aboutsummaryrefslogtreecommitdiffhomepage
path: root/Eigen/src/LU
diff options
context:
space:
mode:
authorGravatar Gael Guennebaud <g.gael@free.fr>2010-01-19 16:04:04 +0100
committerGravatar Gael Guennebaud <g.gael@free.fr>2010-01-19 16:04:04 +0100
commitd5d5417062f6b49e5d0fed0fe2311e1d3e8e227f (patch)
tree883bd2da37869be13cc879225287f3b86c793ac2 /Eigen/src/LU
parent60b0ddc3e1c55fc10bd116b66e7d7ff6ac0a2d2e (diff)
add SSE code (from Intel) for the fast inversion of 4x4 matrices of double
Diffstat (limited to 'Eigen/src/LU')
-rw-r--r--Eigen/src/LU/arch/Inverse_SSE.h135
1 files changed, 133 insertions, 2 deletions
diff --git a/Eigen/src/LU/arch/Inverse_SSE.h b/Eigen/src/LU/arch/Inverse_SSE.h
index d8528f996..2ad371a7b 100644
--- a/Eigen/src/LU/arch/Inverse_SSE.h
+++ b/Eigen/src/LU/arch/Inverse_SSE.h
@@ -24,8 +24,8 @@
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
-// The SSE code for the 4x4 float matrix inverse in this file comes from
-// the following Intel's library:
+// The SSE code for the 4x4 float and double matrix inverse in this file
+// comes from the following Intel's library:
// http://software.intel.com/en-us/articles/optimized-matrix-library-for-use-with-the-intel-pentiumr-4-processors-sse2-instructions/
//
// Here is the respective copyright and license statement:
@@ -153,4 +153,135 @@ struct ei_compute_inverse_size4<Architecture::SSE, float, MatrixType, ResultType
};
+template<typename MatrixType, typename ResultType>
+struct ei_compute_inverse_size4<Architecture::SSE, double, MatrixType, ResultType>
+{
+ static void run(const MatrixType& matrix, ResultType& result)
+ {
+ const EIGEN_ALIGN16 long long int _Sign_NP[2] = { 0x8000000000000000, 0x0000000000000000 };
+ const EIGEN_ALIGN16 long long int _Sign_PN[2] = { 0x0000000000000000, 0x8000000000000000 };
+
+ // The inverse is calculated using "Divide and Conquer" technique. The
+ // original matrix is divide into four 2x2 sub-matrices. Since each
+ // register of the matrix holds two element, the smaller matrices are
+ // consisted of two registers. Hence we get a better locality of the
+ // calculations.
+
+ // the four sub-matrices
+ __m128d A1(matrix.template packet<Aligned>( 0)), B1(matrix.template packet<Aligned>( 2)),
+ A2(matrix.template packet<Aligned>( 4)), B2(matrix.template packet<Aligned>( 6)),
+ C1(matrix.template packet<Aligned>( 8)), D1(matrix.template packet<Aligned>(10)),
+ C2(matrix.template packet<Aligned>(12)), D2(matrix.template packet<Aligned>(14));
+ __m128d iA1, iA2, iB1, iB2, iC1, iC2, iD1, iD2, // partial invese of the sub-matrices
+ DC1, DC2, AB1, AB2;
+ __m128d dA, dB, dC, dD; // determinant of the sub-matrices
+ __m128d det, d1, d2, rd;
+
+ // dA = |A|
+ dA = _mm_shuffle_pd(A2, A2, 1);
+ dA = _mm_mul_pd(A1, dA);
+ dA = _mm_sub_sd(dA, _mm_shuffle_pd(dA,dA,3));
+ // dB = |B|
+ dB = _mm_shuffle_pd(B2, B2, 1);
+ dB = _mm_mul_pd(B1, dB);
+ dB = _mm_sub_sd(dB, _mm_shuffle_pd(dB,dB,3));
+
+ // AB = A# * B
+ AB1 = _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,3));
+ AB2 = _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,0));
+ AB1 = _mm_sub_pd(AB1, _mm_mul_pd(B2, _mm_shuffle_pd(A1,A1,3)));
+ AB2 = _mm_sub_pd(AB2, _mm_mul_pd(B1, _mm_shuffle_pd(A2,A2,0)));
+
+ // dC = |C|
+ dC = _mm_shuffle_pd(C2, C2, 1);
+ dC = _mm_mul_pd(C1, dC);
+ dC = _mm_sub_sd(dC, _mm_shuffle_pd(dC,dC,3));
+ // dD = |D|
+ dD = _mm_shuffle_pd(D2, D2, 1);
+ dD = _mm_mul_pd(D1, dD);
+ dD = _mm_sub_sd(dD, _mm_shuffle_pd(dD,dD,3));
+
+ // DC = D# * C
+ DC1 = _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,3));
+ DC2 = _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,0));
+ DC1 = _mm_sub_pd(DC1, _mm_mul_pd(C2, _mm_shuffle_pd(D1,D1,3)));
+ DC2 = _mm_sub_pd(DC2, _mm_mul_pd(C1, _mm_shuffle_pd(D2,D2,0)));
+
+ // rd = trace(AB*DC) = trace(A#*B*D#*C)
+ d1 = _mm_mul_pd(AB1, _mm_shuffle_pd(DC1, DC2, 0));
+ d2 = _mm_mul_pd(AB2, _mm_shuffle_pd(DC1, DC2, 3));
+ rd = _mm_add_pd(d1, d2);
+ rd = _mm_add_sd(rd, _mm_shuffle_pd(rd, rd,3));
+
+ // iD = C*A#*B
+ iD1 = _mm_mul_pd(AB1, _mm_shuffle_pd(C1,C1,0));
+ iD2 = _mm_mul_pd(AB1, _mm_shuffle_pd(C2,C2,0));
+ iD1 = _mm_add_pd(iD1, _mm_mul_pd(AB2, _mm_shuffle_pd(C1,C1,3)));
+ iD2 = _mm_add_pd(iD2, _mm_mul_pd(AB2, _mm_shuffle_pd(C2,C2,3)));
+
+ // iA = B*D#*C
+ iA1 = _mm_mul_pd(DC1, _mm_shuffle_pd(B1,B1,0));
+ iA2 = _mm_mul_pd(DC1, _mm_shuffle_pd(B2,B2,0));
+ iA1 = _mm_add_pd(iA1, _mm_mul_pd(DC2, _mm_shuffle_pd(B1,B1,3)));
+ iA2 = _mm_add_pd(iA2, _mm_mul_pd(DC2, _mm_shuffle_pd(B2,B2,3)));
+
+ // iD = D*|A| - C*A#*B
+ dA = _mm_shuffle_pd(dA,dA,0);
+ iD1 = _mm_sub_pd(_mm_mul_pd(D1, dA), iD1);
+ iD2 = _mm_sub_pd(_mm_mul_pd(D2, dA), iD2);
+
+ // iA = A*|D| - B*D#*C;
+ dD = _mm_shuffle_pd(dD,dD,0);
+ iA1 = _mm_sub_pd(_mm_mul_pd(A1, dD), iA1);
+ iA2 = _mm_sub_pd(_mm_mul_pd(A2, dD), iA2);
+
+ d1 = _mm_mul_sd(dA, dD);
+ d2 = _mm_mul_sd(dB, dC);
+
+ // iB = D * (A#B)# = D*B#*A
+ iB1 = _mm_mul_pd(D1, _mm_shuffle_pd(AB2,AB1,1));
+ iB2 = _mm_mul_pd(D2, _mm_shuffle_pd(AB2,AB1,1));
+ iB1 = _mm_sub_pd(iB1, _mm_mul_pd(_mm_shuffle_pd(D1,D1,1), _mm_shuffle_pd(AB2,AB1,2)));
+ iB2 = _mm_sub_pd(iB2, _mm_mul_pd(_mm_shuffle_pd(D2,D2,1), _mm_shuffle_pd(AB2,AB1,2)));
+
+ // det = |A|*|D| + |B|*|C| - trace(A#*B*D#*C)
+ det = _mm_add_sd(d1, d2);
+ det = _mm_sub_sd(det, rd);
+
+ // iC = A * (D#C)# = A*C#*D
+ iC1 = _mm_mul_pd(A1, _mm_shuffle_pd(DC2,DC1,1));
+ iC2 = _mm_mul_pd(A2, _mm_shuffle_pd(DC2,DC1,1));
+ iC1 = _mm_sub_pd(iC1, _mm_mul_pd(_mm_shuffle_pd(A1,A1,1), _mm_shuffle_pd(DC2,DC1,2)));
+ iC2 = _mm_sub_pd(iC2, _mm_mul_pd(_mm_shuffle_pd(A2,A2,1), _mm_shuffle_pd(DC2,DC1,2)));
+
+ rd = _mm_div_sd(_mm_set_sd(1.0), det);
+// #ifdef ZERO_SINGULAR
+// rd = _mm_and_pd(_mm_cmpneq_sd(det,_mm_setzero_pd()), rd);
+// #endif
+ rd = _mm_shuffle_pd(rd,rd,0);
+
+ // iB = C*|B| - D*B#*A
+ dB = _mm_shuffle_pd(dB,dB,0);
+ iB1 = _mm_sub_pd(_mm_mul_pd(C1, dB), iB1);
+ iB2 = _mm_sub_pd(_mm_mul_pd(C2, dB), iB2);
+
+ d1 = _mm_xor_pd(rd, _mm_load_pd((double*)_Sign_PN));
+ d2 = _mm_xor_pd(rd, _mm_load_pd((double*)_Sign_NP));
+
+ // iC = B*|C| - A*C#*D;
+ dC = _mm_shuffle_pd(dC,dC,0);
+ iC1 = _mm_sub_pd(_mm_mul_pd(B1, dC), iC1);
+ iC2 = _mm_sub_pd(_mm_mul_pd(B2, dC), iC2);
+
+ result.template writePacket<Aligned>( 0, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 3), d1)); // iA# / det
+ result.template writePacket<Aligned>( 4, _mm_mul_pd(_mm_shuffle_pd(iA2, iA1, 0), d2));
+ result.template writePacket<Aligned>( 2, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 3), d1)); // iB# / det
+ result.template writePacket<Aligned>( 6, _mm_mul_pd(_mm_shuffle_pd(iB2, iB1, 0), d2));
+ result.template writePacket<Aligned>( 8, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 3), d1)); // iC# / det
+ result.template writePacket<Aligned>(12, _mm_mul_pd(_mm_shuffle_pd(iC2, iC1, 0), d2));
+ result.template writePacket<Aligned>(10, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 3), d1)); // iD# / det
+ result.template writePacket<Aligned>(14, _mm_mul_pd(_mm_shuffle_pd(iD2, iD1, 0), d2));
+ }
+};
+
#endif // EIGEN_INVERSE_SSE_H