aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/SVD
diff options
context:
space:
mode:
authorGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-08-09 16:58:13 +0200
committerGravatar Benoit Jacob <jacob.benoit.1@gmail.com>2009-08-09 16:58:13 +0200
commit3ed83fa6813bd1401adce03a87ad452661d72f5e (patch)
treeb8db5ba4fce37b52193174ffb43d144690625307 /Eigen/src/SVD
parent5f8d58f36a57b860d6af52574df6f3e62debe001 (diff)
* add Jacobi transformations
* add Jacobi (Hestenes) SVD decomposition for square matrices * add function for trivial Householder
Diffstat (limited to 'Eigen/src/SVD')
-rw-r--r--Eigen/src/SVD/JacobiSquareSVD.h169
1 files changed, 169 insertions, 0 deletions
diff --git a/Eigen/src/SVD/JacobiSquareSVD.h b/Eigen/src/SVD/JacobiSquareSVD.h
new file mode 100644
index 000000000..e9ecc89ac
--- /dev/null
+++ b/Eigen/src/SVD/JacobiSquareSVD.h
@@ -0,0 +1,169 @@
+// This file is part of Eigen, a lightweight C++ template library
+// for linear algebra.
+//
+// Copyright (C) 2008-2009 Benoit Jacob <jacob.benoit.1@gmail.com>
+//
+// Eigen is free software; you can redistribute it and/or
+// modify it under the terms of the GNU Lesser General Public
+// License as published by the Free Software Foundation; either
+// version 3 of the License, or (at your option) any later version.
+//
+// Alternatively, you can redistribute it and/or
+// modify it under the terms of the GNU General Public License as
+// published by the Free Software Foundation; either version 2 of
+// the License, or (at your option) any later version.
+//
+// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
+// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
+// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
+// GNU General Public License for more details.
+//
+// You should have received a copy of the GNU Lesser General Public
+// License and a copy of the GNU General Public License along with
+// Eigen. If not, see <http://www.gnu.org/licenses/>.
+
+#ifndef EIGEN_JACOBISQUARESVD_H
+#define EIGEN_JACOBISQUARESVD_H
+
+/** \ingroup SVD_Module
+ * \nonstableyet
+ *
+ * \class JacobiSquareSVD
+ *
+ * \brief Jacobi SVD decomposition of a square matrix
+ *
+ * \param MatrixType the type of the matrix of which we are computing the SVD decomposition
+ * \param ComputeU whether the U matrix should be computed
+ * \param ComputeV whether the V matrix should be computed
+ *
+ * \sa MatrixBase::jacobiSvd()
+ */
+template<typename MatrixType, bool ComputeU, bool ComputeV> class JacobiSquareSVD
+{
+ private:
+ typedef typename MatrixType::Scalar Scalar;
+ typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
+ enum {
+ RowsAtCompileTime = MatrixType::RowsAtCompileTime,
+ MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
+ Options = MatrixType::Options
+ };
+
+ typedef Matrix<Scalar, Dynamic, Dynamic, Options> DummyMatrixType;
+ typedef typename ei_meta_if<ComputeU,
+ Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime,
+ Options, MaxRowsAtCompileTime, MaxRowsAtCompileTime>,
+ DummyMatrixType>::ret MatrixUType;
+ typedef typename Diagonal<MatrixType,0>::PlainMatrixType SingularValuesType;
+ typedef Matrix<Scalar, 1, RowsAtCompileTime, Options, 1, MaxRowsAtCompileTime> RowType;
+ typedef Matrix<Scalar, RowsAtCompileTime, 1, Options, MaxRowsAtCompileTime, 1> ColType;
+
+ public:
+
+ JacobiSquareSVD() : m_isInitialized(false) {}
+
+ JacobiSquareSVD(const MatrixType& matrix)
+ {
+ compute(matrix);
+ }
+
+ void compute(const MatrixType& matrix);
+
+ const MatrixUType& matrixU() const
+ {
+ ei_assert(m_isInitialized && "SVD is not initialized.");
+ return m_matrixU;
+ }
+
+ const SingularValuesType& singularValues() const
+ {
+ ei_assert(m_isInitialized && "SVD is not initialized.");
+ return m_singularValues;
+ }
+
+ const MatrixUType& matrixV() const
+ {
+ ei_assert(m_isInitialized && "SVD is not initialized.");
+ return m_matrixV;
+ }
+
+ protected:
+ MatrixUType m_matrixU;
+ MatrixUType m_matrixV;
+ SingularValuesType m_singularValues;
+ bool m_isInitialized;
+};
+
+template<typename MatrixType, bool ComputeU, bool ComputeV>
+void JacobiSquareSVD<MatrixType, ComputeU, ComputeV>::compute(const MatrixType& matrix)
+{
+ MatrixType work_matrix(matrix);
+ int size = matrix.rows();
+ if(ComputeU) m_matrixU = MatrixUType::Identity(size,size);
+ if(ComputeV) m_matrixV = MatrixUType::Identity(size,size);
+ m_singularValues.resize(size);
+ RealScalar max_coeff = work_matrix.cwise().abs().maxCoeff();
+ for(int k = 1; k < 40; ++k) {
+ bool finished = true;
+ for(int p = 1; p < size; ++p)
+ {
+ for(int q = 0; q < p; ++q)
+ {
+ Scalar c, s;
+ finished &= work_matrix.makeJacobiForAtA(p,q,max_coeff,&c,&s);
+ work_matrix.applyJacobiOnTheRight(p,q,c,s);
+ if(ComputeV) m_matrixV.applyJacobiOnTheRight(p,q,c,s);
+ }
+ }
+ if(finished) break;
+ }
+
+ for(int i = 0; i < size; ++i)
+ {
+ m_singularValues.coeffRef(i) = work_matrix.col(i).norm();
+ }
+
+ int first_zero = size;
+ RealScalar biggest = m_singularValues.maxCoeff();
+ for(int i = 0; i < size; i++)
+ {
+ int pos;
+ RealScalar biggest_remaining = m_singularValues.end(size-i).maxCoeff(&pos);
+ if(first_zero == size && ei_isMuchSmallerThan(biggest_remaining, biggest)) first_zero = pos + i;
+ if(pos)
+ {
+ pos += i;
+ std::swap(m_singularValues.coeffRef(i), m_singularValues.coeffRef(pos));
+ if(ComputeU) work_matrix.col(pos).swap(work_matrix.col(i));
+ if(ComputeV) m_matrixV.col(pos).swap(m_matrixV.col(i));
+ }
+ }
+
+ if(ComputeU)
+ {
+ for(int i = 0; i < first_zero; ++i)
+ {
+ m_matrixU.col(i) = work_matrix.col(i) / m_singularValues.coeff(i);
+ }
+ if(first_zero < size)
+ {
+ for(int i = first_zero; i < size; ++i)
+ {
+ for(int j = 0; j < size; ++j)
+ {
+ m_matrixU.col(i).setZero();
+ m_matrixU.coeffRef(j,i) = Scalar(1);
+ for(int k = 0; k < first_zero; ++k)
+ m_matrixU.col(i) -= m_matrixU.col(i).dot(m_matrixU.col(k)) * m_matrixU.col(k);
+ RealScalar n = m_matrixU.col(i).norm();
+ if(!ei_isMuchSmallerThan(n, biggest))
+ {
+ m_matrixU.col(i) /= n;
+ break;
+ }
+ }
+ }
+ }
+ }
+}
+#endif // EIGEN_JACOBISQUARESVD_H