aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen
diff options
context:
space:
mode:
authorGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-08-14 15:12:32 -0400
committerGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-08-14 15:12:32 -0400
commit22ae236d4ea404122ff68966f1572a236f239335 (patch)
treea2b0d3e336426ddc8665968722d5ff895190730b /Eigen
parent6373c3cd0014ad8e0a6952915c3c6342b57c1863 (diff)
machine_epsilon -> epsilon as wrapper around numeric_traits
Diffstat (limited to 'Eigen')
-rw-r--r--Eigen/src/Cholesky/LDLT.h2
-rw-r--r--Eigen/src/Core/MathFunctions.h15
-rw-r--r--Eigen/src/LU/LU.h2
-rw-r--r--Eigen/src/SVD/JacobiSquareSVD.h2
4 files changed, 10 insertions, 11 deletions
diff --git a/Eigen/src/Cholesky/LDLT.h b/Eigen/src/Cholesky/LDLT.h
index e652fd213..1cb1294ac 100644
--- a/Eigen/src/Cholesky/LDLT.h
+++ b/Eigen/src/Cholesky/LDLT.h
@@ -180,7 +180,7 @@ void LDLT<MatrixType>::compute(const MatrixType& a)
// in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
// Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
// Algorithms" page 217, also by Higham.
- cutoff = ei_abs(machine_epsilon<Scalar>() * size * biggest_in_corner);
+ cutoff = ei_abs(epsilon<Scalar>() * size * biggest_in_corner);
m_sign = ei_real(m_matrix.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1;
}
diff --git a/Eigen/src/Core/MathFunctions.h b/Eigen/src/Core/MathFunctions.h
index d68c483b2..16091caf0 100644
--- a/Eigen/src/Core/MathFunctions.h
+++ b/Eigen/src/Core/MathFunctions.h
@@ -1,7 +1,7 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
-// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
+// Copyright (C) 2006-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
@@ -25,8 +25,13 @@
#ifndef EIGEN_MATHFUNCTIONS_H
#define EIGEN_MATHFUNCTIONS_H
+template<typename T> typename NumTraits<T>::Real epsilon()
+{
+ return std::numeric_limits<typename NumTraits<T>::Real>::epsilon();
+}
+
template<typename T> inline typename NumTraits<T>::Real precision();
-template<typename T> inline typename NumTraits<T>::Real machine_epsilon();
+
template<typename T> inline T ei_random(T a, T b);
template<typename T> inline T ei_random();
template<typename T> inline T ei_random_amplitude()
@@ -51,7 +56,6 @@ template<typename T> inline typename NumTraits<T>::Real ei_hypot(T x, T y)
**************/
template<> inline int precision<int>() { return 0; }
-template<> inline int machine_epsilon<int>() { return 0; }
inline int ei_real(int x) { return x; }
inline int& ei_real_ref(int& x) { return x; }
inline int ei_imag(int) { return 0; }
@@ -106,7 +110,6 @@ inline bool ei_isApproxOrLessThan(int a, int b, int = precision<int>())
**************/
template<> inline float precision<float>() { return 1e-5f; }
-template<> inline float machine_epsilon<float>() { return 1.192e-07f; }
inline float ei_real(float x) { return x; }
inline float& ei_real_ref(float& x) { return x; }
inline float ei_imag(float) { return 0.f; }
@@ -154,7 +157,6 @@ inline bool ei_isApproxOrLessThan(float a, float b, float prec = precision<float
**************/
template<> inline double precision<double>() { return 1e-12; }
-template<> inline double machine_epsilon<double>() { return 2.220e-16; }
inline double ei_real(double x) { return x; }
inline double& ei_real_ref(double& x) { return x; }
@@ -203,7 +205,6 @@ inline bool ei_isApproxOrLessThan(double a, double b, double prec = precision<do
*********************/
template<> inline float precision<std::complex<float> >() { return precision<float>(); }
-template<> inline float machine_epsilon<std::complex<float> >() { return machine_epsilon<float>(); }
inline float ei_real(const std::complex<float>& x) { return std::real(x); }
inline float ei_imag(const std::complex<float>& x) { return std::imag(x); }
inline float& ei_real_ref(std::complex<float>& x) { return reinterpret_cast<float*>(&x)[0]; }
@@ -240,7 +241,6 @@ inline bool ei_isApprox(const std::complex<float>& a, const std::complex<float>&
**********************/
template<> inline double precision<std::complex<double> >() { return precision<double>(); }
-template<> inline double machine_epsilon<std::complex<double> >() { return machine_epsilon<double>(); }
inline double ei_real(const std::complex<double>& x) { return std::real(x); }
inline double ei_imag(const std::complex<double>& x) { return std::imag(x); }
inline double& ei_real_ref(std::complex<double>& x) { return reinterpret_cast<double*>(&x)[0]; }
@@ -278,7 +278,6 @@ inline bool ei_isApprox(const std::complex<double>& a, const std::complex<double
******************/
template<> inline long double precision<long double>() { return precision<double>(); }
-template<> inline long double machine_epsilon<long double>() { return 1.084e-19l; }
inline long double ei_real(long double x) { return x; }
inline long double& ei_real_ref(long double& x) { return x; }
inline long double ei_imag(long double) { return 0.; }
diff --git a/Eigen/src/LU/LU.h b/Eigen/src/LU/LU.h
index f36951fda..733fa0cbc 100644
--- a/Eigen/src/LU/LU.h
+++ b/Eigen/src/LU/LU.h
@@ -390,7 +390,7 @@ void LU<MatrixType>::compute(const MatrixType& matrix)
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
// and turns out to be identical to Higham's formula used already in LDLt.
- m_precision = machine_epsilon<Scalar>() * size;
+ m_precision = epsilon<Scalar>() * size;
IntColVectorType rows_transpositions(matrix.rows());
IntRowVectorType cols_transpositions(matrix.cols());
diff --git a/Eigen/src/SVD/JacobiSquareSVD.h b/Eigen/src/SVD/JacobiSquareSVD.h
index 82133f7be..32adb1301 100644
--- a/Eigen/src/SVD/JacobiSquareSVD.h
+++ b/Eigen/src/SVD/JacobiSquareSVD.h
@@ -102,7 +102,7 @@ void JacobiSquareSVD<MatrixType, ComputeU, ComputeV>::compute(const MatrixType&
if(ComputeU) m_matrixU = MatrixUType::Identity(size,size);
if(ComputeV) m_matrixV = MatrixUType::Identity(size,size);
m_singularValues.resize(size);
- const RealScalar precision = 2 * machine_epsilon<Scalar>();
+ const RealScalar precision = 2 * epsilon<Scalar>();
sweep_again:
for(int p = 1; p < size; ++p)