aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen
diff options
context:
space:
mode:
authorGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2010-04-07 17:29:12 +0100
committerGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2010-04-07 17:29:12 +0100
commit7dea3a33a5dddf7c102e334a6b725752c60a8050 (patch)
tree185eb44c611806e3ac2b36d42092ac5e74be8689 /Eigen
parentb6829e1d5bb7d133a02859acafd04e37fec86d4d (diff)
RealSchur: change parameter lists; minor rewrite of computeShift().
Diffstat (limited to 'Eigen')
-rw-r--r--Eigen/src/Eigenvalues/RealSchur.h145
1 files changed, 73 insertions, 72 deletions
diff --git a/Eigen/src/Eigenvalues/RealSchur.h b/Eigen/src/Eigenvalues/RealSchur.h
index cf31332ed..b97179499 100644
--- a/Eigen/src/Eigenvalues/RealSchur.h
+++ b/Eigen/src/Eigenvalues/RealSchur.h
@@ -96,11 +96,11 @@ template<typename _MatrixType> class RealSchur
typedef Matrix<Scalar,3,1> Vector3s;
Scalar computeNormOfT();
- int findSmallSubdiagEntry(int n, Scalar norm);
- void computeShift(Scalar& x, Scalar& y, Scalar& w, int iu, Scalar& exshift, int iter);
- void findTwoSmallSubdiagEntries(Scalar x, Scalar y, Scalar w, int il, int& m, int iu, Vector3s& firstHouseholderVector);
- void doFrancisStep(int il, int m, int iu, const Vector3s& firstHouseholderVector, Scalar* workspace);
+ int findSmallSubdiagEntry(int iu, Scalar norm);
void splitOffTwoRows(int iu, Scalar exshift);
+ void computeShift(int iu, int iter, Scalar& exshift, Vector3s& shiftInfo);
+ void initFrancisQRStep(int il, int iu, const Vector3s& shiftInfo, int& im, Vector3s& firstHouseholderVector);
+ void performFrancisQRStep(int il, int im, int iu, const Vector3s& firstHouseholderVector, Scalar* workspace);
};
@@ -125,10 +125,10 @@ void RealSchur<MatrixType>::compute(const MatrixType& matrix)
// Rows il,...,iu is the part we are working on (the active window).
// Rows iu+1,...,end are already brought in triangular form.
int iu = m_matU.cols() - 1;
- Scalar exshift = 0.0;
+ int iter = 0; // iteration count
+ Scalar exshift = 0.0; // sum of exceptional shifts
Scalar norm = computeNormOfT();
- int iter = 0;
while (iu >= 0)
{
int il = findSmallSubdiagEntry(iu, norm);
@@ -149,33 +149,33 @@ void RealSchur<MatrixType>::compute(const MatrixType& matrix)
}
else // No convergence yet
{
- Scalar x, y, w;
- Vector3s firstHouseholderVector;
- computeShift(x, y, w, iu, exshift, iter);
+ Vector3s firstHouseholderVector, shiftInfo;
+ computeShift(iu, iter, exshift, shiftInfo);
iter = iter + 1; // (Could check iteration count here.)
- int m;
- findTwoSmallSubdiagEntries(x, y, w, il, m, iu, firstHouseholderVector);
- doFrancisStep(il, m, iu, firstHouseholderVector, workspace);
- } // check convergence
- } // while (iu >= 0)
+ int im;
+ initFrancisQRStep(il, iu, shiftInfo, im, firstHouseholderVector);
+ performFrancisQRStep(il, im, iu, firstHouseholderVector, workspace);
+ }
+ }
m_isInitialized = true;
}
-// Compute matrix norm
+/** \internal Computes and returns vector L1 norm of T */
template<typename MatrixType>
inline typename MatrixType::Scalar RealSchur<MatrixType>::computeNormOfT()
{
const int size = m_matU.cols();
// FIXME to be efficient the following would requires a triangular reduxion code
- // Scalar norm = m_matT.upper().cwiseAbs().sum() + m_matT.corner(BottomLeft,size-1,size-1).diagonal().cwiseAbs().sum();
+ // Scalar norm = m_matT.upper().cwiseAbs().sum()
+ // + m_matT.corner(BottomLeft,size-1,size-1).diagonal().cwiseAbs().sum();
Scalar norm = 0.0;
for (int j = 0; j < size; ++j)
norm += m_matT.row(j).segment(std::max(j-1,0), size-std::max(j-1,0)).cwiseAbs().sum();
return norm;
}
-// Look for single small sub-diagonal element
+/** \internal Look for single small sub-diagonal element and returns its index */
template<typename MatrixType>
inline int RealSchur<MatrixType>::findSmallSubdiagEntry(int iu, Scalar norm)
{
@@ -192,133 +192,134 @@ inline int RealSchur<MatrixType>::findSmallSubdiagEntry(int iu, Scalar norm)
return res;
}
+/** \internal Update T given that rows iu-1 and iu decouple from the rest. */
template<typename MatrixType>
inline void RealSchur<MatrixType>::splitOffTwoRows(int iu, Scalar exshift)
{
const int size = m_matU.cols();
+
+ // The eigenvalues of the 2x2 matrix [a b; c d] are
+ // trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
Scalar w = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
- Scalar p = (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu)) * Scalar(0.5);
- Scalar q = p * p + w;
+ Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
+ Scalar q = p * p + w; // q = tr^2 / 4 - det = discr/4
Scalar z = ei_sqrt(ei_abs(q));
- m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
- m_matT.coeffRef(iu-1,iu-1) = m_matT.coeff(iu-1,iu-1) + exshift;
- Scalar x = m_matT.coeff(iu,iu);
+ m_matT.coeffRef(iu,iu) += exshift;
+ m_matT.coeffRef(iu-1,iu-1) += exshift;
- // Scalar pair
- if (q >= 0)
+ if (q >= 0) // Two real eigenvalues
{
+ PlanarRotation<Scalar> rot;
if (p >= 0)
- z = p + z;
+ rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
else
- z = p - z;
-
- m_eivalues.coeffRef(iu-1) = ComplexScalar(x + z, 0.0);
- m_eivalues.coeffRef(iu) = ComplexScalar(z!=0.0 ? x - w / z : m_eivalues.coeff(iu-1).real(), 0.0);
+ rot.makeGivens(p - z, m_matT.coeff(iu, iu-1));
- PlanarRotation<Scalar> rot;
- rot.makeGivens(z, m_matT.coeff(iu, iu-1));
m_matT.block(0, iu-1, size, size-iu+1).applyOnTheLeft(iu-1, iu, rot.adjoint());
m_matT.block(0, 0, iu+1, size).applyOnTheRight(iu-1, iu, rot);
m_matU.applyOnTheRight(iu-1, iu, rot);
+
+ m_eivalues.coeffRef(iu-1) = ComplexScalar(m_matT.coeff(iu-1, iu-1), 0.0);
+ m_eivalues.coeffRef(iu) = ComplexScalar(m_matT.coeff(iu, iu), 0.0);
}
- else // Complex pair
+ else // // Pair of complex conjugate eigenvalues
{
- m_eivalues.coeffRef(iu-1) = ComplexScalar(x + p, z);
- m_eivalues.coeffRef(iu) = ComplexScalar(x + p, -z);
+ m_eivalues.coeffRef(iu-1) = ComplexScalar(m_matT.coeff(iu,iu) + p, z);
+ m_eivalues.coeffRef(iu) = ComplexScalar(m_matT.coeff(iu,iu) + p, -z);
}
}
-// Form shift
+/** \internal Form shift in shiftInfo, and update exshift if an exceptional shift is performed. */
template<typename MatrixType>
-inline void RealSchur<MatrixType>::computeShift(Scalar& x, Scalar& y, Scalar& w, int iu, Scalar& exshift, int iter)
+inline void RealSchur<MatrixType>::computeShift(int iu, int iter, Scalar& exshift, Vector3s& shiftInfo)
{
- x = m_matT.coeff(iu,iu);
- y = m_matT.coeff(iu-1,iu-1);
- w = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
+ shiftInfo.coeffRef(0) = m_matT.coeff(iu,iu);
+ shiftInfo.coeffRef(1) = m_matT.coeff(iu-1,iu-1);
+ shiftInfo.coeffRef(2) = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
// Wilkinson's original ad hoc shift
if (iter == 10)
{
- exshift += x;
+ exshift += shiftInfo.coeff(0);
for (int i = 0; i <= iu; ++i)
- m_matT.coeffRef(i,i) -= x;
+ m_matT.coeffRef(i,i) -= shiftInfo.coeff(0);
Scalar s = ei_abs(m_matT.coeff(iu,iu-1)) + ei_abs(m_matT.coeff(iu-1,iu-2));
- x = y = Scalar(0.75) * s;
- w = Scalar(-0.4375) * s * s;
+ shiftInfo.coeffRef(0) = Scalar(0.75) * s;
+ shiftInfo.coeffRef(1) = Scalar(0.75) * s;
+ shiftInfo.coeffRef(2) = Scalar(-0.4375) * s * s;
}
// MATLAB's new ad hoc shift
if (iter == 30)
{
- Scalar s = Scalar((y - x) / 2.0);
- s = s * s + w;
+ Scalar s = (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
+ s = s * s + shiftInfo.coeff(2);
if (s > 0)
{
s = ei_sqrt(s);
- if (y < x)
+ if (shiftInfo.coeff(1) < shiftInfo.coeff(0))
s = -s;
- s = Scalar(x - w / ((y - x) / 2.0 + s));
+ s = s + (shiftInfo.coeff(1) - shiftInfo.coeff(0)) / Scalar(2.0);
+ s = shiftInfo.coeff(0) - shiftInfo.coeff(2) / s;
+ exshift += s;
for (int i = 0; i <= iu; ++i)
m_matT.coeffRef(i,i) -= s;
- exshift += s;
- x = y = w = Scalar(0.964);
+ shiftInfo.setConstant(Scalar(0.964));
}
}
}
-// Look for two consecutive small sub-diagonal elements
+/** \internal Compute index im at which Francis QR step starts and the first Householder vector. */
template<typename MatrixType>
-inline void RealSchur<MatrixType>::findTwoSmallSubdiagEntries(Scalar x, Scalar y, Scalar w, int il, int& m, int iu, Vector3s& firstHouseholderVector)
+inline void RealSchur<MatrixType>::initFrancisQRStep(int il, int iu, const Vector3s& shiftInfo, int& im, Vector3s& firstHouseholderVector)
{
Scalar p = 0, q = 0, r = 0;
- m = iu-2;
- while (m >= il)
+ for (im = iu-2; im >= il; --im)
{
- Scalar z = m_matT.coeff(m,m);
- r = x - z;
- Scalar s = y - z;
- p = (r * s - w) / m_matT.coeff(m+1,m) + m_matT.coeff(m,m+1);
- q = m_matT.coeff(m+1,m+1) - z - r - s;
- r = m_matT.coeff(m+2,m+1);
+ Scalar z = m_matT.coeff(im,im);
+ r = shiftInfo.coeff(0) - z;
+ Scalar s = shiftInfo.coeff(1) - z;
+ p = (r * s - shiftInfo.coeff(2)) / m_matT.coeff(im+1,im) + m_matT.coeff(im,im+1);
+ q = m_matT.coeff(im+1,im+1) - z - r - s;
+ r = m_matT.coeff(im+2,im+1);
s = ei_abs(p) + ei_abs(q) + ei_abs(r);
p = p / s;
q = q / s;
r = r / s;
- if (m == il) {
+ if (im == il) {
break;
}
- if (ei_abs(m_matT.coeff(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
- NumTraits<Scalar>::epsilon() * (ei_abs(p) * (ei_abs(m_matT.coeff(m-1,m-1)) + ei_abs(z) +
- ei_abs(m_matT.coeff(m+1,m+1)))))
+ if (ei_abs(m_matT.coeff(im,im-1)) * (ei_abs(q) + ei_abs(r)) <
+ NumTraits<Scalar>::epsilon() * (ei_abs(p) * (ei_abs(m_matT.coeff(im-1,im-1)) + ei_abs(z) +
+ ei_abs(m_matT.coeff(im+1,im+1)))))
{
break;
}
- m--;
}
- for (int i = m+2; i <= iu; ++i)
+ for (int i = im+2; i <= iu; ++i)
{
m_matT.coeffRef(i,i-2) = 0.0;
- if (i > m+2)
+ if (i > im+2)
m_matT.coeffRef(i,i-3) = 0.0;
}
firstHouseholderVector << p, q, r;
}
-// Double QR step involving rows il:iu and columns m:iu
+/** Perform a Francis QR step involving rows il:iu and columns im:iu. */
template<typename MatrixType>
-inline void RealSchur<MatrixType>::doFrancisStep(int il, int m, int iu, const Vector3s& firstHouseholderVector, Scalar* workspace)
+inline void RealSchur<MatrixType>::performFrancisQRStep(int il, int im, int iu, const Vector3s& firstHouseholderVector, Scalar* workspace)
{
- assert(m >= il);
- assert(m <= iu-2);
+ assert(im >= il);
+ assert(im <= iu-2);
const int size = m_matU.cols();
- for (int k = m; k <= iu-2; ++k)
+ for (int k = im; k <= iu-2; ++k)
{
- bool firstIteration = (k == m);
+ bool firstIteration = (k == im);
Vector3s v;
if (firstIteration)