aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SVD
diff options
context:
space:
mode:
authorGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-08-13 14:56:39 -0400
committerGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-08-13 14:56:39 -0400
commitf2536416da990f12e98d01806331ad8d78545863 (patch)
treecc214c7a2af204dd698f4659261cb1d19b2bf066 /Eigen/src/SVD
parent76a3089a43752859893422bdd3d41874c465a44e (diff)
* remove EIGEN_DONT_INLINE that harm performance for small sizes
* normalize left Jacobi rotations to avoid having to swap rows * set precision to 2*machine_epsilon instead of machine_epsilon, we lose 1 bit of precision but gain between 10% and 100% speed, plus reduce the risk that some day we hit a bad matrix where it's impossible to approach machine precision
Diffstat (limited to 'Eigen/src/SVD')
-rw-r--r--Eigen/src/SVD/JacobiSquareSVD.h15
1 files changed, 4 insertions, 11 deletions
diff --git a/Eigen/src/SVD/JacobiSquareSVD.h b/Eigen/src/SVD/JacobiSquareSVD.h
index 18c3db980..82133f7be 100644
--- a/Eigen/src/SVD/JacobiSquareSVD.h
+++ b/Eigen/src/SVD/JacobiSquareSVD.h
@@ -102,6 +102,7 @@ void JacobiSquareSVD<MatrixType, ComputeU, ComputeV>::compute(const MatrixType&
if(ComputeU) m_matrixU = MatrixUType::Identity(size,size);
if(ComputeV) m_matrixV = MatrixUType::Identity(size,size);
m_singularValues.resize(size);
+ const RealScalar precision = 2 * machine_epsilon<Scalar>();
sweep_again:
for(int p = 1; p < size; ++p)
@@ -110,7 +111,7 @@ sweep_again:
{
Scalar c, s;
while(std::max(ei_abs(work_matrix.coeff(p,q)),ei_abs(work_matrix.coeff(q,p)))
- > std::max(ei_abs(work_matrix.coeff(p,p)),ei_abs(work_matrix.coeff(q,q)))*machine_epsilon<Scalar>())
+ > std::max(ei_abs(work_matrix.coeff(p,p)),ei_abs(work_matrix.coeff(q,q)))*precision)
{
if(work_matrix.makeJacobiForAtA(p,q,&c,&s))
{
@@ -119,24 +120,16 @@ sweep_again:
}
if(work_matrix.makeJacobiForAAt(p,q,&c,&s))
{
- Scalar x = ei_abs2(work_matrix.coeff(p,p)) + ei_abs2(work_matrix.coeff(p,q));
- Scalar y = ei_conj(work_matrix.coeff(q,p))*work_matrix.coeff(p,p) + ei_conj(work_matrix.coeff(q,q))*work_matrix.coeff(p,q);
- Scalar z = ei_abs2(work_matrix.coeff(q,p)) + ei_abs2(work_matrix.coeff(q,q));
+ ei_normalizeJacobi(&c, &s, work_matrix.coeff(p,p), work_matrix.coeff(q,p)),
work_matrix.applyJacobiOnTheLeft(p,q,c,s);
if(ComputeU) m_matrixU.applyJacobiOnTheRight(p,q,c,s);
- if(std::max(ei_abs(work_matrix.coeff(p,q)),ei_abs(work_matrix.coeff(q,p)))
- > std::max(ei_abs(work_matrix.coeff(p,p)),ei_abs(work_matrix.coeff(q,q))) )
- {
- work_matrix.row(p).swap(work_matrix.row(q));
- if(ComputeU) m_matrixU.col(p).swap(m_matrixU.col(q));
- }
}
}
}
}
RealScalar biggestOnDiag = work_matrix.diagonal().cwise().abs().maxCoeff();
- RealScalar maxAllowedOffDiag = biggestOnDiag * machine_epsilon<Scalar>();
+ RealScalar maxAllowedOffDiag = biggestOnDiag * precision;
for(int p = 0; p < size; ++p)
{
for(int q = 0; q < p; ++q)