aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2010-06-18 11:28:30 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2010-06-18 11:28:30 +0200
commitece48a645051a9984a78a3197027c9c861a0c702 (patch)
treec52c6400b2a839f62877c168c193fc024ccf68d6 /Eigen
parent22d07ec2e3324d09c7dff36c9642f0ed74f3e994 (diff)
split the Sparse module into multiple ones, and move non stable parts to unsupported/
(see the ML for details)
Diffstat (limited to 'Eigen')
-rw-r--r--Eigen/Sparse83
-rw-r--r--Eigen/src/Sparse/CholmodSupport.h246
-rw-r--r--Eigen/src/Sparse/MappedSparseMatrix.h12
-rw-r--r--Eigen/src/Sparse/RandomSetter.h340
-rw-r--r--Eigen/src/Sparse/SparseLDLT.h348
-rw-r--r--Eigen/src/Sparse/SparseLLT.h203
-rw-r--r--Eigen/src/Sparse/SparseLU.h162
-rw-r--r--Eigen/src/Sparse/SparseMatrixBase.h12
-rw-r--r--Eigen/src/Sparse/SparseUtil.h37
-rw-r--r--Eigen/src/Sparse/SuperLUSupport.h659
-rw-r--r--Eigen/src/Sparse/TaucsSupport.h219
-rw-r--r--Eigen/src/Sparse/UmfPackSupport.h289
12 files changed, 6 insertions, 2604 deletions
diff --git a/Eigen/Sparse b/Eigen/Sparse
index bca1c4ceb..864f194f4 100644
--- a/Eigen/Sparse
+++ b/Eigen/Sparse
@@ -11,64 +11,6 @@
#include <cstring>
#include <algorithm>
-#ifdef EIGEN_GOOGLEHASH_SUPPORT
- #include <google/dense_hash_map>
-#endif
-
-#ifdef EIGEN_CHOLMOD_SUPPORT
- extern "C" {
- #include <cholmod.h>
- }
-#endif
-
-#ifdef EIGEN_TAUCS_SUPPORT
- // taucs.h declares a lot of mess
- #define isnan
- #define finite
- #define isinf
- extern "C" {
- #include <taucs.h>
- }
- #undef isnan
- #undef finite
- #undef isinf
-
- #ifdef min
- #undef min
- #endif
- #ifdef max
- #undef max
- #endif
- #ifdef complex
- #undef complex
- #endif
-#endif
-
-#ifdef EIGEN_SUPERLU_SUPPORT
- typedef int int_t;
- #include <slu_Cnames.h>
- #include <supermatrix.h>
- #include <slu_util.h>
-
- namespace SuperLU_S {
- #include <slu_sdefs.h>
- }
- namespace SuperLU_D {
- #include <slu_ddefs.h>
- }
- namespace SuperLU_C {
- #include <slu_cdefs.h>
- }
- namespace SuperLU_Z {
- #include <slu_zdefs.h>
- }
- namespace Eigen { struct SluMatrix; }
-#endif
-
-#ifdef EIGEN_UMFPACK_SUPPORT
- #include <umfpack.h>
-#endif
-
namespace Eigen {
/** \defgroup Sparse_Module Sparse module
@@ -78,7 +20,7 @@ namespace Eigen {
* See the \ref TutorialSparse "Sparse tutorial"
*
* \code
- * #include <Eigen/QR>
+ * #include <Eigen/Sparse>
* \endcode
*/
@@ -89,13 +31,12 @@ struct Sparse {};
#include "src/Sparse/SparseMatrixBase.h"
#include "src/Sparse/CompressedStorage.h"
#include "src/Sparse/AmbiVector.h"
-#include "src/Sparse/RandomSetter.h"
-#include "src/Sparse/SparseBlock.h"
#include "src/Sparse/SparseMatrix.h"
#include "src/Sparse/DynamicSparseMatrix.h"
#include "src/Sparse/MappedSparseMatrix.h"
#include "src/Sparse/SparseVector.h"
#include "src/Sparse/CoreIterators.h"
+#include "src/Sparse/SparseBlock.h"
#include "src/Sparse/SparseTranspose.h"
#include "src/Sparse/SparseCwiseUnaryOp.h"
#include "src/Sparse/SparseCwiseBinaryOp.h"
@@ -108,31 +49,11 @@ struct Sparse {};
#include "src/Sparse/SparseTriangularView.h"
#include "src/Sparse/SparseSelfAdjointView.h"
#include "src/Sparse/TriangularSolver.h"
-#include "src/Sparse/SparseLLT.h"
-#include "src/Sparse/SparseLDLT.h"
-#include "src/Sparse/SparseLU.h"
#include "src/Sparse/SparseView.h"
-#ifdef EIGEN_CHOLMOD_SUPPORT
-# include "src/Sparse/CholmodSupport.h"
-#endif
-
-#ifdef EIGEN_TAUCS_SUPPORT
-# include "src/Sparse/TaucsSupport.h"
-#endif
-
-#ifdef EIGEN_SUPERLU_SUPPORT
-# include "src/Sparse/SuperLUSupport.h"
-#endif
-
-#ifdef EIGEN_UMFPACK_SUPPORT
-# include "src/Sparse/UmfPackSupport.h"
-#endif
-
} // namespace Eigen
#include "src/Core/util/EnableMSVCWarnings.h"
#endif // EIGEN_SPARSE_MODULE_H
-/* vim: set filetype=cpp et sw=2 ts=2 ai: */
diff --git a/Eigen/src/Sparse/CholmodSupport.h b/Eigen/src/Sparse/CholmodSupport.h
deleted file mode 100644
index a8d7a8fec..000000000
--- a/Eigen/src/Sparse/CholmodSupport.h
+++ /dev/null
@@ -1,246 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_CHOLMODSUPPORT_H
-#define EIGEN_CHOLMODSUPPORT_H
-
-template<typename Scalar, typename CholmodType>
-void ei_cholmod_configure_matrix(CholmodType& mat)
-{
- if (ei_is_same_type<Scalar,float>::ret)
- {
- mat.xtype = CHOLMOD_REAL;
- mat.dtype = CHOLMOD_SINGLE;
- }
- else if (ei_is_same_type<Scalar,double>::ret)
- {
- mat.xtype = CHOLMOD_REAL;
- mat.dtype = CHOLMOD_DOUBLE;
- }
- else if (ei_is_same_type<Scalar,std::complex<float> >::ret)
- {
- mat.xtype = CHOLMOD_COMPLEX;
- mat.dtype = CHOLMOD_SINGLE;
- }
- else if (ei_is_same_type<Scalar,std::complex<double> >::ret)
- {
- mat.xtype = CHOLMOD_COMPLEX;
- mat.dtype = CHOLMOD_DOUBLE;
- }
- else
- {
- ei_assert(false && "Scalar type not supported by CHOLMOD");
- }
-}
-
-template<typename Derived>
-cholmod_sparse SparseMatrixBase<Derived>::asCholmodMatrix()
-{
- typedef typename Derived::Scalar Scalar;
- cholmod_sparse res;
- res.nzmax = nonZeros();
- res.nrow = rows();;
- res.ncol = cols();
- res.p = derived()._outerIndexPtr();
- res.i = derived()._innerIndexPtr();
- res.x = derived()._valuePtr();
- res.xtype = CHOLMOD_REAL;
- res.itype = CHOLMOD_INT;
- res.sorted = 1;
- res.packed = 1;
- res.dtype = 0;
- res.stype = -1;
-
- ei_cholmod_configure_matrix<Scalar>(res);
-
-
- if (Derived::Flags & SelfAdjoint)
- {
- if (Derived::Flags & Upper)
- res.stype = 1;
- else if (Derived::Flags & Lower)
- res.stype = -1;
- else
- res.stype = 0;
- }
- else
- res.stype = -1; // by default we consider the lower part
-
- return res;
-}
-
-template<typename Derived>
-cholmod_dense ei_cholmod_map_eigen_to_dense(MatrixBase<Derived>& mat)
-{
- EIGEN_STATIC_ASSERT((ei_traits<Derived>::Flags&RowMajorBit)==0,THIS_METHOD_IS_ONLY_FOR_COLUMN_MAJOR_MATRICES);
- typedef typename Derived::Scalar Scalar;
-
- cholmod_dense res;
- res.nrow = mat.rows();
- res.ncol = mat.cols();
- res.nzmax = res.nrow * res.ncol;
- res.d = Derived::IsVectorAtCompileTime ? mat.derived().size() : mat.derived().outerStride();
- res.x = mat.derived().data();
- res.z = 0;
-
- ei_cholmod_configure_matrix<Scalar>(res);
-
- return res;
-}
-
-template<typename Scalar, int Flags, typename _Index>
-MappedSparseMatrix<Scalar,Flags,_Index>::MappedSparseMatrix(cholmod_sparse& cm)
-{
- m_innerSize = cm.nrow;
- m_outerSize = cm.ncol;
- m_outerIndex = reinterpret_cast<Index*>(cm.p);
- m_innerIndices = reinterpret_cast<Index*>(cm.i);
- m_values = reinterpret_cast<Scalar*>(cm.x);
- m_nnz = m_outerIndex[cm.ncol];
-}
-
-template<typename MatrixType>
-class SparseLLT<MatrixType,Cholmod> : public SparseLLT<MatrixType>
-{
- protected:
- typedef SparseLLT<MatrixType> Base;
- typedef typename Base::Scalar Scalar;
- typedef typename Base::RealScalar RealScalar;
- typedef typename Base::CholMatrixType CholMatrixType;
- typedef typename MatrixType::Index Index;
- using Base::MatrixLIsDirty;
- using Base::SupernodalFactorIsDirty;
- using Base::m_flags;
- using Base::m_matrix;
- using Base::m_status;
-
- public:
-
- SparseLLT(int flags = 0)
- : Base(flags), m_cholmodFactor(0)
- {
- cholmod_start(&m_cholmod);
- }
-
- SparseLLT(const MatrixType& matrix, int flags = 0)
- : Base(flags), m_cholmodFactor(0)
- {
- cholmod_start(&m_cholmod);
- compute(matrix);
- }
-
- ~SparseLLT()
- {
- if (m_cholmodFactor)
- cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
- cholmod_finish(&m_cholmod);
- }
-
- inline const CholMatrixType& matrixL() const;
-
- template<typename Derived>
- bool solveInPlace(MatrixBase<Derived> &b) const;
-
- void compute(const MatrixType& matrix);
-
- protected:
- mutable cholmod_common m_cholmod;
- cholmod_factor* m_cholmodFactor;
-};
-
-template<typename MatrixType>
-void SparseLLT<MatrixType,Cholmod>::compute(const MatrixType& a)
-{
- if (m_cholmodFactor)
- {
- cholmod_free_factor(&m_cholmodFactor, &m_cholmod);
- m_cholmodFactor = 0;
- }
-
- cholmod_sparse A = const_cast<MatrixType&>(a).asCholmodMatrix();
-// m_cholmod.supernodal = CHOLMOD_AUTO;
- // TODO
-// if (m_flags&IncompleteFactorization)
-// {
-// m_cholmod.nmethods = 1;
-// m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
-// m_cholmod.postorder = 0;
-// }
-// else
-// {
-// m_cholmod.nmethods = 1;
-// m_cholmod.method[0].ordering = CHOLMOD_NATURAL;
-// m_cholmod.postorder = 0;
-// }
-// m_cholmod.final_ll = 1;
- m_cholmodFactor = cholmod_analyze(&A, &m_cholmod);
- cholmod_factorize(&A, m_cholmodFactor, &m_cholmod);
-
- m_status = (m_status & ~SupernodalFactorIsDirty) | MatrixLIsDirty;
-}
-
-template<typename MatrixType>
-inline const typename SparseLLT<MatrixType,Cholmod>::CholMatrixType&
-SparseLLT<MatrixType,Cholmod>::matrixL() const
-{
- if (m_status & MatrixLIsDirty)
- {
- ei_assert(!(m_status & SupernodalFactorIsDirty));
-
- cholmod_sparse* cmRes = cholmod_factor_to_sparse(m_cholmodFactor, &m_cholmod);
- const_cast<typename Base::CholMatrixType&>(m_matrix) = MappedSparseMatrix<Scalar>(*cmRes);
- free(cmRes);
-
- m_status = (m_status & ~MatrixLIsDirty);
- }
- return m_matrix;
-}
-
-template<typename MatrixType>
-template<typename Derived>
-bool SparseLLT<MatrixType,Cholmod>::solveInPlace(MatrixBase<Derived> &b) const
-{
- const Index size = m_cholmodFactor->n;
- ei_assert(size==b.rows());
-
- // this uses Eigen's triangular sparse solver
-// if (m_status & MatrixLIsDirty)
-// matrixL();
-// Base::solveInPlace(b);
- // as long as our own triangular sparse solver is not fully optimal,
- // let's use CHOLMOD's one:
- cholmod_dense cdb = ei_cholmod_map_eigen_to_dense(b);
- //cholmod_dense* x = cholmod_solve(CHOLMOD_LDLt, m_cholmodFactor, &cdb, &m_cholmod);
- cholmod_dense* x = cholmod_solve(CHOLMOD_A, m_cholmodFactor, &cdb, &m_cholmod);
- if(!x)
- {
- //std::cerr << "Eigen: cholmod_solve failed\n";
- return false;
- }
- b = Matrix<typename Base::Scalar,Dynamic,1>::Map(reinterpret_cast<typename Base::Scalar*>(x->x),b.rows());
- cholmod_free_dense(&x, &m_cholmod);
- return true;
-}
-
-#endif // EIGEN_CHOLMODSUPPORT_H
diff --git a/Eigen/src/Sparse/MappedSparseMatrix.h b/Eigen/src/Sparse/MappedSparseMatrix.h
index 99aeeb106..6fc8adf32 100644
--- a/Eigen/src/Sparse/MappedSparseMatrix.h
+++ b/Eigen/src/Sparse/MappedSparseMatrix.h
@@ -119,18 +119,6 @@ class MappedSparseMatrix
m_innerIndices(innerIndexPtr), m_values(valuePtr)
{}
- #ifdef EIGEN_TAUCS_SUPPORT
- explicit MappedSparseMatrix(taucs_ccs_matrix& taucsMatrix);
- #endif
-
- #ifdef EIGEN_CHOLMOD_SUPPORT
- explicit MappedSparseMatrix(cholmod_sparse& cholmodMatrix);
- #endif
-
- #ifdef EIGEN_SUPERLU_SUPPORT
- explicit MappedSparseMatrix(SluMatrix& sluMatrix);
- #endif
-
/** Empty destructor */
inline ~MappedSparseMatrix() {}
};
diff --git a/Eigen/src/Sparse/RandomSetter.h b/Eigen/src/Sparse/RandomSetter.h
deleted file mode 100644
index 18777e23d..000000000
--- a/Eigen/src/Sparse/RandomSetter.h
+++ /dev/null
@@ -1,340 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_RANDOMSETTER_H
-#define EIGEN_RANDOMSETTER_H
-
-/** Represents a std::map
- *
- * \see RandomSetter
- */
-template<typename Scalar> struct StdMapTraits
-{
- typedef int KeyType;
- typedef std::map<KeyType,Scalar> Type;
- enum {
- IsSorted = 1
- };
-
- static void setInvalidKey(Type&, const KeyType&) {}
-};
-
-#ifdef EIGEN_UNORDERED_MAP_SUPPORT
-/** Represents a std::unordered_map
- *
- * To use it you need to both define EIGEN_UNORDERED_MAP_SUPPORT and include the unordered_map header file
- * yourself making sure that unordered_map is defined in the std namespace.
- *
- * For instance, with current version of gcc you can either enable C++0x standard (-std=c++0x) or do:
- * \code
- * #include <tr1/unordered_map>
- * #define EIGEN_UNORDERED_MAP_SUPPORT
- * namespace std {
- * using std::tr1::unordered_map;
- * }
- * \endcode
- *
- * \see RandomSetter
- */
-template<typename Scalar> struct StdUnorderedMapTraits
-{
- typedef int KeyType;
- typedef std::unordered_map<KeyType,Scalar> Type;
- enum {
- IsSorted = 0
- };
-
- static void setInvalidKey(Type&, const KeyType&) {}
-};
-#endif // EIGEN_UNORDERED_MAP_SUPPORT
-
-#ifdef _DENSE_HASH_MAP_H_
-/** Represents a google::dense_hash_map
- *
- * \see RandomSetter
- */
-template<typename Scalar> struct GoogleDenseHashMapTraits
-{
- typedef int KeyType;
- typedef google::dense_hash_map<KeyType,Scalar> Type;
- enum {
- IsSorted = 0
- };
-
- static void setInvalidKey(Type& map, const KeyType& k)
- { map.set_empty_key(k); }
-};
-#endif
-
-#ifdef _SPARSE_HASH_MAP_H_
-/** Represents a google::sparse_hash_map
- *
- * \see RandomSetter
- */
-template<typename Scalar> struct GoogleSparseHashMapTraits
-{
- typedef int KeyType;
- typedef google::sparse_hash_map<KeyType,Scalar> Type;
- enum {
- IsSorted = 0
- };
-
- static void setInvalidKey(Type&, const KeyType&) {}
-};
-#endif
-
-/** \class RandomSetter
- *
- * \brief The RandomSetter is a wrapper object allowing to set/update a sparse matrix with random access
- *
- * \param SparseMatrixType the type of the sparse matrix we are updating
- * \param MapTraits a traits class representing the map implementation used for the temporary sparse storage.
- * Its default value depends on the system.
- * \param OuterPacketBits defines the number of rows (or columns) manage by a single map object
- * as a power of two exponent.
- *
- * This class temporarily represents a sparse matrix object using a generic map implementation allowing for
- * efficient random access. The conversion from the compressed representation to a hash_map object is performed
- * in the RandomSetter constructor, while the sparse matrix is updated back at destruction time. This strategy
- * suggest the use of nested blocks as in this example:
- *
- * \code
- * SparseMatrix<double> m(rows,cols);
- * {
- * RandomSetter<SparseMatrix<double> > w(m);
- * // don't use m but w instead with read/write random access to the coefficients:
- * for(;;)
- * w(rand(),rand()) = rand;
- * }
- * // when w is deleted, the data are copied back to m
- * // and m is ready to use.
- * \endcode
- *
- * Since hash_map objects are not fully sorted, representing a full matrix as a single hash_map would
- * involve a big and costly sort to update the compressed matrix back. To overcome this issue, a RandomSetter
- * use multiple hash_map, each representing 2^OuterPacketBits columns or rows according to the storage order.
- * To reach optimal performance, this value should be adjusted according to the average number of nonzeros
- * per rows/columns.
- *
- * The possible values for the template parameter MapTraits are:
- * - \b StdMapTraits: corresponds to std::map. (does not perform very well)
- * - \b GnuHashMapTraits: corresponds to __gnu_cxx::hash_map (available only with GCC)
- * - \b GoogleDenseHashMapTraits: corresponds to google::dense_hash_map (best efficiency, reasonable memory consumption)
- * - \b GoogleSparseHashMapTraits: corresponds to google::sparse_hash_map (best memory consumption, relatively good performance)
- *
- * The default map implementation depends on the availability, and the preferred order is:
- * GoogleSparseHashMapTraits, GnuHashMapTraits, and finally StdMapTraits.
- *
- * For performance and memory consumption reasons it is highly recommended to use one of
- * the Google's hash_map implementation. To enable the support for them, you have two options:
- * - \#include <google/dense_hash_map> yourself \b before Eigen/Sparse header
- * - define EIGEN_GOOGLEHASH_SUPPORT
- * In the later case the inclusion of <google/dense_hash_map> is made for you.
- *
- * \see http://code.google.com/p/google-sparsehash/
- */
-template<typename SparseMatrixType,
- template <typename T> class MapTraits =
-#if defined _DENSE_HASH_MAP_H_
- GoogleDenseHashMapTraits
-#elif defined _HASH_MAP
- GnuHashMapTraits
-#else
- StdMapTraits
-#endif
- ,int OuterPacketBits = 6>
-class RandomSetter
-{
- typedef typename SparseMatrixType::Scalar Scalar;
- typedef typename SparseMatrixType::Index Index;
-
- struct ScalarWrapper
- {
- ScalarWrapper() : value(0) {}
- Scalar value;
- };
- typedef typename MapTraits<ScalarWrapper>::KeyType KeyType;
- typedef typename MapTraits<ScalarWrapper>::Type HashMapType;
- static const int OuterPacketMask = (1 << OuterPacketBits) - 1;
- enum {
- SwapStorage = 1 - MapTraits<ScalarWrapper>::IsSorted,
- TargetRowMajor = (SparseMatrixType::Flags & RowMajorBit) ? 1 : 0,
- SetterRowMajor = SwapStorage ? 1-TargetRowMajor : TargetRowMajor,
- IsUpper = SparseMatrixType::Flags & Upper,
- IsLower = SparseMatrixType::Flags & Lower
- };
-
- public:
-
- /** Constructs a random setter object from the sparse matrix \a target
- *
- * Note that the initial value of \a target are imported. If you want to re-set
- * a sparse matrix from scratch, then you must set it to zero first using the
- * setZero() function.
- */
- inline RandomSetter(SparseMatrixType& target)
- : mp_target(&target)
- {
- const Index outerSize = SwapStorage ? target.innerSize() : target.outerSize();
- const Index innerSize = SwapStorage ? target.outerSize() : target.innerSize();
- m_outerPackets = outerSize >> OuterPacketBits;
- if (outerSize&OuterPacketMask)
- m_outerPackets += 1;
- m_hashmaps = new HashMapType[m_outerPackets];
- // compute number of bits needed to store inner indices
- Index aux = innerSize - 1;
- m_keyBitsOffset = 0;
- while (aux)
- {
- ++m_keyBitsOffset;
- aux = aux >> 1;
- }
- KeyType ik = (1<<(OuterPacketBits+m_keyBitsOffset));
- for (Index k=0; k<m_outerPackets; ++k)
- MapTraits<ScalarWrapper>::setInvalidKey(m_hashmaps[k],ik);
-
- // insert current coeffs
- for (Index j=0; j<mp_target->outerSize(); ++j)
- for (typename SparseMatrixType::InnerIterator it(*mp_target,j); it; ++it)
- (*this)(TargetRowMajor?j:it.index(), TargetRowMajor?it.index():j) = it.value();
- }
-
- /** Destructor updating back the sparse matrix target */
- ~RandomSetter()
- {
- KeyType keyBitsMask = (1<<m_keyBitsOffset)-1;
- if (!SwapStorage) // also means the map is sorted
- {
- mp_target->setZero();
- mp_target->reserve(nonZeros());
- Index prevOuter = -1;
- for (Index k=0; k<m_outerPackets; ++k)
- {
- const Index outerOffset = (1<<OuterPacketBits) * k;
- typename HashMapType::iterator end = m_hashmaps[k].end();
- for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
- {
- const Index outer = (it->first >> m_keyBitsOffset) + outerOffset;
- const Index inner = it->first & keyBitsMask;
- if (prevOuter!=outer)
- {
- for (Index j=prevOuter+1;j<=outer;++j)
- mp_target->startVec(j);
- prevOuter = outer;
- }
- mp_target->insertBackByOuterInner(outer, inner) = it->second.value;
- }
- }
- mp_target->finalize();
- }
- else
- {
- VectorXi positions(mp_target->outerSize());
- positions.setZero();
- // pass 1
- for (Index k=0; k<m_outerPackets; ++k)
- {
- typename HashMapType::iterator end = m_hashmaps[k].end();
- for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
- {
- const Index outer = it->first & keyBitsMask;
- ++positions[outer];
- }
- }
- // prefix sum
- Index count = 0;
- for (Index j=0; j<mp_target->outerSize(); ++j)
- {
- Index tmp = positions[j];
- mp_target->_outerIndexPtr()[j] = count;
- positions[j] = count;
- count += tmp;
- }
- mp_target->_outerIndexPtr()[mp_target->outerSize()] = count;
- mp_target->resizeNonZeros(count);
- // pass 2
- for (Index k=0; k<m_outerPackets; ++k)
- {
- const Index outerOffset = (1<<OuterPacketBits) * k;
- typename HashMapType::iterator end = m_hashmaps[k].end();
- for (typename HashMapType::iterator it = m_hashmaps[k].begin(); it!=end; ++it)
- {
- const Index inner = (it->first >> m_keyBitsOffset) + outerOffset;
- const Index outer = it->first & keyBitsMask;
- // sorted insertion
- // Note that we have to deal with at most 2^OuterPacketBits unsorted coefficients,
- // moreover those 2^OuterPacketBits coeffs are likely to be sparse, an so only a
- // small fraction of them have to be sorted, whence the following simple procedure:
- Index posStart = mp_target->_outerIndexPtr()[outer];
- Index i = (positions[outer]++) - 1;
- while ( (i >= posStart) && (mp_target->_innerIndexPtr()[i] > inner) )
- {
- mp_target->_valuePtr()[i+1] = mp_target->_valuePtr()[i];
- mp_target->_innerIndexPtr()[i+1] = mp_target->_innerIndexPtr()[i];
- --i;
- }
- mp_target->_innerIndexPtr()[i+1] = inner;
- mp_target->_valuePtr()[i+1] = it->second.value;
- }
- }
- }
- delete[] m_hashmaps;
- }
-
- /** \returns a reference to the coefficient at given coordinates \a row, \a col */
- Scalar& operator() (Index row, Index col)
- {
- ei_assert(((!IsUpper) || (row<=col)) && "Invalid access to an upper triangular matrix");
- ei_assert(((!IsLower) || (col<=row)) && "Invalid access to an upper triangular matrix");
- const Index outer = SetterRowMajor ? row : col;
- const Index inner = SetterRowMajor ? col : row;
- const Index outerMajor = outer >> OuterPacketBits; // index of the packet/map
- const Index outerMinor = outer & OuterPacketMask; // index of the inner vector in the packet
- const KeyType key = (KeyType(outerMinor)<<m_keyBitsOffset) | inner;
- return m_hashmaps[outerMajor][key].value;
- }
-
- /** \returns the number of non zero coefficients
- *
- * \note According to the underlying map/hash_map implementation,
- * this function might be quite expensive.
- */
- Index nonZeros() const
- {
- Index nz = 0;
- for (Index k=0; k<m_outerPackets; ++k)
- nz += static_cast<Index>(m_hashmaps[k].size());
- return nz;
- }
-
-
- protected:
-
- HashMapType* m_hashmaps;
- SparseMatrixType* mp_target;
- Index m_outerPackets;
- unsigned char m_keyBitsOffset;
-};
-
-#endif // EIGEN_RANDOMSETTER_H
diff --git a/Eigen/src/Sparse/SparseLDLT.h b/Eigen/src/Sparse/SparseLDLT.h
deleted file mode 100644
index a6785d0af..000000000
--- a/Eigen/src/Sparse/SparseLDLT.h
+++ /dev/null
@@ -1,348 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-/*
-
-NOTE: the _symbolic, and _numeric functions has been adapted from
- the LDL library:
-
-LDL Copyright (c) 2005 by Timothy A. Davis. All Rights Reserved.
-
-LDL License:
-
- Your use or distribution of LDL or any modified version of
- LDL implies that you agree to this License.
-
- This library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
-
- This library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
-
- You should have received a copy of the GNU Lesser General Public
- License along with this library; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
- USA
-
- Permission is hereby granted to use or copy this program under the
- terms of the GNU LGPL, provided that the Copyright, this License,
- and the Availability of the original version is retained on all copies.
- User documentation of any code that uses this code or any modified
- version of this code must cite the Copyright, this License, the
- Availability note, and "Used by permission." Permission to modify
- the code and to distribute modified code is granted, provided the
- Copyright, this License, and the Availability note are retained,
- and a notice that the code was modified is included.
- */
-
-#ifndef EIGEN_SPARSELDLT_H
-#define EIGEN_SPARSELDLT_H
-
-/** \ingroup Sparse_Module
- *
- * \class SparseLDLT
- *
- * \brief LDLT Cholesky decomposition of a sparse matrix and associated features
- *
- * \param MatrixType the type of the matrix of which we are computing the LDLT Cholesky decomposition
- *
- * \warning the upper triangular part has to be specified. The rest of the matrix is not used. The input matrix must be column major.
- *
- * \sa class LDLT, class LDLT
- */
-template<typename MatrixType, int Backend = DefaultBackend>
-class SparseLDLT
-{
- protected:
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef SparseMatrix<Scalar> CholMatrixType;
- typedef Matrix<Scalar,MatrixType::ColsAtCompileTime,1> VectorType;
-
- enum {
- SupernodalFactorIsDirty = 0x10000,
- MatrixLIsDirty = 0x20000
- };
-
- public:
-
- /** Creates a dummy LDLT factorization object with flags \a flags. */
- SparseLDLT(int flags = 0)
- : m_flags(flags), m_status(0)
- {
- ei_assert((MatrixType::Flags&RowMajorBit)==0);
- m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
- }
-
- /** Creates a LDLT object and compute the respective factorization of \a matrix using
- * flags \a flags. */
- SparseLDLT(const MatrixType& matrix, int flags = 0)
- : m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0)
- {
- ei_assert((MatrixType::Flags&RowMajorBit)==0);
- m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
- compute(matrix);
- }
-
- /** Sets the relative threshold value used to prune zero coefficients during the decomposition.
- *
- * Setting a value greater than zero speeds up computation, and yields to an imcomplete
- * factorization with fewer non zero coefficients. Such approximate factors are especially
- * useful to initialize an iterative solver.
- *
- * \warning if precision is greater that zero, the LDLT factorization is not guaranteed to succeed
- * even if the matrix is positive definite.
- *
- * Note that the exact meaning of this parameter might depends on the actual
- * backend. Moreover, not all backends support this feature.
- *
- * \sa precision() */
- void setPrecision(RealScalar v) { m_precision = v; }
-
- /** \returns the current precision.
- *
- * \sa setPrecision() */
- RealScalar precision() const { return m_precision; }
-
- /** Sets the flags. Possible values are:
- * - CompleteFactorization
- * - IncompleteFactorization
- * - MemoryEfficient (hint to use the memory most efficient method offered by the backend)
- * - SupernodalMultifrontal (implies a complete factorization if supported by the backend,
- * overloads the MemoryEfficient flags)
- * - SupernodalLeftLooking (implies a complete factorization if supported by the backend,
- * overloads the MemoryEfficient flags)
- *
- * \sa flags() */
- void settags(int f) { m_flags = f; }
- /** \returns the current flags */
- int flags() const { return m_flags; }
-
- /** Computes/re-computes the LDLT factorization */
- void compute(const MatrixType& matrix);
-
- /** Perform a symbolic factorization */
- void _symbolic(const MatrixType& matrix);
- /** Perform the actual factorization using the previously
- * computed symbolic factorization */
- bool _numeric(const MatrixType& matrix);
-
- /** \returns the lower triangular matrix L */
- inline const CholMatrixType& matrixL(void) const { return m_matrix; }
-
- /** \returns the coefficients of the diagonal matrix D */
- inline VectorType vectorD(void) const { return m_diag; }
-
- template<typename Derived>
- bool solveInPlace(MatrixBase<Derived> &b) const;
-
- /** \returns true if the factorization succeeded */
- inline bool succeeded(void) const { return m_succeeded; }
-
- protected:
- CholMatrixType m_matrix;
- VectorType m_diag;
- VectorXi m_parent; // elimination tree
- VectorXi m_nonZerosPerCol;
-// VectorXi m_w; // workspace
- RealScalar m_precision;
- int m_flags;
- mutable int m_status;
- bool m_succeeded;
-};
-
-/** Computes / recomputes the LDLT decomposition of matrix \a a
- * using the default algorithm.
- */
-template<typename MatrixType, int Backend>
-void SparseLDLT<MatrixType,Backend>::compute(const MatrixType& a)
-{
- _symbolic(a);
- m_succeeded = _numeric(a);
-}
-
-template<typename MatrixType, int Backend>
-void SparseLDLT<MatrixType,Backend>::_symbolic(const MatrixType& a)
-{
- assert(a.rows()==a.cols());
- const Index size = a.rows();
- m_matrix.resize(size, size);
- m_parent.resize(size);
- m_nonZerosPerCol.resize(size);
- Index * tags = ei_aligned_stack_new(Index, size);
-
- const Index* Ap = a._outerIndexPtr();
- const Index* Ai = a._innerIndexPtr();
- Index* Lp = m_matrix._outerIndexPtr();
- const Index* P = 0;
- Index* Pinv = 0;
-
- if (P)
- {
- /* If P is present then compute Pinv, the inverse of P */
- for (Index k = 0; k < size; ++k)
- Pinv[P[k]] = k;
- }
- for (Index k = 0; k < size; ++k)
- {
- /* L(k,:) pattern: all nodes reachable in etree from nz in A(0:k-1,k) */
- m_parent[k] = -1; /* parent of k is not yet known */
- tags[k] = k; /* mark node k as visited */
- m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
- Index kk = P ? P[k] : k; /* kth original, or permuted, column */
- Index p2 = Ap[kk+1];
- for (Index p = Ap[kk]; p < p2; ++p)
- {
- /* A (i,k) is nonzero (original or permuted A) */
- Index i = Pinv ? Pinv[Ai[p]] : Ai[p];
- if (i < k)
- {
- /* follow path from i to root of etree, stop at flagged node */
- for (; tags[i] != k; i = m_parent[i])
- {
- /* find parent of i if not yet determined */
- if (m_parent[i] == -1)
- m_parent[i] = k;
- ++m_nonZerosPerCol[i]; /* L (k,i) is nonzero */
- tags[i] = k; /* mark i as visited */
- }
- }
- }
- }
- /* construct Lp index array from m_nonZerosPerCol column counts */
- Lp[0] = 0;
- for (Index k = 0; k < size; ++k)
- Lp[k+1] = Lp[k] + m_nonZerosPerCol[k];
-
- m_matrix.resizeNonZeros(Lp[size]);
- ei_aligned_stack_delete(Index, tags, size);
-}
-
-template<typename MatrixType, int Backend>
-bool SparseLDLT<MatrixType,Backend>::_numeric(const MatrixType& a)
-{
- assert(a.rows()==a.cols());
- const Index size = a.rows();
- assert(m_parent.size()==size);
- assert(m_nonZerosPerCol.size()==size);
-
- const Index* Ap = a._outerIndexPtr();
- const Index* Ai = a._innerIndexPtr();
- const Scalar* Ax = a._valuePtr();
- const Index* Lp = m_matrix._outerIndexPtr();
- Index* Li = m_matrix._innerIndexPtr();
- Scalar* Lx = m_matrix._valuePtr();
- m_diag.resize(size);
-
- Scalar * y = ei_aligned_stack_new(Scalar, size);
- Index * pattern = ei_aligned_stack_new(Index, size);
- Index * tags = ei_aligned_stack_new(Index, size);
-
- const Index* P = 0;
- const Index* Pinv = 0;
- bool ok = true;
-
- for (Index k = 0; k < size; ++k)
- {
- /* compute nonzero pattern of kth row of L, in topological order */
- y[k] = 0.0; /* Y(0:k) is now all zero */
- Index top = size; /* stack for pattern is empty */
- tags[k] = k; /* mark node k as visited */
- m_nonZerosPerCol[k] = 0; /* count of nonzeros in column k of L */
- Index kk = (P) ? (P[k]) : (k); /* kth original, or permuted, column */
- Index p2 = Ap[kk+1];
- for (Index p = Ap[kk]; p < p2; ++p)
- {
- Index i = Pinv ? Pinv[Ai[p]] : Ai[p]; /* get A(i,k) */
- if (i <= k)
- {
- y[i] += ei_conj(Ax[p]); /* scatter A(i,k) into Y (sum duplicates) */
- Index len;
- for (len = 0; tags[i] != k; i = m_parent[i])
- {
- pattern[len++] = i; /* L(k,i) is nonzero */
- tags[i] = k; /* mark i as visited */
- }
- while (len > 0)
- pattern[--top] = pattern[--len];
- }
- }
-
- /* compute numerical values kth row of L (a sparse triangular solve) */
- m_diag[k] = y[k]; /* get D(k,k) and clear Y(k) */
- y[k] = 0.0;
- for (; top < size; ++top)
- {
- Index i = pattern[top]; /* pattern[top:n-1] is pattern of L(:,k) */
- Scalar yi = (y[i]); /* get and clear Y(i) */
- y[i] = 0.0;
- Index p2 = Lp[i] + m_nonZerosPerCol[i];
- Index p;
- for (p = Lp[i]; p < p2; ++p)
- y[Li[p]] -= ei_conj(Lx[p]) * (yi);
- Scalar l_ki = yi / m_diag[i]; /* the nonzero entry L(k,i) */
- m_diag[k] -= l_ki * ei_conj(yi);
- Li[p] = k; /* store L(k,i) in column form of L */
- Lx[p] = (l_ki);
- ++m_nonZerosPerCol[i]; /* increment count of nonzeros in col i */
- }
- if (m_diag[k] == 0.0)
- {
- ok = false; /* failure, D(k,k) is zero */
- break;
- }
- }
-
- ei_aligned_stack_delete(Scalar, y, size);
- ei_aligned_stack_delete(Index, pattern, size);
- ei_aligned_stack_delete(Index, tags, size);
-
- return ok; /* success, diagonal of D is all nonzero */
-}
-
-/** Computes b = L^-T D^-1 L^-1 b */
-template<typename MatrixType, int Backend>
-template<typename Derived>
-bool SparseLDLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
-{
- const Index size = m_matrix.rows();
- ei_assert(size==b.rows());
- if (!m_succeeded)
- return false;
-
- if (m_matrix.nonZeros()>0) // otherwise L==I
- m_matrix.template triangularView<UnitLower>().solveInPlace(b);
- b = b.cwiseQuotient(m_diag);
- if (m_matrix.nonZeros()>0) // otherwise L==I
- m_matrix.adjoint().template triangularView<UnitUpper>().solveInPlace(b);
-
- return true;
-}
-
-#endif // EIGEN_SPARSELDLT_H
diff --git a/Eigen/src/Sparse/SparseLLT.h b/Eigen/src/Sparse/SparseLLT.h
deleted file mode 100644
index 47d58f8e6..000000000
--- a/Eigen/src/Sparse/SparseLLT.h
+++ /dev/null
@@ -1,203 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_SPARSELLT_H
-#define EIGEN_SPARSELLT_H
-
-/** \ingroup Sparse_Module
- *
- * \class SparseLLT
- *
- * \brief LLT Cholesky decomposition of a sparse matrix and associated features
- *
- * \param MatrixType the type of the matrix of which we are computing the LLT Cholesky decomposition
- *
- * \sa class LLT, class LDLT
- */
-template<typename MatrixType, int Backend = DefaultBackend>
-class SparseLLT
-{
- protected:
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::Index Index;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef SparseMatrix<Scalar> CholMatrixType;
-
- enum {
- SupernodalFactorIsDirty = 0x10000,
- MatrixLIsDirty = 0x20000
- };
-
- public:
-
- /** Creates a dummy LLT factorization object with flags \a flags. */
- SparseLLT(int flags = 0)
- : m_flags(flags), m_status(0)
- {
- m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
- }
-
- /** Creates a LLT object and compute the respective factorization of \a matrix using
- * flags \a flags. */
- SparseLLT(const MatrixType& matrix, int flags = 0)
- : m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0)
- {
- m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
- compute(matrix);
- }
-
- /** Sets the relative threshold value used to prune zero coefficients during the decomposition.
- *
- * Setting a value greater than zero speeds up computation, and yields to an imcomplete
- * factorization with fewer non zero coefficients. Such approximate factors are especially
- * useful to initialize an iterative solver.
- *
- * \warning if precision is greater that zero, the LLT factorization is not guaranteed to succeed
- * even if the matrix is positive definite.
- *
- * Note that the exact meaning of this parameter might depends on the actual
- * backend. Moreover, not all backends support this feature.
- *
- * \sa precision() */
- void setPrecision(RealScalar v) { m_precision = v; }
-
- /** \returns the current precision.
- *
- * \sa setPrecision() */
- RealScalar precision() const { return m_precision; }
-
- /** Sets the flags. Possible values are:
- * - CompleteFactorization
- * - IncompleteFactorization
- * - MemoryEfficient (hint to use the memory most efficient method offered by the backend)
- * - SupernodalMultifrontal (implies a complete factorization if supported by the backend,
- * overloads the MemoryEfficient flags)
- * - SupernodalLeftLooking (implies a complete factorization if supported by the backend,
- * overloads the MemoryEfficient flags)
- *
- * \sa flags() */
- void setFlags(int f) { m_flags = f; }
- /** \returns the current flags */
- int flags() const { return m_flags; }
-
- /** Computes/re-computes the LLT factorization */
- void compute(const MatrixType& matrix);
-
- /** \returns the lower triangular matrix L */
- inline const CholMatrixType& matrixL(void) const { return m_matrix; }
-
- template<typename Derived>
- bool solveInPlace(MatrixBase<Derived> &b) const;
-
- /** \returns true if the factorization succeeded */
- inline bool succeeded(void) const { return m_succeeded; }
-
- protected:
- CholMatrixType m_matrix;
- RealScalar m_precision;
- int m_flags;
- mutable int m_status;
- bool m_succeeded;
-};
-
-/** Computes / recomputes the LLT decomposition of matrix \a a
- * using the default algorithm.
- */
-template<typename MatrixType, int Backend>
-void SparseLLT<MatrixType,Backend>::compute(const MatrixType& a)
-{
- assert(a.rows()==a.cols());
- const Index size = a.rows();
- m_matrix.resize(size, size);
-
- // allocate a temporary vector for accumulations
- AmbiVector<Scalar,Index> tempVector(size);
- RealScalar density = a.nonZeros()/RealScalar(size*size);
-
- // TODO estimate the number of non zeros
- m_matrix.setZero();
- m_matrix.reserve(a.nonZeros()*2);
- for (Index j = 0; j < size; ++j)
- {
- Scalar x = ei_real(a.coeff(j,j));
-
- // TODO better estimate of the density !
- tempVector.init(density>0.001? IsDense : IsSparse);
- tempVector.setBounds(j+1,size);
- tempVector.setZero();
- // init with current matrix a
- {
- typename MatrixType::InnerIterator it(a,j);
- ei_assert(it.index()==j &&
- "matrix must has non zero diagonal entries and only the lower triangular part must be stored");
- ++it; // skip diagonal element
- for (; it; ++it)
- tempVector.coeffRef(it.index()) = it.value();
- }
- for (Index k=0; k<j+1; ++k)
- {
- typename CholMatrixType::InnerIterator it(m_matrix, k);
- while (it && it.index()<j)
- ++it;
- if (it && it.index()==j)
- {
- Scalar y = it.value();
- x -= ei_abs2(y);
- ++it; // skip j-th element, and process remaining column coefficients
- tempVector.restart();
- for (; it; ++it)
- {
- tempVector.coeffRef(it.index()) -= it.value() * y;
- }
- }
- }
- // copy the temporary vector to the respective m_matrix.col()
- // while scaling the result by 1/real(x)
- RealScalar rx = ei_sqrt(ei_real(x));
- m_matrix.insert(j,j) = rx; // FIXME use insertBack
- Scalar y = Scalar(1)/rx;
- for (typename AmbiVector<Scalar,Index>::Iterator it(tempVector, m_precision*rx); it; ++it)
- {
- // FIXME use insertBack
- m_matrix.insert(it.index(), j) = it.value() * y;
- }
- }
- m_matrix.finalize();
-}
-
-/** Computes b = L^-T L^-1 b */
-template<typename MatrixType, int Backend>
-template<typename Derived>
-bool SparseLLT<MatrixType, Backend>::solveInPlace(MatrixBase<Derived> &b) const
-{
- const Index size = m_matrix.rows();
- ei_assert(size==b.rows());
-
- m_matrix.template triangularView<Lower>().solveInPlace(b);
- m_matrix.adjoint().template triangularView<Upper>().solveInPlace(b);
-
- return true;
-}
-
-#endif // EIGEN_SPARSELLT_H
diff --git a/Eigen/src/Sparse/SparseLU.h b/Eigen/src/Sparse/SparseLU.h
deleted file mode 100644
index 0211b78e2..000000000
--- a/Eigen/src/Sparse/SparseLU.h
+++ /dev/null
@@ -1,162 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_SPARSELU_H
-#define EIGEN_SPARSELU_H
-
-enum {
- SvNoTrans = 0,
- SvTranspose = 1,
- SvAdjoint = 2
-};
-
-/** \ingroup Sparse_Module
- *
- * \class SparseLU
- *
- * \brief LU decomposition of a sparse matrix and associated features
- *
- * \param MatrixType the type of the matrix of which we are computing the LU factorization
- *
- * \sa class FullPivLU, class SparseLLT
- */
-template<typename MatrixType, int Backend = DefaultBackend>
-class SparseLU
-{
- protected:
- typedef typename MatrixType::Scalar Scalar;
- typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
- typedef SparseMatrix<Scalar> LUMatrixType;
-
- enum {
- MatrixLUIsDirty = 0x10000
- };
-
- public:
-
- /** Creates a dummy LU factorization object with flags \a flags. */
- SparseLU(int flags = 0)
- : m_flags(flags), m_status(0)
- {
- m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
- }
-
- /** Creates a LU object and compute the respective factorization of \a matrix using
- * flags \a flags. */
- SparseLU(const MatrixType& matrix, int flags = 0)
- : /*m_matrix(matrix.rows(), matrix.cols()),*/ m_flags(flags), m_status(0)
- {
- m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
- compute(matrix);
- }
-
- /** Sets the relative threshold value used to prune zero coefficients during the decomposition.
- *
- * Setting a value greater than zero speeds up computation, and yields to an imcomplete
- * factorization with fewer non zero coefficients. Such approximate factors are especially
- * useful to initialize an iterative solver.
- *
- * Note that the exact meaning of this parameter might depends on the actual
- * backend. Moreover, not all backends support this feature.
- *
- * \sa precision() */
- void setPrecision(RealScalar v) { m_precision = v; }
-
- /** \returns the current precision.
- *
- * \sa setPrecision() */
- RealScalar precision() const { return m_precision; }
-
- /** Sets the flags. Possible values are:
- * - CompleteFactorization
- * - IncompleteFactorization
- * - MemoryEfficient
- * - one of the ordering methods
- * - etc...
- *
- * \sa flags() */
- void setFlags(int f) { m_flags = f; }
- /** \returns the current flags */
- int flags() const { return m_flags; }
-
- void setOrderingMethod(int m)
- {
- ei_assert( (m&~OrderingMask) == 0 && m!=0 && "invalid ordering method");
- m_flags = m_flags&~OrderingMask | m&OrderingMask;
- }
-
- int orderingMethod() const
- {
- return m_flags&OrderingMask;
- }
-
- /** Computes/re-computes the LU factorization */
- void compute(const MatrixType& matrix);
-
- /** \returns the lower triangular matrix L */
- //inline const MatrixType& matrixL() const { return m_matrixL; }
-
- /** \returns the upper triangular matrix U */
- //inline const MatrixType& matrixU() const { return m_matrixU; }
-
- template<typename BDerived, typename XDerived>
- bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x,
- const int transposed = SvNoTrans) const;
-
- /** \returns true if the factorization succeeded */
- inline bool succeeded(void) const { return m_succeeded; }
-
- protected:
- RealScalar m_precision;
- int m_flags;
- mutable int m_status;
- bool m_succeeded;
-};
-
-/** Computes / recomputes the LU decomposition of matrix \a a
- * using the default algorithm.
- */
-template<typename MatrixType, int Backend>
-void SparseLU<MatrixType,Backend>::compute(const MatrixType& )
-{
- ei_assert(false && "not implemented yet");
-}
-
-/** Computes *x = U^-1 L^-1 b
- *
- * If \a transpose is set to SvTranspose or SvAdjoint, the solution
- * of the transposed/adjoint system is computed instead.
- *
- * Not all backends implement the solution of the transposed or
- * adjoint system.
- */
-template<typename MatrixType, int Backend>
-template<typename BDerived, typename XDerived>
-bool SparseLU<MatrixType,Backend>::solve(const MatrixBase<BDerived> &, MatrixBase<XDerived>* , const int ) const
-{
- ei_assert(false && "not implemented yet");
- return false;
-}
-
-#endif // EIGEN_SPARSELU_H
diff --git a/Eigen/src/Sparse/SparseMatrixBase.h b/Eigen/src/Sparse/SparseMatrixBase.h
index bde8868d5..3ec893119 100644
--- a/Eigen/src/Sparse/SparseMatrixBase.h
+++ b/Eigen/src/Sparse/SparseMatrixBase.h
@@ -676,18 +676,6 @@ template<typename Derived> class SparseMatrixBase : public EigenBase<Derived>
// return res;
// }
- #ifdef EIGEN_TAUCS_SUPPORT
- taucs_ccs_matrix asTaucsMatrix();
- #endif
-
- #ifdef EIGEN_CHOLMOD_SUPPORT
- cholmod_sparse asCholmodMatrix();
- #endif
-
- #ifdef EIGEN_SUPERLU_SUPPORT
- SluMatrix asSluMatrix();
- #endif
-
protected:
bool m_isRValue;
diff --git a/Eigen/src/Sparse/SparseUtil.h b/Eigen/src/Sparse/SparseUtil.h
index deaf70bc8..423a5ff40 100644
--- a/Eigen/src/Sparse/SparseUtil.h
+++ b/Eigen/src/Sparse/SparseUtil.h
@@ -75,34 +75,10 @@ EIGEN_SPARSE_INHERIT_SCALAR_ASSIGNMENT_OPERATOR(Derived, /=)
#define EIGEN_SPARSE_PUBLIC_INTERFACE(Derived) \
_EIGEN_SPARSE_PUBLIC_INTERFACE(Derived, Eigen::SparseMatrixBase<Derived>)
-enum SparseBackend {
- DefaultBackend,
- Taucs,
- Cholmod,
- SuperLU,
- UmfPack
-};
-
-// solver flags
-enum {
- CompleteFactorization = 0x0000, // the default
- IncompleteFactorization = 0x0001,
- MemoryEfficient = 0x0002,
-
- // For LLT Cholesky:
- SupernodalMultifrontal = 0x0010,
- SupernodalLeftLooking = 0x0020,
-
- // Ordering methods:
- NaturalOrdering = 0x0100, // the default
- MinimumDegree_AT_PLUS_A = 0x0200,
- MinimumDegree_ATA = 0x0300,
- ColApproxMinimumDegree = 0x0400,
- Metis = 0x0500,
- Scotch = 0x0600,
- Chaco = 0x0700,
- OrderingMask = 0x0f00
-};
+const int CoherentAccessPattern = 0x1;
+const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern;
+const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern;
+const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern;
template<typename Derived> class SparseMatrixBase;
template<typename _Scalar, int _Flags = 0, typename _Index = int> class SparseMatrix;
@@ -126,11 +102,6 @@ template<typename Lhs, typename Rhs,
template<typename Lhs, typename Rhs> struct SparseProductReturnType;
-const int CoherentAccessPattern = 0x1;
-const int InnerRandomAccessPattern = 0x2 | CoherentAccessPattern;
-const int OuterRandomAccessPattern = 0x4 | CoherentAccessPattern;
-const int RandomAccessPattern = 0x8 | OuterRandomAccessPattern | InnerRandomAccessPattern;
-
template<typename T> struct ei_eval<T,Sparse>
{
typedef typename ei_traits<T>::Scalar _Scalar;
diff --git a/Eigen/src/Sparse/SuperLUSupport.h b/Eigen/src/Sparse/SuperLUSupport.h
deleted file mode 100644
index d93f69df8..000000000
--- a/Eigen/src/Sparse/SuperLUSupport.h
+++ /dev/null
@@ -1,659 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_SUPERLUSUPPORT_H
-#define EIGEN_SUPERLUSUPPORT_H
-
-// declaration of gssvx taken from GMM++
-#define DECL_GSSVX(NAMESPACE,FNAME,FLOATTYPE,KEYTYPE) \
- inline float SuperLU_gssvx(superlu_options_t *options, SuperMatrix *A, \
- int *perm_c, int *perm_r, int *etree, char *equed, \
- FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \
- SuperMatrix *U, void *work, int lwork, \
- SuperMatrix *B, SuperMatrix *X, \
- FLOATTYPE *recip_pivot_growth, \
- FLOATTYPE *rcond, FLOATTYPE *ferr, FLOATTYPE *berr, \
- SuperLUStat_t *stats, int *info, KEYTYPE) { \
- using namespace NAMESPACE; \
- mem_usage_t mem_usage; \
- NAMESPACE::FNAME(options, A, perm_c, perm_r, etree, equed, R, C, L, \
- U, work, lwork, B, X, recip_pivot_growth, rcond, \
- ferr, berr, &mem_usage, stats, info); \
- return mem_usage.for_lu; /* bytes used by the factor storage */ \
- }
-
-DECL_GSSVX(SuperLU_S,sgssvx,float,float)
-DECL_GSSVX(SuperLU_C,cgssvx,float,std::complex<float>)
-DECL_GSSVX(SuperLU_D,dgssvx,double,double)
-DECL_GSSVX(SuperLU_Z,zgssvx,double,std::complex<double>)
-
-#ifdef MILU_ALPHA
-#define EIGEN_SUPERLU_HAS_ILU
-#endif
-
-#ifdef EIGEN_SUPERLU_HAS_ILU
-
-// similarly for the incomplete factorization using gsisx
-#define DECL_GSISX(NAMESPACE,FNAME,FLOATTYPE,KEYTYPE) \
- inline float SuperLU_gsisx(superlu_options_t *options, SuperMatrix *A, \
- int *perm_c, int *perm_r, int *etree, char *equed, \
- FLOATTYPE *R, FLOATTYPE *C, SuperMatrix *L, \
- SuperMatrix *U, void *work, int lwork, \
- SuperMatrix *B, SuperMatrix *X, \
- FLOATTYPE *recip_pivot_growth, \
- FLOATTYPE *rcond, \
- SuperLUStat_t *stats, int *info, KEYTYPE) { \
- using namespace NAMESPACE; \
- mem_usage_t mem_usage; \
- NAMESPACE::FNAME(options, A, perm_c, perm_r, etree, equed, R, C, L, \
- U, work, lwork, B, X, recip_pivot_growth, rcond, \
- &mem_usage, stats, info); \
- return mem_usage.for_lu; /* bytes used by the factor storage */ \
- }
-
-DECL_GSISX(SuperLU_S,sgsisx,float,float)
-DECL_GSISX(SuperLU_C,cgsisx,float,std::complex<float>)
-DECL_GSISX(SuperLU_D,dgsisx,double,double)
-DECL_GSISX(SuperLU_Z,zgsisx,double,std::complex<double>)
-
-#endif
-
-template<typename MatrixType>
-struct SluMatrixMapHelper;
-
-/** \internal
- *
- * A wrapper class for SuperLU matrices. It supports only compressed sparse matrices
- * and dense matrices. Supernodal and other fancy format are not supported by this wrapper.
- *
- * This wrapper class mainly aims to avoids the need of dynamic allocation of the storage structure.
- */
-struct SluMatrix : SuperMatrix
-{
- SluMatrix()
- {
- Store = &storage;
- }
-
- SluMatrix(const SluMatrix& other)
- : SuperMatrix(other)
- {
- Store = &storage;
- storage = other.storage;
- }
-
- SluMatrix& operator=(const SluMatrix& other)
- {
- SuperMatrix::operator=(static_cast<const SuperMatrix&>(other));
- Store = &storage;
- storage = other.storage;
- return *this;
- }
-
- struct
- {
- union {int nnz;int lda;};
- void *values;
- int *innerInd;
- int *outerInd;
- } storage;
-
- void setStorageType(Stype_t t)
- {
- Stype = t;
- if (t==SLU_NC || t==SLU_NR || t==SLU_DN)
- Store = &storage;
- else
- {
- ei_assert(false && "storage type not supported");
- Store = 0;
- }
- }
-
- template<typename Scalar>
- void setScalarType()
- {
- if (ei_is_same_type<Scalar,float>::ret)
- Dtype = SLU_S;
- else if (ei_is_same_type<Scalar,double>::ret)
- Dtype = SLU_D;
- else if (ei_is_same_type<Scalar,std::complex<float> >::ret)
- Dtype = SLU_C;
- else if (ei_is_same_type<Scalar,std::complex<double> >::ret)
- Dtype = SLU_Z;
- else
- {
- ei_assert(false && "Scalar type not supported by SuperLU");
- }
- }
-
- template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols>
- static SluMatrix Map(Matrix<Scalar,Rows,Cols,Options,MRows,MCols>& mat)
- {
- typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType;
- ei_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU");
- SluMatrix res;
- res.setStorageType(SLU_DN);
- res.setScalarType<Scalar>();
- res.Mtype = SLU_GE;
-
- res.nrow = mat.rows();
- res.ncol = mat.cols();
-
- res.storage.lda = MatrixType::IsVectorAtCompileTime ? mat.size() : mat.outerStride();
- res.storage.values = mat.data();
- return res;
- }
-
- template<typename MatrixType>
- static SluMatrix Map(SparseMatrixBase<MatrixType>& mat)
- {
- SluMatrix res;
- if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
- {
- res.setStorageType(SLU_NR);
- res.nrow = mat.cols();
- res.ncol = mat.rows();
- }
- else
- {
- res.setStorageType(SLU_NC);
- res.nrow = mat.rows();
- res.ncol = mat.cols();
- }
-
- res.Mtype = SLU_GE;
-
- res.storage.nnz = mat.nonZeros();
- res.storage.values = mat.derived()._valuePtr();
- res.storage.innerInd = mat.derived()._innerIndexPtr();
- res.storage.outerInd = mat.derived()._outerIndexPtr();
-
- res.setScalarType<typename MatrixType::Scalar>();
-
- // FIXME the following is not very accurate
- if (MatrixType::Flags & Upper)
- res.Mtype = SLU_TRU;
- if (MatrixType::Flags & Lower)
- res.Mtype = SLU_TRL;
- if (MatrixType::Flags & SelfAdjoint)
- ei_assert(false && "SelfAdjoint matrix shape not supported by SuperLU");
- return res;
- }
-};
-
-template<typename Scalar, int Rows, int Cols, int Options, int MRows, int MCols>
-struct SluMatrixMapHelper<Matrix<Scalar,Rows,Cols,Options,MRows,MCols> >
-{
- typedef Matrix<Scalar,Rows,Cols,Options,MRows,MCols> MatrixType;
- static void run(MatrixType& mat, SluMatrix& res)
- {
- ei_assert( ((Options&RowMajor)!=RowMajor) && "row-major dense matrices is not supported by SuperLU");
- res.setStorageType(SLU_DN);
- res.setScalarType<Scalar>();
- res.Mtype = SLU_GE;
-
- res.nrow = mat.rows();
- res.ncol = mat.cols();
-
- res.storage.lda = mat.outerStride();
- res.storage.values = mat.data();
- }
-};
-
-template<typename Derived>
-struct SluMatrixMapHelper<SparseMatrixBase<Derived> >
-{
- typedef Derived MatrixType;
- static void run(MatrixType& mat, SluMatrix& res)
- {
- if ((MatrixType::Flags&RowMajorBit)==RowMajorBit)
- {
- res.setStorageType(SLU_NR);
- res.nrow = mat.cols();
- res.ncol = mat.rows();
- }
- else
- {
- res.setStorageType(SLU_NC);
- res.nrow = mat.rows();
- res.ncol = mat.cols();
- }
-
- res.Mtype = SLU_GE;
-
- res.storage.nnz = mat.nonZeros();
- res.storage.values = mat._valuePtr();
- res.storage.innerInd = mat._innerIndexPtr();
- res.storage.outerInd = mat._outerIndexPtr();
-
- res.setScalarType<typename MatrixType::Scalar>();
-
- // FIXME the following is not very accurate
- if (MatrixType::Flags & Upper)
- res.Mtype = SLU_TRU;
- if (MatrixType::Flags & Lower)
- res.Mtype = SLU_TRL;
- if (MatrixType::Flags & SelfAdjoint)
- ei_assert(false && "SelfAdjoint matrix shape not supported by SuperLU");
- }
-};
-
-template<typename Derived>
-SluMatrix SparseMatrixBase<Derived>::asSluMatrix()
-{
- return SluMatrix::Map(derived());
-}
-
-/** View a Super LU matrix as an Eigen expression */
-template<typename Scalar, int Flags, typename _Index>
-MappedSparseMatrix<Scalar,Flags,_Index>::MappedSparseMatrix(SluMatrix& sluMat)
-{
- if ((Flags&RowMajorBit)==RowMajorBit)
- {
- assert(sluMat.Stype == SLU_NR);
- m_innerSize = sluMat.ncol;
- m_outerSize = sluMat.nrow;
- }
- else
- {
- assert(sluMat.Stype == SLU_NC);
- m_innerSize = sluMat.nrow;
- m_outerSize = sluMat.ncol;
- }
- m_outerIndex = sluMat.storage.outerInd;
- m_innerIndices = sluMat.storage.innerInd;
- m_values = reinterpret_cast<Scalar*>(sluMat.storage.values);
- m_nnz = sluMat.storage.outerInd[m_outerSize];
-}
-
-template<typename MatrixType>
-class SparseLU<MatrixType,SuperLU> : public SparseLU<MatrixType>
-{
- protected:
- typedef SparseLU<MatrixType> Base;
- typedef typename Base::Scalar Scalar;
- typedef typename Base::RealScalar RealScalar;
- typedef Matrix<Scalar,Dynamic,1> Vector;
- typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
- typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
- typedef SparseMatrix<Scalar,Lower|UnitDiag> LMatrixType;
- typedef SparseMatrix<Scalar,Upper> UMatrixType;
- using Base::m_flags;
- using Base::m_status;
-
- public:
-
- SparseLU(int flags = NaturalOrdering)
- : Base(flags)
- {
- }
-
- SparseLU(const MatrixType& matrix, int flags = NaturalOrdering)
- : Base(flags)
- {
- compute(matrix);
- }
-
- ~SparseLU()
- {
- Destroy_SuperNode_Matrix(&m_sluL);
- Destroy_CompCol_Matrix(&m_sluU);
- }
-
- inline const LMatrixType& matrixL() const
- {
- if (m_extractedDataAreDirty) extractData();
- return m_l;
- }
-
- inline const UMatrixType& matrixU() const
- {
- if (m_extractedDataAreDirty) extractData();
- return m_u;
- }
-
- inline const IntColVectorType& permutationP() const
- {
- if (m_extractedDataAreDirty) extractData();
- return m_p;
- }
-
- inline const IntRowVectorType& permutationQ() const
- {
- if (m_extractedDataAreDirty) extractData();
- return m_q;
- }
-
- Scalar determinant() const;
-
- template<typename BDerived, typename XDerived>
- bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x, const int transposed = SvNoTrans) const;
-
- void compute(const MatrixType& matrix);
-
- protected:
-
- void extractData() const;
-
- protected:
- // cached data to reduce reallocation, etc.
- mutable LMatrixType m_l;
- mutable UMatrixType m_u;
- mutable IntColVectorType m_p;
- mutable IntRowVectorType m_q;
-
- mutable SparseMatrix<Scalar> m_matrix;
- mutable SluMatrix m_sluA;
- mutable SuperMatrix m_sluL, m_sluU;
- mutable SluMatrix m_sluB, m_sluX;
- mutable SuperLUStat_t m_sluStat;
- mutable superlu_options_t m_sluOptions;
- mutable std::vector<int> m_sluEtree;
- mutable std::vector<RealScalar> m_sluRscale, m_sluCscale;
- mutable std::vector<RealScalar> m_sluFerr, m_sluBerr;
- mutable char m_sluEqued;
- mutable bool m_extractedDataAreDirty;
-};
-
-template<typename MatrixType>
-void SparseLU<MatrixType,SuperLU>::compute(const MatrixType& a)
-{
- const int size = a.rows();
- m_matrix = a;
-
- set_default_options(&m_sluOptions);
- m_sluOptions.ColPerm = NATURAL;
- m_sluOptions.PrintStat = NO;
- m_sluOptions.ConditionNumber = NO;
- m_sluOptions.Trans = NOTRANS;
- // m_sluOptions.Equil = NO;
-
- switch (Base::orderingMethod())
- {
- case NaturalOrdering : m_sluOptions.ColPerm = NATURAL; break;
- case MinimumDegree_AT_PLUS_A : m_sluOptions.ColPerm = MMD_AT_PLUS_A; break;
- case MinimumDegree_ATA : m_sluOptions.ColPerm = MMD_ATA; break;
- case ColApproxMinimumDegree : m_sluOptions.ColPerm = COLAMD; break;
- default:
- //std::cerr << "Eigen: ordering method \"" << Base::orderingMethod() << "\" not supported by the SuperLU backend\n";
- m_sluOptions.ColPerm = NATURAL;
- };
-
- m_sluA = m_matrix.asSluMatrix();
- memset(&m_sluL,0,sizeof m_sluL);
- memset(&m_sluU,0,sizeof m_sluU);
- //m_sluEqued = 'B';
- int info = 0;
-
- m_p.resize(size);
- m_q.resize(size);
- m_sluRscale.resize(size);
- m_sluCscale.resize(size);
- m_sluEtree.resize(size);
-
- RealScalar recip_pivot_gross, rcond;
- RealScalar ferr, berr;
-
- // set empty B and X
- m_sluB.setStorageType(SLU_DN);
- m_sluB.setScalarType<Scalar>();
- m_sluB.Mtype = SLU_GE;
- m_sluB.storage.values = 0;
- m_sluB.nrow = m_sluB.ncol = 0;
- m_sluB.storage.lda = size;
- m_sluX = m_sluB;
-
- StatInit(&m_sluStat);
- if (m_flags&IncompleteFactorization)
- {
- #ifdef EIGEN_SUPERLU_HAS_ILU
- ilu_set_default_options(&m_sluOptions);
-
- // no attempt to preserve column sum
- m_sluOptions.ILU_MILU = SILU;
-
- // only basic ILU(k) support -- no direct control over memory consumption
- // better to use ILU_DropRule = DROP_BASIC | DROP_AREA
- // and set ILU_FillFactor to max memory growth
- m_sluOptions.ILU_DropRule = DROP_BASIC;
- m_sluOptions.ILU_DropTol = Base::m_precision;
-
- SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
- &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
- &m_sluL, &m_sluU,
- NULL, 0,
- &m_sluB, &m_sluX,
- &recip_pivot_gross, &rcond,
- &m_sluStat, &info, Scalar());
- #else
- //std::cerr << "Incomplete factorization is only available in SuperLU v4\n";
- Base::m_succeeded = false;
- return;
- #endif
- }
- else
- {
- SuperLU_gssvx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
- &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
- &m_sluL, &m_sluU,
- NULL, 0,
- &m_sluB, &m_sluX,
- &recip_pivot_gross, &rcond,
- &ferr, &berr,
- &m_sluStat, &info, Scalar());
- }
- StatFree(&m_sluStat);
-
- m_extractedDataAreDirty = true;
-
- // FIXME how to better check for errors ???
- Base::m_succeeded = (info == 0);
-}
-
-template<typename MatrixType>
-template<typename BDerived,typename XDerived>
-bool SparseLU<MatrixType,SuperLU>::solve(const MatrixBase<BDerived> &b,
- MatrixBase<XDerived> *x, const int transposed) const
-{
- const int size = m_matrix.rows();
- const int rhsCols = b.cols();
- ei_assert(size==b.rows());
-
- switch (transposed) {
- case SvNoTrans : m_sluOptions.Trans = NOTRANS; break;
- case SvTranspose : m_sluOptions.Trans = TRANS; break;
- case SvAdjoint : m_sluOptions.Trans = CONJ; break;
- default:
- //std::cerr << "Eigen: transposition option \"" << transposed << "\" not supported by the SuperLU backend\n";
- m_sluOptions.Trans = NOTRANS;
- }
-
- m_sluOptions.Fact = FACTORED;
- m_sluOptions.IterRefine = NOREFINE;
-
- m_sluFerr.resize(rhsCols);
- m_sluBerr.resize(rhsCols);
- m_sluB = SluMatrix::Map(b.const_cast_derived());
- m_sluX = SluMatrix::Map(x->derived());
-
- StatInit(&m_sluStat);
- int info = 0;
- RealScalar recip_pivot_gross, rcond;
-
- if (m_flags&IncompleteFactorization)
- {
- #ifdef EIGEN_SUPERLU_HAS_ILU
- SuperLU_gsisx(&m_sluOptions, &m_sluA, m_q.data(), m_p.data(), &m_sluEtree[0],
- &m_sluEqued, &m_sluRscale[0], &m_sluCscale[0],
- &m_sluL, &m_sluU,
- NULL, 0,
- &m_sluB, &m_sluX,
- &recip_pivot_gross, &rcond,
- &m_sluStat, &info, Scalar());
- #else
- //std::cerr << "Incomplete factorization is only available in SuperLU v4\n";
- return false;
- #endif
- }
- else
- {
- SuperLU_gssvx(
- &m_sluOptions, &m_sluA,
- m_q.data(), m_p.data(),
- &m_sluEtree[0], &m_sluEqued,
- &m_sluRscale[0], &m_sluCscale[0],
- &m_sluL, &m_sluU,
- NULL, 0,
- &m_sluB, &m_sluX,
- &recip_pivot_gross, &rcond,
- &m_sluFerr[0], &m_sluBerr[0],
- &m_sluStat, &info, Scalar());
- }
- StatFree(&m_sluStat);
-
- // reset to previous state
- m_sluOptions.Trans = NOTRANS;
- return info==0;
-}
-
-//
-// the code of this extractData() function has been adapted from the SuperLU's Matlab support code,
-//
-// Copyright (c) 1994 by Xerox Corporation. All rights reserved.
-//
-// THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY
-// EXPRESSED OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
-//
-template<typename MatrixType>
-void SparseLU<MatrixType,SuperLU>::extractData() const
-{
- if (m_extractedDataAreDirty)
- {
- int upper;
- int fsupc, istart, nsupr;
- int lastl = 0, lastu = 0;
- SCformat *Lstore = static_cast<SCformat*>(m_sluL.Store);
- NCformat *Ustore = static_cast<NCformat*>(m_sluU.Store);
- Scalar *SNptr;
-
- const int size = m_matrix.rows();
- m_l.resize(size,size);
- m_l.resizeNonZeros(Lstore->nnz);
- m_u.resize(size,size);
- m_u.resizeNonZeros(Ustore->nnz);
-
- int* Lcol = m_l._outerIndexPtr();
- int* Lrow = m_l._innerIndexPtr();
- Scalar* Lval = m_l._valuePtr();
-
- int* Ucol = m_u._outerIndexPtr();
- int* Urow = m_u._innerIndexPtr();
- Scalar* Uval = m_u._valuePtr();
-
- Ucol[0] = 0;
- Ucol[0] = 0;
-
- /* for each supernode */
- for (int k = 0; k <= Lstore->nsuper; ++k)
- {
- fsupc = L_FST_SUPC(k);
- istart = L_SUB_START(fsupc);
- nsupr = L_SUB_START(fsupc+1) - istart;
- upper = 1;
-
- /* for each column in the supernode */
- for (int j = fsupc; j < L_FST_SUPC(k+1); ++j)
- {
- SNptr = &((Scalar*)Lstore->nzval)[L_NZ_START(j)];
-
- /* Extract U */
- for (int i = U_NZ_START(j); i < U_NZ_START(j+1); ++i)
- {
- Uval[lastu] = ((Scalar*)Ustore->nzval)[i];
- /* Matlab doesn't like explicit zero. */
- if (Uval[lastu] != 0.0)
- Urow[lastu++] = U_SUB(i);
- }
- for (int i = 0; i < upper; ++i)
- {
- /* upper triangle in the supernode */
- Uval[lastu] = SNptr[i];
- /* Matlab doesn't like explicit zero. */
- if (Uval[lastu] != 0.0)
- Urow[lastu++] = L_SUB(istart+i);
- }
- Ucol[j+1] = lastu;
-
- /* Extract L */
- Lval[lastl] = 1.0; /* unit diagonal */
- Lrow[lastl++] = L_SUB(istart + upper - 1);
- for (int i = upper; i < nsupr; ++i)
- {
- Lval[lastl] = SNptr[i];
- /* Matlab doesn't like explicit zero. */
- if (Lval[lastl] != 0.0)
- Lrow[lastl++] = L_SUB(istart+i);
- }
- Lcol[j+1] = lastl;
-
- ++upper;
- } /* for j ... */
-
- } /* for k ... */
-
- // squeeze the matrices :
- m_l.resizeNonZeros(lastl);
- m_u.resizeNonZeros(lastu);
-
- m_extractedDataAreDirty = false;
- }
-}
-
-template<typename MatrixType>
-typename SparseLU<MatrixType,SuperLU>::Scalar SparseLU<MatrixType,SuperLU>::determinant() const
-{
- if (m_extractedDataAreDirty)
- extractData();
-
- // TODO this code could be moved to the default/base backend
- // FIXME perhaps we have to take into account the scale factors m_sluRscale and m_sluCscale ???
- Scalar det = Scalar(1);
- for (int j=0; j<m_u.cols(); ++j)
- {
- if (m_u._outerIndexPtr()[j+1]-m_u._outerIndexPtr()[j] > 0)
- {
- int lastId = m_u._outerIndexPtr()[j+1]-1;
- ei_assert(m_u._innerIndexPtr()[lastId]<=j);
- if (m_u._innerIndexPtr()[lastId]==j)
- {
- det *= m_u._valuePtr()[lastId];
- }
- }
- // std::cout << m_sluRscale[j] << " " << m_sluCscale[j] << " ";
- }
- return det;
-}
-
-#endif // EIGEN_SUPERLUSUPPORT_H
diff --git a/Eigen/src/Sparse/TaucsSupport.h b/Eigen/src/Sparse/TaucsSupport.h
deleted file mode 100644
index c189e0127..000000000
--- a/Eigen/src/Sparse/TaucsSupport.h
+++ /dev/null
@@ -1,219 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_TAUCSSUPPORT_H
-#define EIGEN_TAUCSSUPPORT_H
-
-template<typename Derived>
-taucs_ccs_matrix SparseMatrixBase<Derived>::asTaucsMatrix()
-{
- taucs_ccs_matrix res;
- res.n = cols();
- res.m = rows();
- res.flags = 0;
- res.colptr = derived()._outerIndexPtr();
- res.rowind = derived()._innerIndexPtr();
- res.values.v = derived()._valuePtr();
- if (ei_is_same_type<Scalar,int>::ret)
- res.flags |= TAUCS_INT;
- else if (ei_is_same_type<Scalar,float>::ret)
- res.flags |= TAUCS_SINGLE;
- else if (ei_is_same_type<Scalar,double>::ret)
- res.flags |= TAUCS_DOUBLE;
- else if (ei_is_same_type<Scalar,std::complex<float> >::ret)
- res.flags |= TAUCS_SCOMPLEX;
- else if (ei_is_same_type<Scalar,std::complex<double> >::ret)
- res.flags |= TAUCS_DCOMPLEX;
- else
- {
- ei_assert(false && "Scalar type not supported by TAUCS");
- }
-
- // FIXME 1) shapes are not in the Flags and 2) it seems Taucs ignores these flags anyway and only accept lower symmetric matrices
- if (Flags & Upper)
- res.flags |= TAUCS_UPPER;
- if (Flags & Lower)
- res.flags |= TAUCS_LOWER;
- if (Flags & SelfAdjoint)
- res.flags |= (NumTraits<Scalar>::IsComplex ? TAUCS_HERMITIAN : TAUCS_SYMMETRIC);
- else if ((Flags & Upper) || (Flags & Lower))
- res.flags |= TAUCS_TRIANGULAR;
-
- return res;
-}
-
-template<typename Scalar, int Flags, typename _Index>
-MappedSparseMatrix<Scalar,Flags,_Index>::MappedSparseMatrix(taucs_ccs_matrix& taucsMat)
-{
- m_innerSize = taucsMat.m;
- m_outerSize = taucsMat.n;
- m_outerIndex = taucsMat.colptr;
- m_innerIndices = taucsMat.rowind;
- m_values = reinterpret_cast<Scalar*>(taucsMat.values.v);
- m_nnz = taucsMat.colptr[taucsMat.n];
-}
-
-template<typename MatrixType>
-class SparseLLT<MatrixType,Taucs> : public SparseLLT<MatrixType>
-{
- protected:
- typedef SparseLLT<MatrixType> Base;
- typedef typename Base::Scalar Scalar;
- typedef typename Base::RealScalar RealScalar;
- typedef typename Base::CholMatrixType CholMatrixType;
- using Base::MatrixLIsDirty;
- using Base::SupernodalFactorIsDirty;
- using Base::m_flags;
- using Base::m_matrix;
- using Base::m_status;
- using Base::m_succeeded;
-
- public:
-
- SparseLLT(int flags = SupernodalMultifrontal)
- : Base(flags), m_taucsSupernodalFactor(0)
- {
- }
-
- SparseLLT(const MatrixType& matrix, int flags = SupernodalMultifrontal)
- : Base(flags), m_taucsSupernodalFactor(0)
- {
- compute(matrix);
- }
-
- ~SparseLLT()
- {
- if (m_taucsSupernodalFactor)
- taucs_supernodal_factor_free(m_taucsSupernodalFactor);
- }
-
- inline const CholMatrixType& matrixL() const;
-
- template<typename Derived>
- void solveInPlace(MatrixBase<Derived> &b) const;
-
- void compute(const MatrixType& matrix);
-
- protected:
- void* m_taucsSupernodalFactor;
-};
-
-template<typename MatrixType>
-void SparseLLT<MatrixType,Taucs>::compute(const MatrixType& a)
-{
- if (m_taucsSupernodalFactor)
- {
- taucs_supernodal_factor_free(m_taucsSupernodalFactor);
- m_taucsSupernodalFactor = 0;
- }
-
- taucs_ccs_matrix taucsMatA = const_cast<MatrixType&>(a).asTaucsMatrix();
-
- if (m_flags & IncompleteFactorization)
- {
- taucs_ccs_matrix* taucsRes = taucs_ccs_factor_llt(&taucsMatA, Base::m_precision, 0);
- if(!taucsRes)
- {
- m_succeeded = false;
- return;
- }
- // the matrix returned by Taucs is not necessarily sorted,
- // so let's copy it in two steps
- DynamicSparseMatrix<Scalar,RowMajor> tmp = MappedSparseMatrix<Scalar>(*taucsRes);
- m_matrix = tmp;
- free(taucsRes);
- m_status = (m_status & ~(CompleteFactorization|MatrixLIsDirty))
- | IncompleteFactorization
- | SupernodalFactorIsDirty;
- }
- else
- {
- if ( (m_flags & SupernodalLeftLooking)
- || ((!(m_flags & SupernodalMultifrontal)) && (m_flags & MemoryEfficient)) )
- {
- m_taucsSupernodalFactor = taucs_ccs_factor_llt_ll(&taucsMatA);
- }
- else
- {
- // use the faster Multifrontal routine
- m_taucsSupernodalFactor = taucs_ccs_factor_llt_mf(&taucsMatA);
- }
- m_status = (m_status & ~IncompleteFactorization) | CompleteFactorization | MatrixLIsDirty;
- }
- m_succeeded = true;
-}
-
-template<typename MatrixType>
-inline const typename SparseLLT<MatrixType,Taucs>::CholMatrixType&
-SparseLLT<MatrixType,Taucs>::matrixL() const
-{
- if (m_status & MatrixLIsDirty)
- {
- ei_assert(!(m_status & SupernodalFactorIsDirty));
-
- taucs_ccs_matrix* taucsL = taucs_supernodal_factor_to_ccs(m_taucsSupernodalFactor);
-
- // the matrix returned by Taucs is not necessarily sorted,
- // so let's copy it in two steps
- DynamicSparseMatrix<Scalar,RowMajor> tmp = MappedSparseMatrix<Scalar>(*taucsL);
- const_cast<typename Base::CholMatrixType&>(m_matrix) = tmp;
- free(taucsL);
- m_status = (m_status & ~MatrixLIsDirty);
- }
- return m_matrix;
-}
-
-template<typename MatrixType>
-template<typename Derived>
-void SparseLLT<MatrixType,Taucs>::solveInPlace(MatrixBase<Derived> &b) const
-{
- bool inputIsCompatibleWithTaucs = (Derived::Flags&RowMajorBit)==0;
-
- if (!inputIsCompatibleWithTaucs)
- {
- matrixL();
- Base::solveInPlace(b);
- }
- else if (m_flags & IncompleteFactorization)
- {
- taucs_ccs_matrix taucsLLT = const_cast<typename Base::CholMatrixType&>(m_matrix).asTaucsMatrix();
- typename ei_plain_matrix_type<Derived>::type x(b.rows());
- for (int j=0; j<b.cols(); ++j)
- {
- taucs_ccs_solve_llt(&taucsLLT,x.data(),&b.col(j).coeffRef(0));
- b.col(j) = x;
- }
- }
- else
- {
- typename ei_plain_matrix_type<Derived>::type x(b.rows());
- for (int j=0; j<b.cols(); ++j)
- {
- taucs_supernodal_solve_llt(m_taucsSupernodalFactor,x.data(),&b.col(j).coeffRef(0));
- b.col(j) = x;
- }
- }
-}
-
-#endif // EIGEN_TAUCSSUPPORT_H
diff --git a/Eigen/src/Sparse/UmfPackSupport.h b/Eigen/src/Sparse/UmfPackSupport.h
deleted file mode 100644
index 950624758..000000000
--- a/Eigen/src/Sparse/UmfPackSupport.h
+++ /dev/null
@@ -1,289 +0,0 @@
-// This file is part of Eigen, a lightweight C++ template library
-// for linear algebra.
-//
-// Copyright (C) 2008-2009 Gael Guennebaud <g.gael@free.fr>
-//
-// Eigen is free software; you can redistribute it and/or
-// modify it under the terms of the GNU Lesser General Public
-// License as published by the Free Software Foundation; either
-// version 3 of the License, or (at your option) any later version.
-//
-// Alternatively, you can redistribute it and/or
-// modify it under the terms of the GNU General Public License as
-// published by the Free Software Foundation; either version 2 of
-// the License, or (at your option) any later version.
-//
-// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
-// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
-// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
-// GNU General Public License for more details.
-//
-// You should have received a copy of the GNU Lesser General Public
-// License and a copy of the GNU General Public License along with
-// Eigen. If not, see <http://www.gnu.org/licenses/>.
-
-#ifndef EIGEN_UMFPACKSUPPORT_H
-#define EIGEN_UMFPACKSUPPORT_H
-
-/* TODO extract L, extract U, compute det, etc... */
-
-// generic double/complex<double> wrapper functions:
-
-inline void umfpack_free_numeric(void **Numeric, double)
-{ umfpack_di_free_numeric(Numeric); }
-
-inline void umfpack_free_numeric(void **Numeric, std::complex<double>)
-{ umfpack_zi_free_numeric(Numeric); }
-
-inline void umfpack_free_symbolic(void **Symbolic, double)
-{ umfpack_di_free_symbolic(Symbolic); }
-
-inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>)
-{ umfpack_zi_free_symbolic(Symbolic); }
-
-inline int umfpack_symbolic(int n_row,int n_col,
- const int Ap[], const int Ai[], const double Ax[], void **Symbolic,
- const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
-{
- return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info);
-}
-
-inline int umfpack_symbolic(int n_row,int n_col,
- const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic,
- const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO])
-{
- return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&Ax[0].real(),0,Symbolic,Control,Info);
-}
-
-inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[],
- void *Symbolic, void **Numeric,
- const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
-{
- return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info);
-}
-
-inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[],
- void *Symbolic, void **Numeric,
- const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO])
-{
- return umfpack_zi_numeric(Ap,Ai,&Ax[0].real(),0,Symbolic,Numeric,Control,Info);
-}
-
-inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[],
- double X[], const double B[], void *Numeric,
- const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
-{
- return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info);
-}
-
-inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[],
- std::complex<double> X[], const std::complex<double> B[], void *Numeric,
- const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO])
-{
- return umfpack_zi_solve(sys,Ap,Ai,&Ax[0].real(),0,&X[0].real(),0,&B[0].real(),0,Numeric,Control,Info);
-}
-
-inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double)
-{
- return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
-}
-
-inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>)
-{
- return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric);
-}
-
-inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[],
- int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric)
-{
- return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric);
-}
-
-inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[],
- int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric)
-{
- return umfpack_zi_get_numeric(Lp,Lj,Lx?&Lx[0].real():0,0,Up,Ui,Ux?&Ux[0].real():0,0,P,Q,
- Dx?&Dx[0].real():0,0,do_recip,Rs,Numeric);
-}
-
-inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
-{
- return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info);
-}
-
-inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO])
-{
- return umfpack_zi_get_determinant(&Mx->real(),0,Ex,NumericHandle,User_Info);
-}
-
-
-template<typename MatrixType>
-class SparseLU<MatrixType,UmfPack> : public SparseLU<MatrixType>
-{
- protected:
- typedef SparseLU<MatrixType> Base;
- typedef typename Base::Scalar Scalar;
- typedef typename Base::RealScalar RealScalar;
- typedef Matrix<Scalar,Dynamic,1> Vector;
- typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType;
- typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType;
- typedef SparseMatrix<Scalar,Lower|UnitDiag> LMatrixType;
- typedef SparseMatrix<Scalar,Upper> UMatrixType;
- using Base::m_flags;
- using Base::m_status;
-
- public:
-
- SparseLU(int flags = NaturalOrdering)
- : Base(flags), m_numeric(0)
- {
- }
-
- SparseLU(const MatrixType& matrix, int flags = NaturalOrdering)
- : Base(flags), m_numeric(0)
- {
- compute(matrix);
- }
-
- ~SparseLU()
- {
- if (m_numeric)
- umfpack_free_numeric(&m_numeric,Scalar());
- }
-
- inline const LMatrixType& matrixL() const
- {
- if (m_extractedDataAreDirty) extractData();
- return m_l;
- }
-
- inline const UMatrixType& matrixU() const
- {
- if (m_extractedDataAreDirty) extractData();
- return m_u;
- }
-
- inline const IntColVectorType& permutationP() const
- {
- if (m_extractedDataAreDirty) extractData();
- return m_p;
- }
-
- inline const IntRowVectorType& permutationQ() const
- {
- if (m_extractedDataAreDirty) extractData();
- return m_q;
- }
-
- Scalar determinant() const;
-
- template<typename BDerived, typename XDerived>
- bool solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived>* x) const;
-
- void compute(const MatrixType& matrix);
-
- protected:
-
- void extractData() const;
-
- protected:
- // cached data:
- void* m_numeric;
- const MatrixType* m_matrixRef;
- mutable LMatrixType m_l;
- mutable UMatrixType m_u;
- mutable IntColVectorType m_p;
- mutable IntRowVectorType m_q;
- mutable bool m_extractedDataAreDirty;
-};
-
-template<typename MatrixType>
-void SparseLU<MatrixType,UmfPack>::compute(const MatrixType& a)
-{
- const int rows = a.rows();
- const int cols = a.cols();
- ei_assert((MatrixType::Flags&RowMajorBit)==0 && "Row major matrices are not supported yet");
-
- m_matrixRef = &a;
-
- if (m_numeric)
- umfpack_free_numeric(&m_numeric,Scalar());
-
- void* symbolic;
- int errorCode = 0;
- errorCode = umfpack_symbolic(rows, cols, a._outerIndexPtr(), a._innerIndexPtr(), a._valuePtr(),
- &symbolic, 0, 0);
- if (errorCode==0)
- errorCode = umfpack_numeric(a._outerIndexPtr(), a._innerIndexPtr(), a._valuePtr(),
- symbolic, &m_numeric, 0, 0);
-
- umfpack_free_symbolic(&symbolic,Scalar());
-
- m_extractedDataAreDirty = true;
-
- Base::m_succeeded = (errorCode==0);
-}
-
-template<typename MatrixType>
-void SparseLU<MatrixType,UmfPack>::extractData() const
-{
- if (m_extractedDataAreDirty)
- {
- // get size of the data
- int lnz, unz, rows, cols, nz_udiag;
- umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar());
-
- // allocate data
- m_l.resize(rows,std::min(rows,cols));
- m_l.resizeNonZeros(lnz);
-
- m_u.resize(std::min(rows,cols),cols);
- m_u.resizeNonZeros(unz);
-
- m_p.resize(rows);
- m_q.resize(cols);
-
- // extract
- umfpack_get_numeric(m_l._outerIndexPtr(), m_l._innerIndexPtr(), m_l._valuePtr(),
- m_u._outerIndexPtr(), m_u._innerIndexPtr(), m_u._valuePtr(),
- m_p.data(), m_q.data(), 0, 0, 0, m_numeric);
-
- m_extractedDataAreDirty = false;
- }
-}
-
-template<typename MatrixType>
-typename SparseLU<MatrixType,UmfPack>::Scalar SparseLU<MatrixType,UmfPack>::determinant() const
-{
- Scalar det;
- umfpack_get_determinant(&det, 0, m_numeric, 0);
- return det;
-}
-
-template<typename MatrixType>
-template<typename BDerived,typename XDerived>
-bool SparseLU<MatrixType,UmfPack>::solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> *x) const
-{
- //const int size = m_matrix.rows();
- const int rhsCols = b.cols();
-// ei_assert(size==b.rows());
- ei_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major rhs yet");
- ei_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPack backend does not support non col-major result yet");
-
- int errorCode;
- for (int j=0; j<rhsCols; ++j)
- {
- errorCode = umfpack_solve(UMFPACK_A,
- m_matrixRef->_outerIndexPtr(), m_matrixRef->_innerIndexPtr(), m_matrixRef->_valuePtr(),
- &x->col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0);
- if (errorCode!=0)
- return false;
- }
-// errorCode = umfpack_di_solve(UMFPACK_A,
-// m_matrixRef._outerIndexPtr(), m_matrixRef._innerIndexPtr(), m_matrixRef._valuePtr(),
-// x->derived().data(), b.derived().data(), m_numeric, 0, 0);
-
- return true;
-}
-
-#endif // EIGEN_UMFPACKSUPPORT_H