aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src
diff options
context:
space:
mode:
authorGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2010-04-26 17:43:16 +0100
committerGravatar Jitse Niesen <jitse@maths.leeds.ac.uk>2010-04-26 17:43:16 +0100
commitd9c1224133153045fb92df351bdd3660a801f8d7 (patch)
treee8e3beb98910c9d1df41dfcfbcac5794233bdea0 /Eigen/src
parent024995dbcadf4dd8f0f7467bfd0753f34126b863 (diff)
Simplify computation of eigenvectors in EigenSolver.
* reduce scope of declarations * use that low = 0 and high = size-1 * rename some variables * rename hqr2_step2() to computeEigenvectors() * exploit that ei_isMuchSmallerThan takes absolute value of arguments
Diffstat (limited to 'Eigen/src')
-rw-r--r--Eigen/src/Eigenvalues/EigenSolver.h107
1 files changed, 46 insertions, 61 deletions
diff --git a/Eigen/src/Eigenvalues/EigenSolver.h b/Eigen/src/Eigenvalues/EigenSolver.h
index 114bfab6f..f8b953d9b 100644
--- a/Eigen/src/Eigenvalues/EigenSolver.h
+++ b/Eigen/src/Eigenvalues/EigenSolver.h
@@ -261,7 +261,7 @@ template<typename _MatrixType> class EigenSolver
EigenSolver& compute(const MatrixType& matrix);
private:
- void hqr2_step2(MatrixType& matH);
+ void computeEigenvectors(MatrixType& matH);
protected:
MatrixType m_eivec;
@@ -297,7 +297,7 @@ typename EigenSolver<MatrixType>::EigenvectorsType EigenSolver<MatrixType>::eige
EigenvectorsType matV(n,n);
for (int j=0; j<n; ++j)
{
- if (ei_isMuchSmallerThan(ei_abs(ei_imag(m_eivalues.coeff(j))), ei_abs(ei_real(m_eivalues.coeff(j)))))
+ if (ei_isMuchSmallerThan(ei_imag(m_eivalues.coeff(j)), ei_real(m_eivalues.coeff(j))))
{
// we have a real eigen value
matV.col(j) = m_eivec.col(j).template cast<ComplexScalar>();
@@ -349,7 +349,7 @@ EigenSolver<MatrixType>& EigenSolver<MatrixType>::compute(const MatrixType& matr
}
// Compute eigenvectors.
- hqr2_step2(matT);
+ computeEigenvectors(matT);
m_isInitialized = true;
return *this;
@@ -376,19 +376,16 @@ std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi)
template<typename MatrixType>
-void EigenSolver<MatrixType>::hqr2_step2(MatrixType& matH)
+void EigenSolver<MatrixType>::computeEigenvectors(MatrixType& matH)
{
- const int nn = m_eivec.cols();
- const int low = 0;
- const int high = nn-1;
- const Scalar eps = ei_pow(Scalar(2),ei_is_same_type<Scalar,float>::ret ? Scalar(-23) : Scalar(-52));
- Scalar p, q, r=0, s=0, t, w, x, y, z=0;
+ const int size = m_eivec.cols();
+ const Scalar eps = NumTraits<Scalar>::epsilon();
// inefficient! this is already computed in RealSchur
Scalar norm = 0.0;
- for (int j = 0; j < nn; ++j)
+ for (int j = 0; j < size; ++j)
{
- norm += matH.row(j).segment(std::max(j-1,0), nn-std::max(j-1,0)).cwiseAbs().sum();
+ norm += matH.row(j).segment(std::max(j-1,0), size-std::max(j-1,0)).cwiseAbs().sum();
}
// Backsubstitute to find vectors of upper triangular form
@@ -397,25 +394,27 @@ void EigenSolver<MatrixType>::hqr2_step2(MatrixType& matH)
return;
}
- for (int n = nn-1; n >= 0; n--)
+ for (int n = size-1; n >= 0; n--)
{
- p = m_eivalues.coeff(n).real();
- q = m_eivalues.coeff(n).imag();
+ Scalar p = m_eivalues.coeff(n).real();
+ Scalar q = m_eivalues.coeff(n).imag();
// Scalar vector
if (q == 0)
{
+ Scalar lastr=0, lastw=0;
int l = n;
+
matH.coeffRef(n,n) = 1.0;
for (int i = n-1; i >= 0; i--)
{
- w = matH.coeff(i,i) - p;
- r = matH.row(i).segment(l,n-l+1).dot(matH.col(n).segment(l, n-l+1));
+ Scalar w = matH.coeff(i,i) - p;
+ Scalar r = matH.row(i).segment(l,n-l+1).dot(matH.col(n).segment(l, n-l+1));
if (m_eivalues.coeff(i).imag() < 0.0)
{
- z = w;
- s = r;
+ lastw = w;
+ lastr = r;
}
else
{
@@ -429,27 +428,27 @@ void EigenSolver<MatrixType>::hqr2_step2(MatrixType& matH)
}
else // Solve real equations
{
- x = matH.coeff(i,i+1);
- y = matH.coeff(i+1,i);
- q = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
- t = (x * s - z * r) / q;
+ Scalar x = matH.coeff(i,i+1);
+ Scalar y = matH.coeff(i+1,i);
+ Scalar denom = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag();
+ Scalar t = (x * lastr - lastw * r) / denom;
matH.coeffRef(i,n) = t;
- if (ei_abs(x) > ei_abs(z))
+ if (ei_abs(x) > ei_abs(lastw))
matH.coeffRef(i+1,n) = (-r - w * t) / x;
else
- matH.coeffRef(i+1,n) = (-s - y * t) / z;
+ matH.coeffRef(i+1,n) = (-lastr - y * t) / lastw;
}
// Overflow control
- t = ei_abs(matH.coeff(i,n));
+ Scalar t = ei_abs(matH.coeff(i,n));
if ((eps * t) * t > 1)
- matH.col(n).tail(nn-i) /= t;
+ matH.col(n).tail(size-i) /= t;
}
}
}
else if (q < 0) // Complex vector
{
- std::complex<Scalar> cc;
+ Scalar lastra=0, lastsa=0, lastw=0;
int l = n-1;
// Last vector component imaginary so matrix is triangular
@@ -460,7 +459,7 @@ void EigenSolver<MatrixType>::hqr2_step2(MatrixType& matH)
}
else
{
- cc = cdiv<Scalar>(0.0,-matH.coeff(n-1,n),matH.coeff(n-1,n-1)-p,q);
+ std::complex<Scalar> cc = cdiv<Scalar>(0.0,-matH.coeff(n-1,n),matH.coeff(n-1,n-1)-p,q);
matH.coeffRef(n-1,n-1) = ei_real(cc);
matH.coeffRef(n-1,n) = ei_imag(cc);
}
@@ -468,79 +467,65 @@ void EigenSolver<MatrixType>::hqr2_step2(MatrixType& matH)
matH.coeffRef(n,n) = 1.0;
for (int i = n-2; i >= 0; i--)
{
- Scalar ra,sa,vr,vi;
- ra = matH.row(i).segment(l, n-l+1).dot(matH.col(n-1).segment(l, n-l+1));
- sa = matH.row(i).segment(l, n-l+1).dot(matH.col(n).segment(l, n-l+1));
- w = matH.coeff(i,i) - p;
+ Scalar ra = matH.row(i).segment(l, n-l+1).dot(matH.col(n-1).segment(l, n-l+1));
+ Scalar sa = matH.row(i).segment(l, n-l+1).dot(matH.col(n).segment(l, n-l+1));
+ Scalar w = matH.coeff(i,i) - p;
if (m_eivalues.coeff(i).imag() < 0.0)
{
- z = w;
- r = ra;
- s = sa;
+ lastw = w;
+ lastra = ra;
+ lastsa = sa;
}
else
{
l = i;
if (m_eivalues.coeff(i).imag() == 0)
{
- cc = cdiv(-ra,-sa,w,q);
+ std::complex<Scalar> cc = cdiv(-ra,-sa,w,q);
matH.coeffRef(i,n-1) = ei_real(cc);
matH.coeffRef(i,n) = ei_imag(cc);
}
else
{
// Solve complex equations
- x = matH.coeff(i,i+1);
- y = matH.coeff(i+1,i);
- vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
- vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
+ Scalar x = matH.coeff(i,i+1);
+ Scalar y = matH.coeff(i+1,i);
+ Scalar vr = (m_eivalues.coeff(i).real() - p) * (m_eivalues.coeff(i).real() - p) + m_eivalues.coeff(i).imag() * m_eivalues.coeff(i).imag() - q * q;
+ Scalar vi = (m_eivalues.coeff(i).real() - p) * Scalar(2) * q;
if ((vr == 0.0) && (vi == 0.0))
- vr = eps * norm * (ei_abs(w) + ei_abs(q) + ei_abs(x) + ei_abs(y) + ei_abs(z));
+ vr = eps * norm * (ei_abs(w) + ei_abs(q) + ei_abs(x) + ei_abs(y) + ei_abs(lastw));
- cc= cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
+ std::complex<Scalar> cc = cdiv(x*lastra-lastw*ra+q*sa,x*lastsa-lastw*sa-q*ra,vr,vi);
matH.coeffRef(i,n-1) = ei_real(cc);
matH.coeffRef(i,n) = ei_imag(cc);
- if (ei_abs(x) > (ei_abs(z) + ei_abs(q)))
+ if (ei_abs(x) > (ei_abs(lastw) + ei_abs(q)))
{
matH.coeffRef(i+1,n-1) = (-ra - w * matH.coeff(i,n-1) + q * matH.coeff(i,n)) / x;
matH.coeffRef(i+1,n) = (-sa - w * matH.coeff(i,n) - q * matH.coeff(i,n-1)) / x;
}
else
{
- cc = cdiv(-r-y*matH.coeff(i,n-1),-s-y*matH.coeff(i,n),z,q);
+ cc = cdiv(-lastra-y*matH.coeff(i,n-1),-lastsa-y*matH.coeff(i,n),lastw,q);
matH.coeffRef(i+1,n-1) = ei_real(cc);
matH.coeffRef(i+1,n) = ei_imag(cc);
}
}
// Overflow control
- t = std::max(ei_abs(matH.coeff(i,n-1)),ei_abs(matH.coeff(i,n)));
+ Scalar t = std::max(ei_abs(matH.coeff(i,n-1)),ei_abs(matH.coeff(i,n)));
if ((eps * t) * t > 1)
- matH.block(i, n-1, nn-i, 2) /= t;
+ matH.block(i, n-1, size-i, 2) /= t;
}
}
}
}
- // Vectors of isolated roots
- for (int i = 0; i < nn; ++i)
- {
- // FIXME again what's the purpose of this test ?
- // in this algo low==0 and high==nn-1 !!
- if (i < low || i > high)
- {
- m_eivec.row(i).tail(nn-i) = matH.row(i).tail(nn-i);
- }
- }
-
// Back transformation to get eigenvectors of original matrix
- int bRows = high-low+1;
- for (int j = nn-1; j >= low; j--)
+ for (int j = size-1; j >= 0; j--)
{
- int bSize = std::min(j,high)-low+1;
- m_eivec.col(j).segment(low, bRows) = (m_eivec.block(low, low, bRows, bSize) * matH.col(j).segment(low, bSize));
+ m_eivec.col(j).segment(0, size) = m_eivec.leftCols(j+1) * matH.col(j).segment(0, j+1);
}
}