aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen
diff options
context:
space:
mode:
authorGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2010-04-12 18:54:15 +0100
committerGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2010-04-12 18:54:15 +0100
commit574ad9efbd80f91bd0db0cad94d42cd857d7dae7 (patch)
treebff7a88a83eb3ec89454a3d865fb85fcb49c68f2 /Eigen
parent73d3a27667aff4506a20693140dc603110e48cbc (diff)
Move computation of eigenvalues from RealSchur to EigenSolver.
Diffstat (limited to 'Eigen')
-rw-r--r--Eigen/src/Eigenvalues/EigenSolver.h38
-rw-r--r--Eigen/src/Eigenvalues/RealSchur.h29
2 files changed, 33 insertions, 34 deletions
diff --git a/Eigen/src/Eigenvalues/EigenSolver.h b/Eigen/src/Eigenvalues/EigenSolver.h
index 44a0fd485..f8fc08efc 100644
--- a/Eigen/src/Eigenvalues/EigenSolver.h
+++ b/Eigen/src/Eigenvalues/EigenSolver.h
@@ -68,7 +68,9 @@
* The documentation for EigenSolver(const MatrixType&) contains an example of
* the typical use of this class.
*
- * \note this code was adapted from JAMA (public domain)
+ * \note The implementation is adapted from
+ * <a href="http://math.nist.gov/javanumerics/jama/">JAMA</a> (public domain).
+ * Their code is based on EISPACK.
*
* \sa MatrixBase::eigenvalues(), class ComplexEigenSolver, class SelfAdjointEigenSolver
*/
@@ -232,12 +234,13 @@ template<typename _MatrixType> class EigenSolver
* The eigenvalues() and eigenvectors() functions can be used to retrieve
* the computed eigendecomposition.
*
- * The matrix is first reduced to Schur form. The Schur decomposition is
- * then used to compute the eigenvalues and eigenvectors.
+ * The matrix is first reduced to real Schur form using the RealSchur
+ * class. The Schur decomposition is then used to compute the eigenvalues
+ * and eigenvectors.
*
* The cost of the computation is dominated by the cost of the Schur
- * decomposition, which is \f$ O(n^3) \f$ where \f$ n \f$ is the size of
- * the matrix.
+ * decomposition, which is very approximately \f$ 25n^3 \f$ where
+ * \f$ n \f$ is the size of the matrix.
*
* This method reuses of the allocated data in the EigenSolver object.
*
@@ -311,12 +314,31 @@ EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matr
// Reduce to real Schur form.
RealSchur<MatrixType> rs(matrix);
- MatrixType matH = rs.matrixT();
+ MatrixType matT = rs.matrixT();
m_eivec = rs.matrixU();
- m_eivalues = rs.eigenvalues();
+ // Compute eigenvalues from matT
+ m_eivalues.resize(matrix.cols());
+ int i = 0;
+ while (i < matrix.cols())
+ {
+ if (i == matrix.cols() - 1 || matT.coeff(i+1, i) == Scalar(0))
+ {
+ m_eivalues.coeffRef(i) = matT.coeff(i, i);
+ ++i;
+ }
+ else
+ {
+ Scalar p = Scalar(0.5) * (matT.coeff(i, i) - matT.coeff(i+1, i+1));
+ Scalar z = ei_sqrt(ei_abs(p * p + matT.coeff(i+1, i) * matT.coeff(i, i+1)));
+ m_eivalues.coeffRef(i) = ComplexScalar(matT.coeff(i+1, i+1) + p, z);
+ m_eivalues.coeffRef(i+1) = ComplexScalar(matT.coeff(i+1, i+1) + p, -z);
+ i += 2;
+ }
+ }
+
// Compute eigenvectors.
- hqr2_step2(matH);
+ hqr2_step2(matT);
m_isInitialized = true;
return *this;
diff --git a/Eigen/src/Eigenvalues/RealSchur.h b/Eigen/src/Eigenvalues/RealSchur.h
index 17a3801ac..29569e802 100644
--- a/Eigen/src/Eigenvalues/RealSchur.h
+++ b/Eigen/src/Eigenvalues/RealSchur.h
@@ -53,7 +53,7 @@
* given matrix. Alternatively, you can use the RealSchur(const MatrixType&)
* constructor which computes the real Schur decomposition at construction
* time. Once the decomposition is computed, you can use the matrixU() and
- * matrixT() functions to retrieve the matrices U and V in the decomposition.
+ * matrixT() functions to retrieve the matrices U and T in the decomposition.
*
* The documentation of RealSchur(const MatrixType&) contains an example of
* the typical use of this class.
@@ -93,7 +93,6 @@ template<typename _MatrixType> class RealSchur
RealSchur(int size = RowsAtCompileTime==Dynamic ? 1 : RowsAtCompileTime)
: m_matT(size, size),
m_matU(size, size),
- m_eivalues(size),
m_isInitialized(false)
{ }
@@ -109,7 +108,6 @@ template<typename _MatrixType> class RealSchur
RealSchur(const MatrixType& matrix)
: m_matT(matrix.rows(),matrix.cols()),
m_matU(matrix.rows(),matrix.cols()),
- m_eivalues(matrix.rows()),
m_isInitialized(false)
{
compute(matrix);
@@ -147,15 +145,6 @@ template<typename _MatrixType> class RealSchur
return m_matT;
}
- /** \brief Returns vector of eigenvalues.
- *
- * This function will likely be removed. */
- const EigenvalueType& eigenvalues() const
- {
- ei_assert(m_isInitialized && "RealSchur is not initialized.");
- return m_eivalues;
- }
-
/** \brief Computes Schur decomposition of given matrix.
*
* \param[in] matrix Square matrix whose Schur decomposition is to be computed.
@@ -176,7 +165,6 @@ template<typename _MatrixType> class RealSchur
MatrixType m_matT;
MatrixType m_matU;
- EigenvalueType m_eivalues;
bool m_isInitialized;
typedef Matrix<Scalar,3,1> Vector3s;
@@ -200,7 +188,6 @@ void RealSchur<MatrixType>::compute(const MatrixType& matrix)
HessenbergDecomposition<MatrixType> hess(matrix);
m_matT = hess.matrixH();
m_matU = hess.matrixQ();
- m_eivalues.resize(matrix.rows());
// Step 2. Reduce to real Schur form
typedef Matrix<Scalar, ColsAtCompileTime, 1, Options, MaxColsAtCompileTime, 1> ColumnVectorType;
@@ -226,7 +213,6 @@ void RealSchur<MatrixType>::compute(const MatrixType& matrix)
m_matT.coeffRef(iu,iu) = m_matT.coeff(iu,iu) + exshift;
if (iu > 0)
m_matT.coeffRef(iu, iu-1) = Scalar(0);
- m_eivalues.coeffRef(iu) = ComplexScalar(m_matT.coeff(iu,iu), 0.0);
iu--;
iter = 0;
}
@@ -289,15 +275,14 @@ inline void RealSchur<MatrixType>::splitOffTwoRows(int iu, Scalar exshift)
// The eigenvalues of the 2x2 matrix [a b; c d] are
// trace +/- sqrt(discr/4) where discr = tr^2 - 4*det, tr = a + d, det = ad - bc
- Scalar w = m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu);
Scalar p = Scalar(0.5) * (m_matT.coeff(iu-1,iu-1) - m_matT.coeff(iu,iu));
- Scalar q = p * p + w; // q = tr^2 / 4 - det = discr/4
- Scalar z = ei_sqrt(ei_abs(q));
+ Scalar q = p * p + m_matT.coeff(iu,iu-1) * m_matT.coeff(iu-1,iu); // q = tr^2 / 4 - det = discr/4
m_matT.coeffRef(iu,iu) += exshift;
m_matT.coeffRef(iu-1,iu-1) += exshift;
if (q >= 0) // Two real eigenvalues
{
+ Scalar z = ei_sqrt(ei_abs(q));
PlanarRotation<Scalar> rot;
if (p >= 0)
rot.makeGivens(p + z, m_matT.coeff(iu, iu-1));
@@ -308,14 +293,6 @@ inline void RealSchur<MatrixType>::splitOffTwoRows(int iu, Scalar exshift)
m_matT.block(0, 0, iu+1, size).applyOnTheRight(iu-1, iu, rot);
m_matT.coeffRef(iu, iu-1) = Scalar(0);
m_matU.applyOnTheRight(iu-1, iu, rot);
-
- m_eivalues.coeffRef(iu-1) = ComplexScalar(m_matT.coeff(iu-1, iu-1), 0.0);
- m_eivalues.coeffRef(iu) = ComplexScalar(m_matT.coeff(iu, iu), 0.0);
- }
- else // // Pair of complex conjugate eigenvalues
- {
- m_eivalues.coeffRef(iu-1) = ComplexScalar(m_matT.coeff(iu,iu) + p, z);
- m_eivalues.coeffRef(iu) = ComplexScalar(m_matT.coeff(iu,iu) + p, -z);
}
if (iu > 1)