, eps;
nbig = std::numeric_limits<int>::max(); // largest integer
- ibeta = NumTraits<Scalar>::Base; // base for floating-point numbers
- it = NumTraits<Scalar>::Mantissa; // number of base-beta digits in mantissa
+ ibeta = std::numeric_limits<Scalar>::radix; //NumTraits<Scalar>::Base; // base for floating-point numbers
+ it = std::numeric_limits<Scalar>::digits; //NumTraits<Scalar>::Mantissa; // number of base-beta digits in mantissa
iemin = std::numeric_limits<Scalar>::min_exponent; // minimum exponent
iemax = std::numeric_limits<Scalar>::max_exponent; // maximum exponent
rbig = std::numeric_limits<Scalar>::max(); // largest floating-point number
@@ -92,23 +98,23 @@ EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v)
ei_assert(false && "the algorithm cannot be guaranteed on this computer");
}
iexp = -((1-iemin)/2);
- b1 = bexp<Scalar>(ibeta, iexp); // lower boundary of midrange
+ b1 = std::pow(ibeta, iexp); // lower boundary of midrange
iexp = (iemax + 1 - it)/2;
- b2 = bexp<Scalar>(ibeta,iexp); // upper boundary of midrange
+ b2 = std::pow(ibeta,iexp); // upper boundary of midrange
iexp = (2-iemin)/2;
- s1m = bexp<Scalar>(ibeta,iexp); // scaling factor for lower range
+ s1m = std::pow(ibeta,iexp); // scaling factor for lower range
iexp = - ((iemax+it)/2);
- s2m = bexp<Scalar>(ibeta,iexp); // scaling factor for upper range
+ s2m = std::pow(ibeta,iexp); // scaling factor for upper range
overfl = rbig*s2m; // overfow boundary for abig
- eps = bexp<Scalar>(ibeta, 1-it);
+ eps = std::pow(ibeta, 1-it);
relerr = ei_sqrt(eps); // tolerance for neglecting asml
abig = 1.0/eps - 1.0;
if (Scalar(nbig)>abig) nmax = abig; // largest safe n
else nmax = nbig;
}
-
+
typedef typename ei_packet_traits<Scalar>::type Packet;
const int ps = ei_packet_traits<Scalar>::size;
Packet pasml = ei_pset1(Scalar(0));
@@ -173,6 +179,7 @@ EIGEN_DONT_INLINE typename T::Scalar pblueNorm(const T& v)
return abig;
else
return abig * ei_sqrt(Scalar(1) + ei_abs2(asml/abig));
+ #endif
}
#define BENCH_PERF(NRM) { \
@@ -196,7 +203,7 @@ void check_accuracy(double basef, double based, int s)
double yd = based * ei_abs(ei_random<double>());
VectorXf vf = VectorXf::Ones(s) * yf;
VectorXd vd = VectorXd::Ones(s) * yd;
-
+
std::cout << "reference\t" << ei_sqrt(double(s))*yf << "\t" << ei_sqrt(double(s))*yd << "\n";
std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\n";
std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\n";
@@ -205,55 +212,80 @@ void check_accuracy(double basef, double based, int s)
std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\n";
}
-int main(int argc, char** argv)
+void check_accuracy_var(int ef0, int ef1, int ed0, int ed1, int s)
+{
+ VectorXf vf(s);
+ VectorXd vd(s);
+ for (int i=0; i<s; ++i)
+ {
+ vf[i] = ei_abs(ei_random<double>()) * std::pow(double(10), ei_random<int>(ef0,ef1));
+ vd[i] = ei_abs(ei_random<double>()) * std::pow(double(10), ei_random<int>(ed0,ed1));
+ }
+
+ //std::cout << "reference\t" << ei_sqrt(double(s))*yf << "\t" << ei_sqrt(double(s))*yd << "\n";
+ std::cout << "sqsumNorm\t" << sqsumNorm(vf) << "\t" << sqsumNorm(vd) << "\t" << sqsumNorm(vf.cast<long double>()) << "\t" << sqsumNorm(vd.cast<long double>()) << "\n";
+ std::cout << "hypotNorm\t" << hypotNorm(vf) << "\t" << hypotNorm(vd) << "\t" << hypotNorm(vf.cast<long double>()) << "\t" << hypotNorm(vd.cast<long double>()) << "\n";
+ std::cout << "blueNorm\t" << blueNorm(vf) << "\t" << blueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n";
+ std::cout << "pblueNorm\t" << pblueNorm(vf) << "\t" << pblueNorm(vd) << "\t" << blueNorm(vf.cast<long double>()) << "\t" << blueNorm(vd.cast<long double>()) << "\n";
+ std::cout << "lapackNorm\t" << lapackNorm(vf) << "\t" << lapackNorm(vd) << "\t" << lapackNorm(vf.cast<long double>()) << "\t" << lapackNorm(vd.cast<long double>()) << "\n";
+}
+
+int main(int argc, char** argv)
{
int tries = 5;
int iters = 100000;
double y = 1.1345743233455785456788e12 * ei_random<double>();
VectorXf v = VectorXf::Ones(1024) * y;
-
-// std::cerr << "Performance (out of cache):\n";
-// {
-// int iters = 1;
-// VectorXf vf = VectorXf::Ones(1024*1024*32) * y;
-// VectorXd vd = VectorXd::Ones(1024*1024*32) * y;
-// BENCH_PERF(sqsumNorm);
-// BENCH_PERF(blueNorm);
-// BENCH_PERF(pblueNorm);
-// BENCH_PERF(lapackNorm);
-// BENCH_PERF(hypotNorm);
-// }
-//
-// std::cerr << "\nPerformance (in cache):\n";
-// {
-// int iters = 100000;
-// VectorXf vf = VectorXf::Ones(512) * y;
-// VectorXd vd = VectorXd::Ones(512) * y;
-// BENCH_PERF(sqsumNorm);
-// BENCH_PERF(blueNorm);
-// BENCH_PERF(pblueNorm);
-// BENCH_PERF(lapackNorm);
-// BENCH_PERF(hypotNorm);
-// }
-
+
+ std::cerr << "Performance (out of cache):\n";
+ {
+ int iters = 1;
+ VectorXf vf = VectorXf::Ones(1024*1024*32) * y;
+ VectorXd vd = VectorXd::Ones(1024*1024*32) * y;
+ BENCH_PERF(sqsumNorm);
+ BENCH_PERF(blueNorm);
+ BENCH_PERF(pblueNorm);
+ BENCH_PERF(lapackNorm);
+ BENCH_PERF(hypotNorm);
+ }
+
+ std::cerr << "\nPerformance (in cache):\n";
+ {
+ int iters = 100000;
+ VectorXf vf = VectorXf::Ones(512) * y;
+ VectorXd vd = VectorXd::Ones(512) * y;
+ BENCH_PERF(sqsumNorm);
+ BENCH_PERF(blueNorm);
+ BENCH_PERF(pblueNorm);
+ BENCH_PERF(lapackNorm);
+ BENCH_PERF(hypotNorm);
+ }
+
int s = 10000;
- double basef_ok = 1.1345743233455785456788e12;
- double based_ok = 1.1345743233455785456788e32;
-
- double basef_under = 1.1345743233455785456788e-23;
- double based_under = 1.1345743233455785456788e-180;
-
+ double basef_ok = 1.1345743233455785456788e15;
+ double based_ok = 1.1345743233455785456788e95;
+
+ double basef_under = 1.1345743233455785456788e-27;
+ double based_under = 1.1345743233455785456788e-315;
+
double basef_over = 1.1345743233455785456788e+27;
- double based_over = 1.1345743233455785456788e+185;
-
+ double based_over = 1.1345743233455785456788e+302;
+
std::cout.precision(20);
-
+
std::cerr << "\nNo under/overflow:\n";
check_accuracy(basef_ok, based_ok, s);
-
+
std::cerr << "\nUnderflow:\n";
check_accuracy(basef_under, based_under, 1);
-
+
std::cerr << "\nOverflow:\n";
check_accuracy(basef_over, based_over, s);
+
+ std::cerr << "\nVarying (over):\n";
+ for (int k=0; k<5; ++k)
+ {
+ check_accuracy_var(20,27,190,302,s);
+ std::cout << "\n";
+ }
}