diff options
author | Gael Guennebaud <g.gael@free.fr> | 2011-11-12 14:11:27 +0100 |
---|---|---|
committer | Gael Guennebaud <g.gael@free.fr> | 2011-11-12 14:11:27 +0100 |
commit | 53fa8517245e0136c83b77526b05ce67de232a56 (patch) | |
tree | 99dd17062c742eabfc3626a04c38fd6f72e43bc4 /Eigen/src/UmfPackSupport | |
parent | dcb66d6b403ed2c4341fdb091f2ef22b73ea8b8a (diff) |
move sparse solvers from unsupported/ to main Eigen/ and remove the "not stable yet" warning
Diffstat (limited to 'Eigen/src/UmfPackSupport')
-rw-r--r-- | Eigen/src/UmfPackSupport/CMakeLists.txt | 6 | ||||
-rw-r--r-- | Eigen/src/UmfPackSupport/UmfPackSupport.h | 406 |
2 files changed, 412 insertions, 0 deletions
diff --git a/Eigen/src/UmfPackSupport/CMakeLists.txt b/Eigen/src/UmfPackSupport/CMakeLists.txt new file mode 100644 index 000000000..a57de0020 --- /dev/null +++ b/Eigen/src/UmfPackSupport/CMakeLists.txt @@ -0,0 +1,6 @@ +FILE(GLOB Eigen_UmfPackSupport_SRCS "*.h") + +INSTALL(FILES + ${Eigen_UmfPackSupport_SRCS} + DESTINATION ${INCLUDE_INSTALL_DIR}/Eigen/src/UmfPackSupport COMPONENT Devel + ) diff --git a/Eigen/src/UmfPackSupport/UmfPackSupport.h b/Eigen/src/UmfPackSupport/UmfPackSupport.h new file mode 100644 index 000000000..e41de8337 --- /dev/null +++ b/Eigen/src/UmfPackSupport/UmfPackSupport.h @@ -0,0 +1,406 @@ +// This file is part of Eigen, a lightweight C++ template library +// for linear algebra. +// +// Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> +// +// Eigen is free software; you can redistribute it and/or +// modify it under the terms of the GNU Lesser General Public +// License as published by the Free Software Foundation; either +// version 3 of the License, or (at your option) any later version. +// +// Alternatively, you can redistribute it and/or +// modify it under the terms of the GNU General Public License as +// published by the Free Software Foundation; either version 2 of +// the License, or (at your option) any later version. +// +// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY +// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS +// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the +// GNU General Public License for more details. +// +// You should have received a copy of the GNU Lesser General Public +// License and a copy of the GNU General Public License along with +// Eigen. If not, see <http://www.gnu.org/licenses/>. + +#ifndef EIGEN_UMFPACKSUPPORT_H +#define EIGEN_UMFPACKSUPPORT_H + +/* TODO extract L, extract U, compute det, etc... */ + +// generic double/complex<double> wrapper functions: + +inline void umfpack_free_numeric(void **Numeric, double) +{ umfpack_di_free_numeric(Numeric); *Numeric = 0; } + +inline void umfpack_free_numeric(void **Numeric, std::complex<double>) +{ umfpack_zi_free_numeric(Numeric); *Numeric = 0; } + +inline void umfpack_free_symbolic(void **Symbolic, double) +{ umfpack_di_free_symbolic(Symbolic); *Symbolic = 0; } + +inline void umfpack_free_symbolic(void **Symbolic, std::complex<double>) +{ umfpack_zi_free_symbolic(Symbolic); *Symbolic = 0; } + +inline int umfpack_symbolic(int n_row,int n_col, + const int Ap[], const int Ai[], const double Ax[], void **Symbolic, + const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) +{ + return umfpack_di_symbolic(n_row,n_col,Ap,Ai,Ax,Symbolic,Control,Info); +} + +inline int umfpack_symbolic(int n_row,int n_col, + const int Ap[], const int Ai[], const std::complex<double> Ax[], void **Symbolic, + const double Control [UMFPACK_CONTROL], double Info [UMFPACK_INFO]) +{ + return umfpack_zi_symbolic(n_row,n_col,Ap,Ai,&internal::real_ref(Ax[0]),0,Symbolic,Control,Info); +} + +inline int umfpack_numeric( const int Ap[], const int Ai[], const double Ax[], + void *Symbolic, void **Numeric, + const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) +{ + return umfpack_di_numeric(Ap,Ai,Ax,Symbolic,Numeric,Control,Info); +} + +inline int umfpack_numeric( const int Ap[], const int Ai[], const std::complex<double> Ax[], + void *Symbolic, void **Numeric, + const double Control[UMFPACK_CONTROL],double Info [UMFPACK_INFO]) +{ + return umfpack_zi_numeric(Ap,Ai,&internal::real_ref(Ax[0]),0,Symbolic,Numeric,Control,Info); +} + +inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const double Ax[], + double X[], const double B[], void *Numeric, + const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) +{ + return umfpack_di_solve(sys,Ap,Ai,Ax,X,B,Numeric,Control,Info); +} + +inline int umfpack_solve( int sys, const int Ap[], const int Ai[], const std::complex<double> Ax[], + std::complex<double> X[], const std::complex<double> B[], void *Numeric, + const double Control[UMFPACK_CONTROL], double Info[UMFPACK_INFO]) +{ + return umfpack_zi_solve(sys,Ap,Ai,&internal::real_ref(Ax[0]),0,&internal::real_ref(X[0]),0,&internal::real_ref(B[0]),0,Numeric,Control,Info); +} + +inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, double) +{ + return umfpack_di_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); +} + +inline int umfpack_get_lunz(int *lnz, int *unz, int *n_row, int *n_col, int *nz_udiag, void *Numeric, std::complex<double>) +{ + return umfpack_zi_get_lunz(lnz,unz,n_row,n_col,nz_udiag,Numeric); +} + +inline int umfpack_get_numeric(int Lp[], int Lj[], double Lx[], int Up[], int Ui[], double Ux[], + int P[], int Q[], double Dx[], int *do_recip, double Rs[], void *Numeric) +{ + return umfpack_di_get_numeric(Lp,Lj,Lx,Up,Ui,Ux,P,Q,Dx,do_recip,Rs,Numeric); +} + +inline int umfpack_get_numeric(int Lp[], int Lj[], std::complex<double> Lx[], int Up[], int Ui[], std::complex<double> Ux[], + int P[], int Q[], std::complex<double> Dx[], int *do_recip, double Rs[], void *Numeric) +{ + double& lx0_real = internal::real_ref(Lx[0]); + double& ux0_real = internal::real_ref(Ux[0]); + double& dx0_real = internal::real_ref(Dx[0]); + return umfpack_zi_get_numeric(Lp,Lj,Lx?&lx0_real:0,0,Up,Ui,Ux?&ux0_real:0,0,P,Q, + Dx?&dx0_real:0,0,do_recip,Rs,Numeric); +} + +inline int umfpack_get_determinant(double *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO]) +{ + return umfpack_di_get_determinant(Mx,Ex,NumericHandle,User_Info); +} + +inline int umfpack_get_determinant(std::complex<double> *Mx, double *Ex, void *NumericHandle, double User_Info [UMFPACK_INFO]) +{ + double& mx_real = internal::real_ref(*Mx); + return umfpack_zi_get_determinant(&mx_real,0,Ex,NumericHandle,User_Info); +} + +/** \brief A sparse LU factorization and solver based on UmfPack + * + * This class allows to solve for A.X = B sparse linear problems via a LU factorization + * using the UmfPack library. The sparse matrix A must be column-major, squared and full rank. + * The vectors or matrices X and B can be either dense or sparse. + * + * \tparam _MatrixType the type of the sparse matrix A, it must be a SparseMatrix<> + * + */ +template<typename _MatrixType> +class UmfPackLU +{ + public: + typedef _MatrixType MatrixType; + typedef typename MatrixType::Scalar Scalar; + typedef typename MatrixType::RealScalar RealScalar; + typedef typename MatrixType::Index Index; + typedef Matrix<Scalar,Dynamic,1> Vector; + typedef Matrix<int, 1, MatrixType::ColsAtCompileTime> IntRowVectorType; + typedef Matrix<int, MatrixType::RowsAtCompileTime, 1> IntColVectorType; + typedef SparseMatrix<Scalar> LUMatrixType; + + public: + + UmfPackLU() { init(); } + + UmfPackLU(const MatrixType& matrix) + { + init(); + compute(matrix); + } + + ~UmfPackLU() + { + if(m_symbolic) umfpack_free_symbolic(&m_symbolic,Scalar()); + if(m_numeric) umfpack_free_numeric(&m_numeric,Scalar()); + } + + inline Index rows() const { return m_matrixRef->rows(); } + inline Index cols() const { return m_matrixRef->cols(); } + + /** \brief Reports whether previous computation was successful. + * + * \returns \c Success if computation was succesful, + * \c NumericalIssue if the matrix.appears to be negative. + */ + ComputationInfo info() const + { + eigen_assert(m_isInitialized && "Decomposition is not initialized."); + return m_info; + } + + inline const LUMatrixType& matrixL() const + { + if (m_extractedDataAreDirty) extractData(); + return m_l; + } + + inline const LUMatrixType& matrixU() const + { + if (m_extractedDataAreDirty) extractData(); + return m_u; + } + + inline const IntColVectorType& permutationP() const + { + if (m_extractedDataAreDirty) extractData(); + return m_p; + } + + inline const IntRowVectorType& permutationQ() const + { + if (m_extractedDataAreDirty) extractData(); + return m_q; + } + + /** Computes the sparse Cholesky decomposition of \a matrix */ + void compute(const MatrixType& matrix) + { + analyzePattern(matrix); + factorize(matrix); + } + + /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. + * + * \sa compute() + */ + template<typename Rhs> + inline const internal::solve_retval<UmfPackLU, Rhs> solve(const MatrixBase<Rhs>& b) const + { + eigen_assert(m_isInitialized && "UmfPAckLU is not initialized."); + eigen_assert(rows()==b.rows() + && "UmfPAckLU::solve(): invalid number of rows of the right hand side matrix b"); + return internal::solve_retval<UmfPackLU, Rhs>(*this, b.derived()); + } + + /** \returns the solution x of \f$ A x = b \f$ using the current decomposition of A. + * + * \sa compute() + */ +// template<typename Rhs> +// inline const internal::sparse_solve_retval<UmfPAckLU, Rhs> solve(const SparseMatrixBase<Rhs>& b) const +// { +// eigen_assert(m_isInitialized && "UmfPAckLU is not initialized."); +// eigen_assert(rows()==b.rows() +// && "UmfPAckLU::solve(): invalid number of rows of the right hand side matrix b"); +// return internal::sparse_solve_retval<UmfPAckLU, Rhs>(*this, b.derived()); +// } + + /** Performs a symbolic decomposition on the sparcity of \a matrix. + * + * This function is particularly useful when solving for several problems having the same structure. + * + * \sa factorize() + */ + void analyzePattern(const MatrixType& matrix) + { + eigen_assert((MatrixType::Flags&RowMajorBit)==0 && "UmfPackLU: Row major matrices are not supported yet"); + + if(m_symbolic) + umfpack_free_symbolic(&m_symbolic,Scalar()); + if(m_numeric) + umfpack_free_numeric(&m_numeric,Scalar()); + + int errorCode = 0; + errorCode = umfpack_symbolic(matrix.rows(), matrix.cols(), matrix._outerIndexPtr(), matrix._innerIndexPtr(), matrix._valuePtr(), + &m_symbolic, 0, 0); + + m_isInitialized = true; + m_info = errorCode ? InvalidInput : Success; + m_analysisIsOk = true; + m_factorizationIsOk = false; + } + + /** Performs a numeric decomposition of \a matrix + * + * The given matrix must has the same sparcity than the matrix on which the symbolic decomposition has been performed. + * + * \sa analyzePattern() + */ + void factorize(const MatrixType& matrix) + { + eigen_assert(m_analysisIsOk && "UmfPackLU: you must first call analyzePattern()"); + if(m_numeric) + umfpack_free_numeric(&m_numeric,Scalar()); + + m_matrixRef = &matrix; + + int errorCode; + errorCode = umfpack_numeric(matrix._outerIndexPtr(), matrix._innerIndexPtr(), matrix._valuePtr(), + m_symbolic, &m_numeric, 0, 0); + + m_info = errorCode ? NumericalIssue : Success; + m_factorizationIsOk = true; + } + + #ifndef EIGEN_PARSED_BY_DOXYGEN + /** \internal */ + template<typename BDerived,typename XDerived> + bool _solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const; + #endif + + Scalar determinant() const; + + void extractData() const; + + protected: + + + void init() + { + m_info = InvalidInput; + m_isInitialized = false; + m_numeric = 0; + m_symbolic = 0; + } + + // cached data to reduce reallocation, etc. + mutable LUMatrixType m_l; + mutable LUMatrixType m_u; + mutable IntColVectorType m_p; + mutable IntRowVectorType m_q; + + const MatrixType* m_matrixRef; + void* m_numeric; + void* m_symbolic; + + mutable ComputationInfo m_info; + bool m_isInitialized; + int m_factorizationIsOk; + int m_analysisIsOk; + mutable bool m_extractedDataAreDirty; +}; + + +template<typename MatrixType> +void UmfPackLU<MatrixType>::extractData() const +{ + if (m_extractedDataAreDirty) + { + // get size of the data + int lnz, unz, rows, cols, nz_udiag; + umfpack_get_lunz(&lnz, &unz, &rows, &cols, &nz_udiag, m_numeric, Scalar()); + + // allocate data + m_l.resize(rows,(std::min)(rows,cols)); + m_l.resizeNonZeros(lnz); + + m_u.resize((std::min)(rows,cols),cols); + m_u.resizeNonZeros(unz); + + m_p.resize(rows); + m_q.resize(cols); + + // extract + umfpack_get_numeric(m_l._outerIndexPtr(), m_l._innerIndexPtr(), m_l._valuePtr(), + m_u._outerIndexPtr(), m_u._innerIndexPtr(), m_u._valuePtr(), + m_p.data(), m_q.data(), 0, 0, 0, m_numeric); + + m_extractedDataAreDirty = false; + } +} + +template<typename MatrixType> +typename UmfPackLU<MatrixType>::Scalar UmfPackLU<MatrixType>::determinant() const +{ + Scalar det; + umfpack_get_determinant(&det, 0, m_numeric, 0); + return det; +} + +template<typename MatrixType> +template<typename BDerived,typename XDerived> +bool UmfPackLU<MatrixType>::_solve(const MatrixBase<BDerived> &b, MatrixBase<XDerived> &x) const +{ + const int rhsCols = b.cols(); + eigen_assert((BDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major rhs yet"); + eigen_assert((XDerived::Flags&RowMajorBit)==0 && "UmfPackLU backend does not support non col-major result yet"); + + int errorCode; + for (int j=0; j<rhsCols; ++j) + { + errorCode = umfpack_solve(UMFPACK_A, + m_matrixRef->_outerIndexPtr(), m_matrixRef->_innerIndexPtr(), m_matrixRef->_valuePtr(), + &x.col(j).coeffRef(0), &b.const_cast_derived().col(j).coeffRef(0), m_numeric, 0, 0); + if (errorCode!=0) + return false; + } + + return true; +} + + +namespace internal { + +template<typename _MatrixType, typename Rhs> +struct solve_retval<UmfPackLU<_MatrixType>, Rhs> + : solve_retval_base<UmfPackLU<_MatrixType>, Rhs> +{ + typedef UmfPackLU<_MatrixType> Dec; + EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs) + + template<typename Dest> void evalTo(Dest& dst) const + { + dec()._solve(rhs(),dst); + } +}; + +template<typename _MatrixType, typename Rhs> +struct sparse_solve_retval<UmfPackLU<_MatrixType>, Rhs> + : sparse_solve_retval_base<UmfPackLU<_MatrixType>, Rhs> +{ + typedef UmfPackLU<_MatrixType> Dec; + EIGEN_MAKE_SPARSE_SOLVE_HELPERS(Dec,Rhs) + + template<typename Dest> void evalTo(Dest& dst) const + { + dec()._solve(rhs(),dst); + } +}; + +} + +#endif // EIGEN_UMFPACKSUPPORT_H |