aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SparseLU/SparseLU.h
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2013-01-12 11:55:16 +0100
committerGravatar Gael Guennebaud <g.gael@free.fr>2013-01-12 11:55:16 +0100
commit38fa432e075c31b0dff17ed98dd27cad01046ea8 (patch)
treefb504db5d98fab45ab6f2ba6fc9d3c8a04b7f590 /Eigen/src/SparseLU/SparseLU.h
parent50625834e64616d798e8a28a66f0eef638dc2801 (diff)
Clean inclusion, namespace definition, and documentation of SparseLU
Diffstat (limited to 'Eigen/src/SparseLU/SparseLU.h')
-rw-r--r--Eigen/src/SparseLU/SparseLU.h109
1 files changed, 51 insertions, 58 deletions
diff --git a/Eigen/src/SparseLU/SparseLU.h b/Eigen/src/SparseLU/SparseLU.h
index 6003237fe..c644f945f 100644
--- a/Eigen/src/SparseLU/SparseLU.h
+++ b/Eigen/src/SparseLU/SparseLU.h
@@ -13,63 +13,57 @@
namespace Eigen {
-
-// Data structure needed by all routines
-#include "SparseLU_Structs.h"
-#include "SparseLU_Matrix.h"
-
-// Base structure containing all the factorization routines
-#include "SparseLUBase.h"
-/**
- * \ingroup SparseLU_Module
- * \brief Sparse supernodal LU factorization for general matrices
- *
- * This class implements the supernodal LU factorization for general matrices.
- * It uses the main techniques from the sequential SuperLU package
- * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
- * and complex arithmetics with single and double precision, depending on the
- * scalar type of your input matrix.
- * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
- * It benefits directly from the built-in high-performant Eigen BLAS routines.
- * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
- * enable a better optimization from the compiler. For best performance,
- * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
- *
- * An important parameter of this class is the ordering method. It is used to reorder the columns
- * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
- * numerical factorization. The cheapest method available is COLAMD.
- * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
- * built-in and external ordering methods.
- *
- * Simple example with key steps
- * \code
- * VectorXd x(n), b(n);
- * SparseMatrix<double, ColMajor> A;
- * SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<int> > solver;
- * // fill A and b;
- * // Compute the ordering permutation vector from the structural pattern of A
- * solver.analyzePattern(A);
- * // Compute the numerical factorization
- * solver.factorize(A);
- * //Use the factors to solve the linear system
- * x = solver.solve(b);
- * \endcode
- *
- * \warning The input matrix A should be in a \b compressed and \b column-major form.
- * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
- *
- * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
- * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
- * If this is the case for your matrices, you can try the basic scaling method at
- * "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
- *
- * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
- * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS
- *
- *
- * \sa \ref TutorialSparseDirectSolvers
- * \sa \ref OrderingMethods_Module
- */
+/** \ingroup SparseLU_Module
+ * \class SparseLU
+ *
+ * \brief Sparse supernodal LU factorization for general matrices
+ *
+ * This class implements the supernodal LU factorization for general matrices.
+ * It uses the main techniques from the sequential SuperLU package
+ * (http://crd-legacy.lbl.gov/~xiaoye/SuperLU/). It handles transparently real
+ * and complex arithmetics with single and double precision, depending on the
+ * scalar type of your input matrix.
+ * The code has been optimized to provide BLAS-3 operations during supernode-panel updates.
+ * It benefits directly from the built-in high-performant Eigen BLAS routines.
+ * Moreover, when the size of a supernode is very small, the BLAS calls are avoided to
+ * enable a better optimization from the compiler. For best performance,
+ * you should compile it with NDEBUG flag to avoid the numerous bounds checking on vectors.
+ *
+ * An important parameter of this class is the ordering method. It is used to reorder the columns
+ * (and eventually the rows) of the matrix to reduce the number of new elements that are created during
+ * numerical factorization. The cheapest method available is COLAMD.
+ * See \link OrderingMethods_Module the OrderingMethods module \endlink for the list of
+ * built-in and external ordering methods.
+ *
+ * Simple example with key steps
+ * \code
+ * VectorXd x(n), b(n);
+ * SparseMatrix<double, ColMajor> A;
+ * SparseLU<SparseMatrix<scalar, ColMajor>, COLAMDOrdering<int> > solver;
+ * // fill A and b;
+ * // Compute the ordering permutation vector from the structural pattern of A
+ * solver.analyzePattern(A);
+ * // Compute the numerical factorization
+ * solver.factorize(A);
+ * //Use the factors to solve the linear system
+ * x = solver.solve(b);
+ * \endcode
+ *
+ * \warning The input matrix A should be in a \b compressed and \b column-major form.
+ * Otherwise an expensive copy will be made. You can call the inexpensive makeCompressed() to get a compressed matrix.
+ *
+ * \note Unlike the initial SuperLU implementation, there is no step to equilibrate the matrix.
+ * For badly scaled matrices, this step can be useful to reduce the pivoting during factorization.
+ * If this is the case for your matrices, you can try the basic scaling method at
+ * "unsupported/Eigen/src/IterativeSolvers/Scaling.h"
+ *
+ * \tparam _MatrixType The type of the sparse matrix. It must be a column-major SparseMatrix<>
+ * \tparam _OrderingType The ordering method to use, either AMD, COLAMD or METIS
+ *
+ *
+ * \sa \ref TutorialSparseDirectSolvers
+ * \sa \ref OrderingMethods_Module
+ */
template <typename _MatrixType, typename _OrderingType>
class SparseLU
{
@@ -548,7 +542,6 @@ void SparseLU<MatrixType, OrderingType>::factorize(const MatrixType& matrix)
m_factorizationIsOk = true;
}
-// #include "SparseLU_simplicialfactorize.h"
namespace internal {
template<typename _MatrixType, typename Derived, typename Rhs>