aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2010-06-10 16:39:46 +0200
committerGravatar Gael Guennebaud <g.gael@free.fr>2010-06-10 16:39:46 +0200
commit469382407ca5d730f23788c593e71e91d24e9b89 (patch)
tree7c5423e63a9c4b01a25b0edded15cae4d7efb88c /Eigen
parentd2d7465bcfcfc60e2b7350f4e4ae44d809182d39 (diff)
* Make HouseholderSequence::evalTo works in place
* Clean a bit the Triadiagonalization making sure it the inplace function really works inplace ;), and that only the lower triangular part of the matrix is referenced. * Remove the Tridiagonalization member object of SelfAdjointEigenSolver exploiting the in place capability of HouseholdeSequence. * Update unit test to check SelfAdjointEigenSolver only consider the lower triangular part.
Diffstat (limited to 'Eigen')
-rw-r--r--Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h34
-rw-r--r--Eigen/src/Eigenvalues/Tridiagonalization.h236
-rw-r--r--Eigen/src/Householder/HouseholderSequence.h47
3 files changed, 197 insertions, 120 deletions
diff --git a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
index 2878a1494..a77b96186 100644
--- a/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
+++ b/Eigen/src/Eigenvalues/SelfAdjointEigenSolver.h
@@ -38,7 +38,7 @@
*
* \tparam _MatrixType the type of the matrix of which we are computing the
* eigendecomposition; this is expected to be an instantiation of the Matrix
- * class template. Currently, only real matrices are supported.
+ * class template.
*
* A matrix \f$ A \f$ is selfadjoint if it equals its adjoint. For real
* matrices, this means that the matrix is symmetric: it equals its
@@ -55,6 +55,8 @@
* faster and more accurate than the general purpose eigenvalue algorithms
* implemented in EigenSolver and ComplexEigenSolver.
*
+ * Only the \b lower \b triangular \b part of the input matrix is referenced.
+ *
* This class can also be used to solve the generalized eigenvalue problem
* \f$ Av = \lambda Bv \f$. In this case, the matrix \f$ A \f$ should be
* selfadjoint and the matrix \f$ B \f$ should be positive definite.
@@ -117,7 +119,6 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
SelfAdjointEigenSolver()
: m_eivec(),
m_eivalues(),
- m_tridiag(),
m_subdiag(),
m_isInitialized(false)
{ }
@@ -138,7 +139,6 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
SelfAdjointEigenSolver(Index size)
: m_eivec(size, size),
m_eivalues(size),
- m_tridiag(size),
m_subdiag(size > 1 ? size - 1 : 1),
m_isInitialized(false)
{}
@@ -146,7 +146,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
/** \brief Constructor; computes eigendecomposition of given matrix.
*
* \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
- * be computed.
+ * be computed. Only the lower triangular part of the matrix is referenced.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
@@ -164,7 +164,6 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
SelfAdjointEigenSolver(const MatrixType& matrix, bool computeEigenvectors = true)
: m_eivec(matrix.rows(), matrix.cols()),
m_eivalues(matrix.cols()),
- m_tridiag(matrix.rows()),
m_subdiag(matrix.rows() > 1 ? matrix.rows() - 1 : 1),
m_isInitialized(false)
{
@@ -174,7 +173,9 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
/** \brief Constructor; computes generalized eigendecomposition of given matrix pencil.
*
* \param[in] matA Selfadjoint matrix in matrix pencil.
+ * Only the lower triangular part of the matrix is referenced.
* \param[in] matB Positive-definite matrix in matrix pencil.
+ * Only the lower triangular part of the matrix is referenced.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
@@ -196,7 +197,6 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
SelfAdjointEigenSolver(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors = true)
: m_eivec(matA.rows(), matA.cols()),
m_eivalues(matA.cols()),
- m_tridiag(matA.rows()),
m_subdiag(matA.rows() > 1 ? matA.rows() - 1 : 1),
m_isInitialized(false)
{
@@ -206,7 +206,7 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
/** \brief Computes eigendecomposition of given matrix.
*
* \param[in] matrix Selfadjoint matrix whose eigendecomposition is to
- * be computed.
+ * be computed. Only the lower triangular part of the matrix is referenced.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
@@ -240,7 +240,9 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
/** \brief Computes generalized eigendecomposition of given matrix pencil.
*
* \param[in] matA Selfadjoint matrix in matrix pencil.
+ * Only the lower triangular part of the matrix is referenced.
* \param[in] matB Positive-definite matrix in matrix pencil.
+ * Only the lower triangular part of the matrix is referenced.
* \param[in] computeEigenvectors If true, both the eigenvectors and the
* eigenvalues are computed; if false, only the eigenvalues are
* computed.
@@ -386,7 +388,6 @@ template<typename _MatrixType> class SelfAdjointEigenSolver
protected:
MatrixType m_eivec;
RealVectorType m_eivalues;
- TridiagonalizationType m_tridiag;
typename TridiagonalizationType::SubDiagonalType m_subdiag;
ComputationInfo m_info;
bool m_isInitialized;
@@ -418,8 +419,6 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute(
assert(matrix.cols() == matrix.rows());
Index n = matrix.cols();
m_eivalues.resize(n,1);
- if(computeEigenvectors)
- m_eivec.resize(n,n);
if(n==1)
{
@@ -432,12 +431,13 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute(
return *this;
}
- m_tridiag.compute(matrix);
+ // declare some aliases
RealVectorType& diag = m_eivalues;
- diag = m_tridiag.diagonal();
- m_subdiag = m_tridiag.subDiagonal();
- if (computeEigenvectors)
- m_eivec = m_tridiag.matrixQ();
+ MatrixType& mat = m_eivec;
+
+ mat = matrix;
+ m_subdiag.resize(n-1);
+ ei_tridiagonalization_inplace(mat, diag, m_subdiag, computeEigenvectors);
Index end = n-1;
Index start = 0;
@@ -487,7 +487,7 @@ SelfAdjointEigenSolver<MatrixType>& SelfAdjointEigenSolver<MatrixType>::compute(
{
std::swap(m_eivalues[i], m_eivalues[k+i]);
if(computeEigenvectors)
- m_eivec.col(i).swap(m_eivec.col(k+i));
+ m_eivec.col(i).swap(m_eivec.col(k+i));
}
}
}
@@ -507,7 +507,7 @@ compute(const MatrixType& matA, const MatrixType& matB, bool computeEigenvectors
LLT<MatrixType> cholB(matB);
// compute C = inv(L) A inv(L')
- MatrixType matC = matA;
+ MatrixType matC = matA.template selfadjointView<Lower>();
cholB.matrixL().template solveInPlace<OnTheLeft>(matC);
cholB.matrixU().template solveInPlace<OnTheRight>(matC);
diff --git a/Eigen/src/Eigenvalues/Tridiagonalization.h b/Eigen/src/Eigenvalues/Tridiagonalization.h
index 62a607176..af970e94d 100644
--- a/Eigen/src/Eigenvalues/Tridiagonalization.h
+++ b/Eigen/src/Eigenvalues/Tridiagonalization.h
@@ -154,7 +154,7 @@ template<typename _MatrixType> class Tridiagonalization
{
m_matrix = matrix;
m_hCoeffs.resize(matrix.rows()-1, 1);
- _compute(m_matrix, m_hCoeffs);
+ ei_tridiagonalization_inplace(m_matrix, m_hCoeffs);
m_isInitialized = true;
return *this;
}
@@ -285,43 +285,6 @@ template<typename _MatrixType> class Tridiagonalization
*/
const SubDiagonalReturnType subDiagonal() const;
- /** \brief Performs a full decomposition in place
- *
- * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal
- * decomposition is to be computed. On output, the orthogonal matrix Q
- * in the decomposition if \p extractQ is true.
- * \param[out] diag The diagonal of the tridiagonal matrix T in the
- * decomposition.
- * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in
- * the decomposition.
- * \param[in] extractQ If true, the orthogonal matrix Q in the
- * decomposition is computed and stored in \p mat.
- *
- * Compute the tridiagonal matrix of \p mat in place. The tridiagonal
- * matrix T is passed to the output parameters \p diag and \p subdiag. If
- * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat.
- *
- * The vectors \p diag and \p subdiag are not resized. The function
- * assumes that they are already of the correct size. The length of the
- * vector \p diag should equal the number of rows in \p mat, and the
- * length of the vector \p subdiag should be one left.
- *
- * This implementation contains an optimized path for real 3-by-3 matrices
- * which is especially useful for plane fitting.
- *
- * \note Notwithstanding the name, the current implementation copies
- * \p mat to a temporary matrix and uses that matrix to compute the
- * decomposition.
- *
- * Example (this uses the same matrix as the example in
- * Tridiagonalization(const MatrixType&)):
- * \include Tridiagonalization_decomposeInPlace.cpp
- * Output: \verbinclude Tridiagonalization_decomposeInPlace.out
- *
- * \sa Tridiagonalization(const MatrixType&), compute()
- */
- static void decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ = true);
-
protected:
static void _compute(MatrixType& matA, CoeffVectorType& hCoeffs);
@@ -368,21 +331,36 @@ Tridiagonalization<MatrixType>::matrixT() const
}
/** \internal
- * Performs a tridiagonal decomposition of \a matA in place.
+ * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place.
*
- * \param matA the input selfadjoint matrix
- * \param hCoeffs returned Householder coefficients
+ * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced.
+ * On output, the strict upper part is left unchanged, and the lower triangular part
+ * represents the T and Q matrices in packed format has detailed below.
+ * \param[out] hCoeffs returned Householder coefficients (see below)
*
- * The result is written in the lower triangular part of \a matA.
+ * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
+ * and lower sub-diagonal of the matrix \a matA.
+ * The unitary matrix Q is represented in a compact way as a product of
+ * Householder reflectors \f$ H_i \f$ such that:
+ * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$.
+ * The Householder reflectors are defined as
+ * \f$ H_i = (I - h_i v_i v_i^T) \f$
+ * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and
+ * \f$ v_i \f$ is the Householder vector defined by
+ * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$.
*
* Implemented from Golub's "Matrix Computations", algorithm 8.3.1.
*
- * \sa packedMatrix()
+ * \sa Tridiagonalization::packedMatrix()
*/
-template<typename MatrixType>
-void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType& hCoeffs)
+template<typename MatrixType, typename CoeffVectorType>
+void ei_tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs)
{
- assert(matA.rows()==matA.cols());
+ ei_assert(matA.rows()==matA.cols());
+ ei_assert(matA.rows()==hCoeffs.size()+1);
+ typedef typename MatrixType::Index Index;
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
Index n = matA.rows();
for (Index i = 0; i<n-1; ++i)
{
@@ -408,67 +386,139 @@ void Tridiagonalization<MatrixType>::_compute(MatrixType& matA, CoeffVectorType&
}
}
-template<typename MatrixType>
-void Tridiagonalization<MatrixType>::decomposeInPlace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
+// forward declaration, implementation at the end of this file
+template<typename MatrixType, int Size=MatrixType::ColsAtCompileTime>
+struct ei_tridiagonalization_inplace_selector;
+
+/** \brief Performs a full tridiagonalization in place
+ *
+ * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal
+ * decomposition is to be computed. Only the lower triangular part referenced.
+ * The rest is left unchanged. On output, the orthogonal matrix Q
+ * in the decomposition if \p extractQ is true.
+ * \param[out] diag The diagonal of the tridiagonal matrix T in the
+ * decomposition.
+ * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in
+ * the decomposition.
+ * \param[in] extractQ If true, the orthogonal matrix Q in the
+ * decomposition is computed and stored in \p mat.
+ *
+ * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place
+ * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real
+ * symmetric tridiagonal matrix.
+ *
+ * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If
+ * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower
+ * part of the matrix \p mat is destroyed.
+ *
+ * The vectors \p diag and \p subdiag are not resized. The function
+ * assumes that they are already of the correct size. The length of the
+ * vector \p diag should equal the number of rows in \p mat, and the
+ * length of the vector \p subdiag should be one left.
+ *
+ * This implementation contains an optimized path for 3-by-3 matrices
+ * which is especially useful for plane fitting.
+ *
+ * \note Currently, it requires two temporary vectors to hold the intermediate
+ * Householder coefficients, and to reconstruct the matrix Q from the Householder
+ * reflectors.
+ *
+ * Example (this uses the same matrix as the example in
+ * Tridiagonalization::Tridiagonalization(const MatrixType&)):
+ * \include Tridiagonalization_decomposeInPlace.cpp
+ * Output: \verbinclude Tridiagonalization_decomposeInPlace.out
+ *
+ * \sa class Tridiagonalization
+ */
+template<typename MatrixType, typename DiagonalType, typename SubDiagonalType>
+void ei_tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
{
+ typedef typename MatrixType::Index Index;
Index n = mat.rows();
ei_assert(mat.cols()==n && diag.size()==n && subdiag.size()==n-1);
- if (n==3 && (!NumTraits<Scalar>::IsComplex) )
- {
- _decomposeInPlace3x3(mat, diag, subdiag, extractQ);
- }
- else
+ ei_tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ);
+}
+
+/** \internal
+ * General full tridiagonalization
+ */
+template<typename MatrixType, int Size>
+struct ei_tridiagonalization_inplace_selector
+{
+ typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType;
+ typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType;
+ typedef typename MatrixType::Index Index;
+ template<typename DiagonalType, typename SubDiagonalType>
+ static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
{
- Tridiagonalization tridiag(mat);
- diag = tridiag.diagonal();
- subdiag = tridiag.subDiagonal();
- if (extractQ)
- mat = tridiag.matrixQ();
+ CoeffVectorType hCoeffs(mat.cols()-1);
+ ei_tridiagonalization_inplace(mat,hCoeffs);
+ diag = mat.diagonal().real();
+ subdiag = mat.template diagonal<-1>().real();
+ if(extractQ)
+ mat = HouseholderSequenceType(mat, hCoeffs.conjugate(), false, mat.rows() - 1, 1);
}
-}
+};
/** \internal
- * Optimized path for 3x3 matrices.
+ * Specialization for 3x3 matrices.
* Especially useful for plane fitting.
*/
template<typename MatrixType>
-void Tridiagonalization<MatrixType>::_decomposeInPlace3x3(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
+struct ei_tridiagonalization_inplace_selector<MatrixType,3>
{
- diag[0] = ei_real(mat(0,0));
- RealScalar v1norm2 = ei_abs2(mat(0,2));
- if (ei_isMuchSmallerThan(v1norm2, RealScalar(1)))
- {
- diag[1] = ei_real(mat(1,1));
- diag[2] = ei_real(mat(2,2));
- subdiag[0] = ei_real(mat(0,1));
- subdiag[1] = ei_real(mat(1,2));
- if (extractQ)
- mat.setIdentity();
- }
- else
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename MatrixType::RealScalar RealScalar;
+
+ template<typename DiagonalType, typename SubDiagonalType>
+ static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ)
{
- RealScalar beta = ei_sqrt(ei_abs2(mat(0,1))+v1norm2);
- RealScalar invBeta = RealScalar(1)/beta;
- Scalar m01 = mat(0,1) * invBeta;
- Scalar m02 = mat(0,2) * invBeta;
- Scalar q = RealScalar(2)*m01*mat(1,2) + m02*(mat(2,2) - mat(1,1));
- diag[1] = ei_real(mat(1,1) + m02*q);
- diag[2] = ei_real(mat(2,2) - m02*q);
- subdiag[0] = beta;
- subdiag[1] = ei_real(mat(1,2) - m01 * q);
- if (extractQ)
+ diag[0] = ei_real(mat(0,0));
+ RealScalar v1norm2 = ei_abs2(mat(2,0));
+ if (ei_isMuchSmallerThan(v1norm2, RealScalar(1)))
{
- mat(0,0) = 1;
- mat(0,1) = 0;
- mat(0,2) = 0;
- mat(1,0) = 0;
- mat(1,1) = m01;
- mat(1,2) = m02;
- mat(2,0) = 0;
- mat(2,1) = m02;
- mat(2,2) = -m01;
+ diag[1] = ei_real(mat(1,1));
+ diag[2] = ei_real(mat(2,2));
+ subdiag[0] = ei_real(mat(1,0));
+ subdiag[1] = ei_real(mat(2,1));
+ if (extractQ)
+ mat.setIdentity();
+ }
+ else
+ {
+ RealScalar beta = ei_sqrt(ei_abs2(mat(1,0)) + v1norm2);
+ RealScalar invBeta = RealScalar(1)/beta;
+ Scalar m01 = ei_conj(mat(1,0)) * invBeta;
+ Scalar m02 = ei_conj(mat(2,0)) * invBeta;
+ Scalar q = RealScalar(2)*m01*ei_conj(mat(2,1)) + m02*(mat(2,2) - mat(1,1));
+ diag[1] = ei_real(mat(1,1) + m02*q);
+ diag[2] = ei_real(mat(2,2) - m02*q);
+ subdiag[0] = beta;
+ subdiag[1] = ei_real(ei_conj(mat(2,1)) - m01 * q);
+ if (extractQ)
+ {
+ mat << 1, 0, 0,
+ 0, m01, m02,
+ 0, m02, -m01;
+ }
}
}
-}
+};
+/** \internal
+ * Trivial specialization for 1x1 matrices
+ */
+template<typename MatrixType>
+struct ei_tridiagonalization_inplace_selector<MatrixType,1>
+{
+ typedef typename MatrixType::Scalar Scalar;
+
+ template<typename DiagonalType, typename SubDiagonalType>
+ static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ)
+ {
+ diag(0,0) = ei_real(mat(0,0));
+ if(extractQ)
+ mat(0,0) = Scalar(1);
+ }
+};
#endif // EIGEN_TRIDIAGONALIZATION_H
diff --git a/Eigen/src/Householder/HouseholderSequence.h b/Eigen/src/Householder/HouseholderSequence.h
index 835fe6a1c..b33fe5eeb 100644
--- a/Eigen/src/Householder/HouseholderSequence.h
+++ b/Eigen/src/Householder/HouseholderSequence.h
@@ -160,18 +160,45 @@ template<typename VectorsType, typename CoeffsType, int Side> class HouseholderS
template<typename DestType> void evalTo(DestType& dst) const
{
Index vecs = m_actualVectors;
- dst.setIdentity(rows(), rows());
+ // FIXME find a way to pass this temporary if the user want to
Matrix<Scalar, DestType::RowsAtCompileTime, 1,
- AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> temp(rows());
- for(Index k = vecs-1; k >= 0; --k)
+ AutoAlign|ColMajor, DestType::MaxRowsAtCompileTime, 1> temp(rows());
+ if( ei_is_same_type<typename ei_cleantype<VectorsType>::type,DestType>::ret
+ && ei_extract_data(dst) == ei_extract_data(m_vectors))
{
- Index cornerSize = rows() - k - m_shift;
- if(m_trans)
- dst.bottomRightCorner(cornerSize, cornerSize)
- .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &temp.coeffRef(0));
- else
- dst.bottomRightCorner(cornerSize, cornerSize)
- .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &temp.coeffRef(0));
+ // in-place
+ dst.diagonal().setOnes();
+ dst.template triangularView<StrictlyUpper>().setZero();
+ for(Index k = vecs-1; k >= 0; --k)
+ {
+ Index cornerSize = rows() - k - m_shift;
+ if(m_trans)
+ dst.bottomRightCorner(cornerSize, cornerSize)
+ .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &temp.coeffRef(0));
+ else
+ dst.bottomRightCorner(cornerSize, cornerSize)
+ .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &temp.coeffRef(0));
+
+ // clear the off diagonal vector
+ dst.col(k).tail(rows()-k-1).setZero();
+ }
+ // clear the remaining columns if needed
+ for(Index k = 0; k<cols()-vecs ; ++k)
+ dst.col(k).tail(rows()-k-1).setZero();
+ }
+ else
+ {
+ dst.setIdentity(rows(), rows());
+ for(Index k = vecs-1; k >= 0; --k)
+ {
+ Index cornerSize = rows() - k - m_shift;
+ if(m_trans)
+ dst.bottomRightCorner(cornerSize, cornerSize)
+ .applyHouseholderOnTheRight(essentialVector(k), m_coeffs.coeff(k), &temp.coeffRef(0));
+ else
+ dst.bottomRightCorner(cornerSize, cornerSize)
+ .applyHouseholderOnTheLeft(essentialVector(k), m_coeffs.coeff(k), &temp.coeffRef(0));
+ }
}
}