aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src
diff options
context:
space:
mode:
authorGravatar Hauke Heibel <hauke.heibel@gmail.com>2009-05-22 14:27:58 +0200
committerGravatar Hauke Heibel <hauke.heibel@gmail.com>2009-05-22 14:27:58 +0200
commit5c5789cf0f28b375e3bfebe3e61756fc0b00fe0c (patch)
tree8f0c290834bee4119ee8e8084d0231144e12c640 /Eigen/src
parentc7baddb132f3c5894775041645f54517bd110d40 (diff)
QR and SVD decomposition interface unification.
Added default ctor and public compute method as well as safe-guards against uninitialized usage. Added unit tests for the safe-guards.
Diffstat (limited to 'Eigen/src')
-rw-r--r--Eigen/src/QR/QR.h39
-rw-r--r--Eigen/src/SVD/SVD.h42
2 files changed, 69 insertions, 12 deletions
diff --git a/Eigen/src/QR/QR.h b/Eigen/src/QR/QR.h
index 19002e0eb..63fd2d48b 100644
--- a/Eigen/src/QR/QR.h
+++ b/Eigen/src/QR/QR.h
@@ -49,11 +49,20 @@ template<typename MatrixType> class QR
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, MatrixType::ColsAtCompileTime> MatrixTypeR;
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
+ /**
+ * \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via QR::compute(const MatrixType&).
+ */
+ QR() : m_qr(), m_hCoeffs(), m_isInitialized(false) {}
+
QR(const MatrixType& matrix)
: m_qr(matrix.rows(), matrix.cols()),
- m_hCoeffs(matrix.cols())
+ m_hCoeffs(matrix.cols()),
+ m_isInitialized(false)
{
- _compute(matrix);
+ compute(matrix);
}
/** \deprecated use isInjective()
@@ -62,7 +71,11 @@ template<typename MatrixType> class QR
* \note Since the rank is computed only once, i.e. the first time it is needed, this
* method almost does not perform any further computation.
*/
- EIGEN_DEPRECATED bool isFullRank() const { return rank() == m_qr.cols(); }
+ EIGEN_DEPRECATED bool isFullRank() const
+ {
+ ei_assert(m_isInitialized && "QR is not initialized.");
+ return rank() == m_qr.cols();
+ }
/** \returns the rank of the matrix of which *this is the QR decomposition.
*
@@ -78,6 +91,7 @@ template<typename MatrixType> class QR
*/
inline int dimensionOfKernel() const
{
+ ei_assert(m_isInitialized && "QR is not initialized.");
return m_qr.cols() - rank();
}
@@ -89,6 +103,7 @@ template<typename MatrixType> class QR
*/
inline bool isInjective() const
{
+ ei_assert(m_isInitialized && "QR is not initialized.");
return rank() == m_qr.cols();
}
@@ -100,6 +115,7 @@ template<typename MatrixType> class QR
*/
inline bool isSurjective() const
{
+ ei_assert(m_isInitialized && "QR is not initialized.");
return rank() == m_qr.rows();
}
@@ -110,6 +126,7 @@ template<typename MatrixType> class QR
*/
inline bool isInvertible() const
{
+ ei_assert(m_isInitialized && "QR is not initialized.");
return isInjective() && isSurjective();
}
@@ -117,6 +134,7 @@ template<typename MatrixType> class QR
const Part<NestByValue<MatrixRBlockType>, UpperTriangular>
matrixR(void) const
{
+ ei_assert(m_isInitialized && "QR is not initialized.");
int cols = m_qr.cols();
return MatrixRBlockType(m_qr, 0, 0, cols, cols).nestByValue().template part<UpperTriangular>();
}
@@ -149,21 +167,21 @@ template<typename MatrixType> class QR
MatrixType matrixQ(void) const;
- private:
-
- void _compute(const MatrixType& matrix);
+ void compute(const MatrixType& matrix);
protected:
MatrixType m_qr;
VectorType m_hCoeffs;
mutable int m_rank;
mutable bool m_rankIsUptodate;
+ bool m_isInitialized;
};
/** \returns the rank of the matrix of which *this is the QR decomposition. */
template<typename MatrixType>
int QR<MatrixType>::rank() const
{
+ ei_assert(m_isInitialized && "QR is not initialized.");
if (!m_rankIsUptodate)
{
RealScalar maxCoeff = m_qr.diagonal().cwise().abs().maxCoeff();
@@ -179,10 +197,12 @@ int QR<MatrixType>::rank() const
#ifndef EIGEN_HIDE_HEAVY_CODE
template<typename MatrixType>
-void QR<MatrixType>::_compute(const MatrixType& matrix)
-{
+void QR<MatrixType>::compute(const MatrixType& matrix)
+{
m_rankIsUptodate = false;
m_qr = matrix;
+ m_hCoeffs.resize(matrix.cols());
+
int rows = matrix.rows();
int cols = matrix.cols();
RealScalar eps2 = precision<RealScalar>()*precision<RealScalar>();
@@ -237,6 +257,7 @@ void QR<MatrixType>::_compute(const MatrixType& matrix)
m_hCoeffs.coeffRef(k) = 0;
}
}
+ m_isInitialized = true;
}
template<typename MatrixType>
@@ -246,6 +267,7 @@ bool QR<MatrixType>::solve(
ResultType *result
) const
{
+ ei_assert(m_isInitialized && "QR is not initialized.");
const int rows = m_qr.rows();
ei_assert(b.rows() == rows);
result->resize(rows, b.cols());
@@ -274,6 +296,7 @@ bool QR<MatrixType>::solve(
template<typename MatrixType>
MatrixType QR<MatrixType>::matrixQ() const
{
+ ei_assert(m_isInitialized && "QR is not initialized.");
// compute the product Q_0 Q_1 ... Q_n-1,
// where Q_k is the k-th Householder transformation I - h_k v_k v_k'
// and v_k is the k-th Householder vector [1,m_qr(k+1,k), m_qr(k+2,k), ...]
diff --git a/Eigen/src/SVD/SVD.h b/Eigen/src/SVD/SVD.h
index 0a52acf3d..0073a0ccb 100644
--- a/Eigen/src/SVD/SVD.h
+++ b/Eigen/src/SVD/SVD.h
@@ -61,10 +61,19 @@ template<typename MatrixType> class SVD
public:
+ /**
+ * \brief Default Constructor.
+ *
+ * The default constructor is useful in cases in which the user intends to
+ * perform decompositions via QR::compute(const MatrixType&).
+ */
+ SVD() : m_matU(), m_matV(), m_sigma(), m_isInitialized(false) {}
+
SVD(const MatrixType& matrix)
: m_matU(matrix.rows(), std::min(matrix.rows(), matrix.cols())),
m_matV(matrix.cols(),matrix.cols()),
- m_sigma(std::min(matrix.rows(),matrix.cols()))
+ m_sigma(std::min(matrix.rows(),matrix.cols())),
+ m_isInitialized(false)
{
compute(matrix);
}
@@ -72,9 +81,23 @@ template<typename MatrixType> class SVD
template<typename OtherDerived, typename ResultType>
bool solve(const MatrixBase<OtherDerived> &b, ResultType* result) const;
- const MatrixUType& matrixU() const { return m_matU; }
- const SingularValuesType& singularValues() const { return m_sigma; }
- const MatrixVType& matrixV() const { return m_matV; }
+ const MatrixUType& matrixU() const
+ {
+ ei_assert(m_isInitialized && "SVD is not initialized.");
+ return m_matU;
+ }
+
+ const SingularValuesType& singularValues() const
+ {
+ ei_assert(m_isInitialized && "SVD is not initialized.");
+ return m_sigma;
+ }
+
+ const MatrixVType& matrixV() const
+ {
+ ei_assert(m_isInitialized && "SVD is not initialized.");
+ return m_matV;
+ }
void compute(const MatrixType& matrix);
SVD& sort();
@@ -95,6 +118,7 @@ template<typename MatrixType> class SVD
MatrixVType m_matV;
/** \internal */
SingularValuesType m_sigma;
+ bool m_isInitialized;
};
/** Computes / recomputes the SVD decomposition A = U S V^* of \a matrix
@@ -473,11 +497,15 @@ void SVD<MatrixType>::compute(const MatrixType& matrix)
break;
} // end big switch
} // end iterations
+
+ m_isInitialized = true;
}
template<typename MatrixType>
SVD<MatrixType>& SVD<MatrixType>::sort()
{
+ ei_assert(m_isInitialized && "SVD is not initialized.");
+
int mu = m_matU.rows();
int mv = m_matV.rows();
int n = m_matU.cols();
@@ -521,6 +549,8 @@ template<typename MatrixType>
template<typename OtherDerived, typename ResultType>
bool SVD<MatrixType>::solve(const MatrixBase<OtherDerived> &b, ResultType* result) const
{
+ ei_assert(m_isInitialized && "SVD is not initialized.");
+
const int rows = m_matU.rows();
ei_assert(b.rows() == rows);
@@ -556,6 +586,7 @@ template<typename UnitaryType, typename PositiveType>
void SVD<MatrixType>::computeUnitaryPositive(UnitaryType *unitary,
PositiveType *positive) const
{
+ ei_assert(m_isInitialized && "SVD is not initialized.");
ei_assert(m_matU.cols() == m_matV.cols() && "Polar decomposition is only for square matrices");
if(unitary) *unitary = m_matU * m_matV.adjoint();
if(positive) *positive = m_matV * m_sigma.asDiagonal() * m_matV.adjoint();
@@ -574,6 +605,7 @@ template<typename UnitaryType, typename PositiveType>
void SVD<MatrixType>::computePositiveUnitary(UnitaryType *positive,
PositiveType *unitary) const
{
+ ei_assert(m_isInitialized && "SVD is not initialized.");
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
if(unitary) *unitary = m_matU * m_matV.adjoint();
if(positive) *positive = m_matU * m_sigma.asDiagonal() * m_matU.adjoint();
@@ -592,6 +624,7 @@ template<typename MatrixType>
template<typename RotationType, typename ScalingType>
void SVD<MatrixType>::computeRotationScaling(RotationType *rotation, ScalingType *scaling) const
{
+ ei_assert(m_isInitialized && "SVD is not initialized.");
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);
@@ -618,6 +651,7 @@ template<typename MatrixType>
template<typename ScalingType, typename RotationType>
void SVD<MatrixType>::computeScalingRotation(ScalingType *scaling, RotationType *rotation) const
{
+ ei_assert(m_isInitialized && "SVD is not initialized.");
ei_assert(m_matU.rows() == m_matV.rows() && "Polar decomposition is only for square matrices");
Scalar x = (m_matU * m_matV.adjoint()).determinant(); // so x has absolute value 1
Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> sv(m_sigma);