aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen
diff options
context:
space:
mode:
authorGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2010-04-06 18:26:30 +0100
committerGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2010-04-06 18:26:30 +0100
commitcc57df9beace960a415a77a9fd77c95c369a0e56 (patch)
treeaee93be088ce8bc4e0ad99144de1e21e56cf727d /Eigen
parent9fad1e392be4514d701b2e653a152544e28364ba (diff)
RealSchur: Rename l and n to il and iu.
Diffstat (limited to 'Eigen')
-rw-r--r--Eigen/src/Eigenvalues/RealSchur.h125
1 files changed, 62 insertions, 63 deletions
diff --git a/Eigen/src/Eigenvalues/RealSchur.h b/Eigen/src/Eigenvalues/RealSchur.h
index 6a2ac2756..c56fd635c 100644
--- a/Eigen/src/Eigenvalues/RealSchur.h
+++ b/Eigen/src/Eigenvalues/RealSchur.h
@@ -95,10 +95,10 @@ template<typename _MatrixType> class RealSchur
Scalar computeNormOfT();
int findSmallSubdiagEntry(int n, Scalar norm);
- void computeShift(Scalar& x, Scalar& y, Scalar& w, int l, int n, Scalar& exshift, int iter);
- void findTwoSmallSubdiagEntries(Scalar x, Scalar y, Scalar w, int l, int& m, int n, Scalar& p, Scalar& q, Scalar& r);
- void doFrancisStep(int l, int m, int n, Scalar p, Scalar q, Scalar r, Scalar x, Scalar* workspace);
- void splitOffTwoRows(int n, Scalar exshift);
+ void computeShift(Scalar& x, Scalar& y, Scalar& w, int iu, Scalar& exshift, int iter);
+ void findTwoSmallSubdiagEntries(Scalar x, Scalar y, Scalar w, int l, int& m, int iu, Scalar& p, Scalar& q, Scalar& r);
+ void doFrancisStep(int l, int m, int iu, Scalar p, Scalar q, Scalar r, Scalar x, Scalar* workspace);
+ void splitOffTwoRows(int iu, Scalar exshift);
};
@@ -118,39 +118,43 @@ void RealSchur<MatrixType>::compute(const MatrixType& matrix)
ColumnVectorType workspaceVector(m_matU.cols());
Scalar* workspace = &workspaceVector.coeffRef(0);
- int n = m_matU.cols() - 1;
+ // The matrix m_matT is divided in three parts.
+ // Rows 0,...,il-1 are decoupled from the rest because m_matT(il,il-1) is zero.
+ // Rows il,...,iu is the part we are working on (the active window).
+ // Rows iu+1,...,end are already brought in triangular form.
+ int iu = m_matU.cols() - 1;
Scalar exshift = 0.0;
Scalar norm = computeNormOfT();
int iter = 0;
- while (n >= 0)
+ while (iu >= 0)
{
- int l = findSmallSubdiagEntry(n, norm);
+ int il = findSmallSubdiagEntry(iu, norm);
// Check for convergence
- if (l == n) // One root found
+ if (il == iu) // One root found
{
- m_matT.coeffRef(n,n) = m_matT.coeff(n,n) + exshift;
- m_eivalues.coeffRef(n) = ComplexScalar(m_matT.coeff(n,n), 0.0);
- n--;
+ m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
+ m_eivalues.coeffRef(iu) = ComplexScalar(m_matT.coeff(iu,iu), 0.0);
+ iu--;
iter = 0;
}
- else if (l == n-1) // Two roots found
+ else if (il == iu-1) // Two roots found
{
- splitOffTwoRows(n, exshift);
- n = n - 2;
+ splitOffTwoRows(iu, exshift);
+ iu -= 2;
iter = 0;
}
else // No convergence yet
{
Scalar p = 0, q = 0, r = 0, x, y, w;
- computeShift(x, y, w, l, n, exshift, iter);
+ computeShift(x, y, w, iu, exshift, iter);
iter = iter + 1; // (Could check iteration count here.)
int m;
- findTwoSmallSubdiagEntries(x, y, w, l, m, n, p, q, r);
- doFrancisStep(l, m, n, p, q, r, x, workspace);
+ findTwoSmallSubdiagEntries(x, y, w, il, m, iu, p, q, r);
+ doFrancisStep(il, m, iu, p, q, r, x, workspace);
} // check convergence
- } // while (n >= 0)
+ } // while (iu >= 0)
m_isInitialized = true;
}
@@ -170,32 +174,32 @@ inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
// Look for single small sub-diagonal element
template<typename MatrixType>
-inline int RealSchur<MatrixType>::findSmallSubdiagEntry(int n, Scalar norm)
+inline int RealSchur<MatrixType>::findSmallSubdiagEntry(int iu, Scalar norm)
{
- int l = n;
- while (l > 0)
+ int res = iu;
+ while (res > 0)
{
- Scalar s = ei_abs(m_matT.coeff(l-1,l-1)) + ei_abs(m_matT.coeff(l,l));
+ Scalar s = ei_abs(m_matT.coeff(res-1,res-1)) + ei_abs(m_matT.coeff(res,res));
if (s == 0.0)
s = norm;
- if (ei_abs(m_matT.coeff(l,l-1)) < NumTraits<Scalar>::epsilon() * s)
+ if (ei_abs(m_matT.coeff(res,res-1)) < NumTraits<Scalar>::epsilon() * s)
break;
- l--;
+ res--;
}
- return l;
+ return res;
}
template<typename MatrixType>
-inline void RealSchur<MatrixType>::splitOffTwoRows(int n, Scalar exshift)
+inline void RealSchur<MatrixType>::splitOffTwoRows(int iu, Scalar exshift)
{
const int size = m_matU.cols();
- Scalar w = m_matT.coeff(n,n-1) * m_matT.coeff(n-1,n);
- Scalar p = (m_matT.coeff(n-1,n-1) - m_matT.coeff(n,n)) * Scalar(0.5);
+ Scalar w = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
+ Scalar p = (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu)) * Scalar(0.5);
Scalar q = p * p + w;
Scalar z = ei_sqrt(ei_abs(q));
- m_matT.coeffRef(n,n) = m_matT.coeff(n,n) + exshift;
- m_matT.coeffRef(n-1,n-1) = m_matT.coeff(n-1,n-1) + exshift;
- Scalar x = m_matT.coeff(n,n);
+ m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
+ m_matT.coeffRef(iu-1,iu-1) = m_matT.coeff(iu-1,iu-1) + exshift;
+ Scalar x = m_matT.coeff(iu,iu);
// Scalar pair
if (q >= 0)
@@ -205,42 +209,37 @@ inline void RealSchur<MatrixType>::splitOffTwoRows(int n, Scalar exshift)
else
z = p - z;
- m_eivalues.coeffRef(n-1) = ComplexScalar(x + z, 0.0);
- m_eivalues.coeffRef(n) = ComplexScalar(z!=0.0 ? x - w / z : m_eivalues.coeff(n-1).real(), 0.0);
+ m_eivalues.coeffRef(iu-1) = ComplexScalar(x + z, 0.0);
+ m_eivalues.coeffRef(iu) = ComplexScalar(z!=0.0 ? x - w / z : m_eivalues.coeff(iu-1).real(), 0.0);
PlanarRotation<Scalar> rot;
- rot.makeGivens(z, m_matT.coeff(n, n-1));
- m_matT.block(0, n-1, size, size-n+1).applyOnTheLeft(n-1, n, rot.adjoint());
- m_matT.block(0, 0, n+1, size).applyOnTheRight(n-1, n, rot);
- m_matU.applyOnTheRight(n-1, n, rot);
+ rot.makeGivens(z, m_matT.coeff(iu, iu-1));
+ m_matT.block(0, iu-1, size, size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
+ m_matT.block(0, 0, iu+1, size).applyOnTheRight(iu-1, iu, rot);
+ m_matU.applyOnTheRight(iu-1, iu, rot);
}
else // Complex pair
{
- m_eivalues.coeffRef(n-1) = ComplexScalar(x + p, z);
- m_eivalues.coeffRef(n) = ComplexScalar(x + p, -z);
+ m_eivalues.coeffRef(iu-1) = ComplexScalar(x + p, z);
+ m_eivalues.coeffRef(iu) = ComplexScalar(x + p, -z);
}
}
// Form shift
template<typename MatrixType>
-inline void RealSchur<MatrixType>::computeShift(Scalar& x, Scalar& y, Scalar& w, int l, int n, Scalar& exshift, int iter)
+inline void RealSchur<MatrixType>::computeShift(Scalar& x, Scalar& y, Scalar& w, int iu, Scalar& exshift, int iter)
{
- x = m_matT.coeff(n,n);
- y = 0.0;
- w = 0.0;
- if (l < n)
- {
- y = m_matT.coeff(n-1,n-1);
- w = m_matT.coeff(n,n-1) * m_matT.coeff(n-1,n);
- }
+ x = m_matT.coeff(iu,iu);
+ y = m_matT.coeff(iu-1,iu-1);
+ w = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
// Wilkinson's original ad hoc shift
if (iter == 10)
{
exshift += x;
- for (int i = 0; i <= n; ++i)
+ for (int i = 0; i <= iu; ++i)
m_matT.coeffRef(i,i) -= x;
- Scalar s = ei_abs(m_matT.coeff(n,n-1)) + ei_abs(m_matT.coeff(n-1,n-2));
+ Scalar s = ei_abs(m_matT.coeff(iu,iu-1)) + ei_abs(m_matT.coeff(iu-1,iu-2));
x = y = Scalar(0.75) * s;
w = Scalar(-0.4375) * s * s;
}
@@ -256,7 +255,7 @@ inline void RealSchur<MatrixType>::computeShift(Scalar& x, Scalar& y, Scalar& w,
if (y < x)
s = -s;
s = Scalar(x - w / ((y - x) / 2.0 + s));
- for (int i = 0; i <= n; ++i)
+ for (int i = 0; i <= iu; ++i)
m_matT.coeffRef(i,i) -= s;
exshift += s;
x = y = w = Scalar(0.964);
@@ -266,10 +265,10 @@ inline void RealSchur<MatrixType>::computeShift(Scalar& x, Scalar& y, Scalar& w,
// Look for two consecutive small sub-diagonal elements
template<typename MatrixType>
-inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y, Scalar w, int l, int& m, int n, Scalar& p, Scalar& q, Scalar& r)
+inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y, Scalar w, int il, int& m, int iu, Scalar& p, Scalar& q, Scalar& r)
{
- m = n-2;
- while (m >= l)
+ m = iu-2;
+ while (m >= il)
{
Scalar z = m_matT.coeff(m,m);
r = x - z;
@@ -281,7 +280,7 @@ inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y
p = p / s;
q = q / s;
r = r / s;
- if (m == l) {
+ if (m == il) {
break;
}
if (ei_abs(m_matT.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
@@ -293,7 +292,7 @@ inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y
m--;
}
- for (int i = m+2; i <= n; ++i)
+ for (int i = m+2; i <= iu; ++i)
{
m_matT.coeffRef(i,i-2) = 0.0;
if (i > m+2)
@@ -301,15 +300,15 @@ inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y
}
}
-// Double QR step involving rows l:n and columns m:n
+// Double QR step involving rows il:iu and columns m:iu
template<typename MatrixType>
-inline void RealSchur<MatrixType>::doFrancisStep(int l, int m, int n, Scalar p, Scalar q, Scalar r, Scalar x, Scalar* workspace)
+inline void RealSchur<MatrixType>::doFrancisStep(int il, int m, int iu, Scalar p, Scalar q, Scalar r, Scalar x, Scalar* workspace)
{
const int size = m_matU.cols();
- for (int k = m; k <= n-1; ++k)
+ for (int k = m; k <= iu-1; ++k)
{
- int notlast = (k != n-1);
+ int notlast = (k != iu-1);
if (k != m) {
p = m_matT.coeff(k,k-1);
q = m_matT.coeff(k+1,k-1);
@@ -335,7 +334,7 @@ inline void RealSchur<MatrixType>::doFrancisStep(int l, int m, int n, Scalar p,
{
if (k != m)
m_matT.coeffRef(k,k-1) = -s * x;
- else if (l != m)
+ else if (il != m)
m_matT.coeffRef(k,k-1) = -m_matT.coeff(k,k-1);
p = p + s;
@@ -344,7 +343,7 @@ inline void RealSchur<MatrixType>::doFrancisStep(int l, int m, int n, Scalar p,
{
Matrix<Scalar, 2, 1> ess(q/p, r/p);
m_matT.block(k, k, 3, size-k).applyHouseholderOnTheLeft(ess, p/s, workspace);
- m_matT.block(0, k, std::min(n,k+3) + 1, 3).applyHouseholderOnTheRight(ess, p/s, workspace);
+ m_matT.block(0, k, std::min(iu,k+3) + 1, 3).applyHouseholderOnTheRight(ess, p/s, workspace);
m_matU.block(0, k, size, 3).applyHouseholderOnTheRight(ess, p/s, workspace);
}
else
@@ -352,7 +351,7 @@ inline void RealSchur<MatrixType>::doFrancisStep(int l, int m, int n, Scalar p,
Matrix<Scalar, 1, 1> ess;
ess.coeffRef(0) = q/p;
m_matT.block(k, k, 2, size-k).applyHouseholderOnTheLeft(ess, p/s, workspace);
- m_matT.block(0, k, std::min(n,k+3) + 1, 2).applyHouseholderOnTheRight(ess, p/s, workspace);
+ m_matT.block(0, k, std::min(iu,k+3) + 1, 2).applyHouseholderOnTheRight(ess, p/s, workspace);
m_matU.block(0, k, size, 2).applyHouseholderOnTheRight(ess, p/s, workspace);
}
} // (s != 0)